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Abstract

Sumner’s universal tournament conjecture from 1971 states that any tournament
on 2n − 2 vertices contains any directed tree on n vertices. We prove that this
conjecture holds for all sufficiently large n.
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1 Introduction

A tournament is an orientation of a complete graph. Obviously one cannot
guarantee any substructures which contain a directed cycle within an arbitrary
tournament. On the other hand, Sumner’s universal tournament conjecture
states that one can find any directed tree T within an arbitrary tournament G,
even if the order of T is rather large compared to that of G. More precisely, the
conjecture states that any tournament on 2n−2 vertices contains any directed
tree on n vertices. Many partial results towards this conjecture (made in 1971)
have been proved – some of them are described below. In [11], we prove this
conjecture for all large n.

Theorem 1.1 ([11]) There exists n0 such that the following holds. Let T be
a directed tree on n ≥ n0 vertices, and G a tournament on 2n − 2 vertices.
Then G contains a copy of T .

To see that the bound is best possible, let T be a star with all edges directed
inwards, and let G be a regular tournament on 2n − 3 vertices. Then every
vertex of G has n − 2 inneighbours and n − 2 outneighbours, and so G does
not contain a copy of T , whose central vertex has n− 1 inneighbours. There
are also ‘near-extremal’ examples which have a different structure to the one
given above: let T be obtained from a directed path on � ≥ 1 vertices by
adding y := (n − �)/2 outneighbours to the terminal vertex of the path and
y inneighbours to the initial vertex of the path. Let G consist of regular
tournaments Y and Z, each on 2y − 1 vertices, together with an arbitrary
tournament X on � − 1 vertices so that all edges are oriented from Z to X,
from X to Y and from Z to Y . Then |G| = 2n− �− 3 as well as |T | = n, and
it is easy to see that G does not contain T . These ‘near-extremal’ examples
play a significant role in the proof of Theorem 1.1.

In [10], we used a randomised embedding algorithm to prove an approxi-
mate version of Sumner’s universal tournament conjecture, and also a stronger
result for directed trees of bounded degree. Both of these results are important
tools in the proof of Theorem 1.1.

Theorem 1.2 ([10], Theorem 1.4) Let α > 0. Then the following proper-
ties hold.

(i) There exists n0 such that for any n ≥ n0, any tournament G on 2(1+α)n
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vertices contains any directed tree T on n vertices.

(ii) Let Δ be any positive integer. Then there exists n0 such that for any
n ≥ n0, any tournament G on (1 + α)n vertices contains any directed
tree T on n vertices with Δ(T ) ≤ Δ.

Let f(n) denote the smallest integer such that any tournament on f(n) ver-
tices contains any directed tree on n vertices. So Sumner’s conjecture states
that f(n) = 2n − 2. Chung (see [17]) observed that f(n) ≤ n1+o(1), and
Wormald [17] improved this to f(n) ≤ O(n log n). The first linear bound on
f(n) was established by Häggkvist and Thomason [4]. Havet [5] then showed
that f(n) ≤ 38n/5, and later Havet and Thomassé [7] used their notion of
median orders to improve this to f(n) ≤ 7n/2. Finally El Sahili used the same
notion to prove the best known bound for general n, namely that f(n) ≤ 3n−3.
We make extensive use of this result (actually, any linear bound would suffice
for our purposes; the factor of 3 is not essential.)

Sumner’s conjecture is also known to hold for special classes of trees. In
particular, Havet and Thomassé [7] proved it for ‘outbranchings’, again using
median orders. Here an outbranching is a directed tree T in which we may
choose a root vertex t ∈ T so that for any vertex t′ ∈ T , the path between
t and t′ in T is directed from t to t′. (Outbranchings are also known as
arborescences.)

For many types of trees, Sumner’s conjecture holds with room to spare. A
classical result of this type is Redei’s theorem.

Theorem 1.3 (Redei [14]) Any tournament contains a spanning directed
path.

