
A multipartite Hajnal-Szemerédi theorem

Peter Keevash1 and Richard Mycroft2

Abstract. The celebrated Hajnal-Szemerédi theorem gives the precise minimum
degree threshold that forces a graph to contain a perfect Kk -packing. Fischer’s
conjecture states that the analogous result holds for all multipartite graphs except
for those formed by a single construction. Using recent results on perfect match-
ings in hypergraphs, we prove that (a generalisation of) this conjecture holds for
any sufficiently large graph.

1 Introduction
The celebrated Hajnal-Szemerédi theorem [6] states that if k divides n
then any graph G on n vertices with minimum degree δ(G) ≥ (k−1)n/k
contains a perfect Kk-packing1. This theorem generalised a result of Cor-
radi and Hajnal [3], who established the case k = 3, and is best-possible
in the sense that the theorem would not hold assuming any weaker mini-
mum degree condition. More recently, a series of papers [1,2,8,9] deter-
mined the minimum degree thresholds which force a perfect H -packing
in a graph for non-complete graphs H , culminating in the work of Kühn
and Osthus [11], who essentially settled the problem by giving the best-
possible such condition (up to an additive constant) for any graph H , in
terms of the so-called critical chromatic number.
In many applications it is natural to instead consider packings in a

multipartite setting, in which the analogous problem seems to be consid-
erably more difficult. More precisely, let V1, . . . , Vk be pairwise-disjoint
sets of n vertices each, and G be a k-partite graph with vertex classes
V1, . . . , Vk (so G has vertex set V1 ∪ · · · ∪ Vk and each Vj is an inde-

1 School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, United
Kingdom. Email: p.keevash@qmul.ac.uk
2 School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom.
Email: r.mycroft@bham.ac.uk
1 A perfect H -packing in a graph G is a spanning collection of vertex-disjoint copies of H in G;
other sources have referred to the same notion as a perfect H -tiling or H -factor.



2 Peter Keevash and Richard Mycroft

pendent set in G). We define the partite minimum degree of G, denoted
δ∗(G), to be the largestm such that every vertex has at leastm neighbours
in each part other than its own, so

δ∗(G) := min
i∈[k]

min
v∈Vi

min
j∈[k]\{i}

|N (v) ∩ Vj |,

where N (v) denotes the neighbourhood of v.
Fischer [5] conjectured that the natural multipartite analogue of the

Hajnal-Szemerédi theorem should hold. That is, he conjectured that if
δ∗(G) ≥ (k − 1)n/k then G must contain a perfect Kk-packing. This
conjecture is straightforward for k = 2, as it is not hard to see that any
maximal matching must be perfect. However, Magyar and Martin [13]
constructed a counterexample for k = 3, and furthermore showed that
their construction gives the only counterexample for large n. More pre-
cisely, they showed that if n is sufficiently large, G is a 3-partite graph
with vertex classes each of size n and δ∗(G) ≥ 2n/3, then either G con-
tains a perfect K3-packing, or G is isomorphic to the graph 0n,3,3 defined
in Construction 1 for some odd n which is divisible by 3.
The implicit conjecture behind this result (stated explicitly by Kühn

and Osthus [10]) is that the only counterexamples to Fischer’s original
conjecture are the constructions given by the graphs 0n,k,k defined in
Construction 1 when n is odd and divisible by k. We refer to this as
the modified Fischer conjecture. If k is even then n cannot be both odd
and divisible by k, so the modified Fischer conjecture is the same as the
original conjecture in this case. Martin and Szemerédi [15] proved that
(the modified) Fischer’s conjecture holds for k = 4. Another partial re-
sult was obtained by Csaba and Mydlarz [4], who gave a function f (k)
with f (k) → 0 as k → 1 such that the conjecture holds for large n if
one strengthens the degree assumption to δ∗(G) ≥ (k − 1)n/k + f (k)n.
However, for general k the validity of even an asymptotic version of Fis-
cher’s conjecture (i.e. assuming that δ∗(H) ≥ (k − 1)n/k + o(n)) was
unknown until recently, when the results described below were obtained.

2 New results
Keevash and Mycroft [7] used new results on perfect matchings in k-
uniform hypergraphs2 to deduce the following asymptotic result (which

2 A hypergraph H consists of a vertex set V and an edge set E , where each edge e ∈ E is a subset
of V . The edges are not required to be the same size; if they are then we say that H is a k-uniform
hypergraph, or k-graph, where k is the common size of the edges.
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was also proved independently and simultaneously by Lo and Mark-
ström [12] using the ‘absorbing’ method.)

Theorem 2.1. For any k and ε > 0 there exists n0 such that any k-
partite graphG whose vertex classes each have size n ≥ n0 with δ∗(G) ≥
(k − 1)n/k + εn contains a perfect Kk-packing.

An r-partite graph can only contain a Kk-packing for r ≥ k, since
otherwise we do not have even a single copy of Kk . Fischer’s conjecture
pertains to the case r = k, but it is natural to ask also for an analogous
result for the case r > k. By a careful analysis of the extremal cases
of Theorem 2.1, we can prove an exact result answering both Fischer’s
conjecture and also this more general question for large n. This is the
following theorem, the case r = k of which shows that (the modified)
Fischer’s conjecture holds for any sufficiently large graph. (The graph
0n,r,k referred to in the statement is defined in Construction 1.)

Theorem 2.2. For any r ≥ k there exists n0 such that for any n ≥ n0
with k | rn the following statement holds. Let G be a r-partite graph
whose vertex classes each have size n such that δ∗(G) ≥ (k − 1)n/k.
Then G contains a perfect Kk-packing, unless rn/k is odd, k | n, and
G ∼= 0n,r,k .

We now give the generalised version of the construction of Magyar and
Martin [13] showing Fischer’s original conjecture to be false.

Construction 1. Suppose rn/k is odd and k divides n. Let V be a vertex
set partitioned into parts V1, . . . , Vr of size n. Partition each Vi , i ∈ [r]
into subparts V j

i , j ∈ [k] of size n/k. Define a graph 0n,r,k , where for
each i, i 0 ∈ [r] with i 6= i 0 and j ∈ [k], if j ≥ 3 then any vertex in
V j
i is adjacent to all vertices in V j 0

i 0 with j 0 ∈ [k] \ { j}, and if j = 1
or j = 2 then any vertex in V j

i is adjacent to all vertices in V j 0
i 0 with

j 0 ∈ [k] \ {3− j}.

Figure 2.1. Construction 1 for the case k = r = 3.



4 Peter Keevash and Richard Mycroft

Figure 2.1 shows Construction 1 for the case k = r = 3. To avoid
complicating the diagram, edges between V1 and V3 are not shown: these
are analogous to those between V1 and V2 and between V2 and V3. For
n = k this is the exact graph of the construction; for larger n we ‘blow
up’ the graph above, replacing each vertex by a set of size n/k, and each
edge by a complete bipartite graph between the corresponding sets. In
general, it is helpful to picture the construction as an r by k grid, with
columns corresponding to parts Vi , i ∈ [r] and rows V j =

S
i∈[r] V

j
i ,

j ∈ [k] corresponding to subparts of the same superscript. Vertices have
neighbours in other rows and columns to their own, except in rows V 1
and V 2, where vertices have neighbours in other columns in their own
row and other rows besides rows V 1 and V 2. Thus δ∗(G) = (k − 1)n/k.
We claim that there is no perfect Kk-packing. For any Kk has at most
one vertex in any V j with j ≥ 3, so at most k − 2 vertices in

S
j≥3 V j .

Also
Ø
ØS

j≥3
Ø
ØV j = (k − 2)rn/k, and there are rn/k copies of Kk in a

perfect packing. Thus each Kk must have k − 2 vertices in
S

j≥3 V j , and
so 2 vertices in V 1 ∪ V 2, which must either both lie in V 1 or both lie in
V 2. However, |V 1| = rn/k is odd, so V 1 cannot be perfectly covered by
pairs. Thus G contains no perfect Kk-packing.

3 Rough outline of the proofs
As described above, Theorem 2.1, the asymptotic version of Fischer’s
conjecture, is proved by a short deduction from results on perfect match-
ings in uniform hypergraphs proved in [7]. Indeed, the result used gives
fairly general conditions on a k-graph H which guarantee that either

(a) H contains a perfect matching, or
(b) H is close to a ‘divisibility barrier’, one of a family of lattice-based

constructions which do not contain a perfect matching.

Given a graph G, we define the clique k-complex of G to be the hy-
pergraph J on V (G) whose edges are the cliques of size j in G for
1 ∑ j ∑ k. Then a perfect Kk-packing in G is a perfect matching in
the k-graph Jk consisting of all edges of J of size k. It is straightforward
to show that if G meets the conditions of Theorem 2.1, then Jk satisfies
the conditions necessary to apply the theorem from [7] described above.
Furthermore, it is similarly not difficult to show that Jk is not close to a
divisibility barrier, ruling out (b). So the theorem implies that (a) must
hold, completing the proof of Theorem 2.1.
However, if we instead only assume that G satisfies the weaker condi-

tions of Theorem 2.2, we can no longer deduce that Jk is not close to a
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divisibility barrier. Indeed, the clique k-complex of the graph 0n,r,k con-
structed in Construction 1 is actually isomorphic to a divisibility barrier.
On the other hand, if Jk is close to a divisibility barrier then we can obtain
significant structural information regarding G. In fact, for k ≥ 3 we find
that we may partition G into two ‘rows’. That is, we may find a subset
Ui of each vertex class Vi of size pn/k for some 1 ∑ p ∑ k − 1 such
that the bipartite graphs G[Ui , Vj \ Uj ] for i 6= j are almost-complete.
Except for a small number of ‘bad’ vertices, the rows G1 := G[

S
Ui ]

and G2 := G[
S
Vi \Ui ] satisfy a similar degree condition to G, but with

p and k − p respectively in place of k. This suggests our approach: we
argue inductively to find a perfect Kp-packing in G1 and a perfect Kk−p-
packing in G2. Using the fact that we have almost all edges between
rows, we join each copy of Kp in the former packing to a copy of Kk−p
in the latter packing to form a Kk-packing in G, as required.
However, for k = 2 there is another possibility for G for which Jk

is close to a divisibility barrier. This is that G is pair-complete, meaning
that we may chooseUi ⊆ Vi of size n/2 for each i so thatG1 := G[

S
Ui ]

and G2 := G[
S
Vi \Ui ] are almost-complete r-partite graphs, and there

are very few edges in the bipartite graphs G[Ui , Vj \ Uj ]. If there are
in fact no edges in these bipartite graphs, and r and n/2 are both odd,
then G cannot contain a perfect matching (i.e. perfect K2-packing). This
presents an obstacle to the proof strategy described above for k ≥ 3 (since
our inductive argument may fail for this reason). It transpires that we can
avoid this problem by initially deleting a well-chosen small Kk-packing
in G except for when G is exactly isomorphic to the graph 0n,r,k , and the
theorem follows from this.

4 Future directions
As described in the introduction, the Hajnal-Szemerédi theorem on per-
fect Kk-packings in a graph G was followed by a sequence of papers
addressing the problem of finding an H -packing in G for an arbitrary
graph H . Following Theorem 2.2, it seems natural to ask for multi-
partite analogues of these theorems as well. In this direction, Martin
and Skokan [14] recently proved an approximate multipartite version of
the Alon-Yuster theorem. That is, they proved that if H is a graph with
χ(H) ∑ k, and G is a k-partite graph with vertex classes V1, . . . , Vk of
size n which satisfies δ∗(G) ≥ (k− 1)n/k+ o(n), then G contains a per-
fect H -packing. One natural question is whether this minimum degree
bound can be improved to include only a constant error term. Moreover,
this bound is not even asymptotically best possible for many graphs: to
find the degree threshold which forces a perfect H -packing in a k-partite
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graph for an arbitrary k-partite graph H an analogue of the critical chro-
matic number seems necessary.
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