This was generalised considerably by Thomason [16] who showed that when-
ever n is sufficiently large, every tournament on n vertices contains every
orientation of the path on n vertices (this was a conjecture of Rosenfeld).
Havet and Thomassé [8] proved that this even holds for all n �= 3, 5, 7. They
also proposed the following generalisation of Sumner’s conjecture :

Conjecture 1.4 (Havet and Thomassé, see [6]) Let T be a directed tree
on n vertices with k leaves. Then every tournament on n + k − 1 vertices
contains a copy of T .

Some special cases are known (see e.g. [2]). It would be interesting to know
whether our methods can be used to prove this conjecture.

In the following section, we give a sketch of the proof of Theorem 1.2(ii).
The proofs of Theorem 1.1 and 1.2(i) build on these ideas.
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2 Sketch of proof of Theorem 1.2(ii)

The notion of a robust outexpander (which was introduced for dense graphs
in [13]) is crucial to the proof. Informally, a digraph G is a robust outexpander
if for any set S ⊆ V (G) which is not too large or too small, the number of
vertices with many inneighbours in S is substantially bigger than |S|. Kühn,
Osthus and Treglown [13] showed that any robust outexpander G of linear
minimum semidegree contains a Hamilton cycle. (Here the minimum semide-
gree is the minimum of the minimum indegree and the minimum outdegree.)
Applying this to the ‘reduced digraph’ obtained from the Szemerédi regular-
ity lemma implies that we can split most of the vertices of G into clusters
V1, V2, . . . , Vk so that the set of edges from Vi to Vi+1 for each i (addition of
the indices taken modulo k) forms a quasirandom and dense bipartite graph.
As we shall see, this structure is very useful for embedding trees. On the other
hand, it is easy to show that if a tournament G is not a robust outexpander
of linear minimum semidegree, then the vertices of G can be split into two
parts so that almost all of the edges between the two parts are directed the
same way. We will then consider whether either of these two parts are robust
outexpanders, and so on.

Then we show that Theorem 1.2(ii) holds with the added condition that
G is a robust outexpander of linear minimum semidegree. So suppose the
tournament G is a robust outexpander of linear minimum semidegree on (1 +
α)n vertices, and T is a directed tree on n vertices of bounded maximum
degree. As described above, we can split most of the vertices of G into clusters
V1, V2, . . . , Vk so that the set of edges from Vi to Vi+1 is quasirandom and dense
for each i. Given this structure on G, one attempt to embed T in G would
be to embed each vertex t ∈ T in the cluster either preceding or succeeding
the cluster containing the parent t′ of t, according to the direction of the
edge between t and t′. However, for many trees this method will fail to give
an approximately uniform allocation of vertices of T to the clusters of G,
which we require for the embedding to be successful. Instead, we modify
this method so that each vertex is embedded as above with probability 1/2
and is embedded in the same cluster as its parent with probability 1/2. We
show that with high probability this randomised algorithm will indeed give an
approximately uniform allocation of vertices of T to the clusters of G, and so
will successfully embed T in G.

It is a simple exercise to demonstrate that any transitive tournament on
n vertices contains any directed tree on n vertices. We prove an analogue
of this for almost-transitive tournaments G. This means that the vertices of
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G can be ordered so that almost all of the edges of G are directed towards
the endvertex which is greater in this order. We show that if G is an almost-
transitive tournament on (1+α)n vertices and T is a directed tree on n vertices
then G contains T .

Finally, we use the above results to prove Theorem 1.2(ii). So let G be a
tournament on (1 + α)n vertices and let T be a directed tree on n vertices.
If G is a robust outexpander of linear minimum semidegree, then our results
show that G contains T , as desired. On the other hand, if G is not a robust
outexpander of linear minimum semidegree then we may split G into two parts
as described above (so almost all edges between these 2 parts are directed the
same way). We now examine the larger of these two parts. If this is a robust
outexpander of linear minimum semidegree then we stop; otherwise we again
split this part into two. We continue in this fashion, always choosing the
largest part of G, stopping if this is a robust outexpander and splitting it into
two smaller parts if not. If we continue this process but do not find a robust
outexpander of linear minimum semidegree, then G must be almost transitive.
Indeed, each time we split G most of the edges across the split are directed
the same way. So once all of the parts of G are sufficiently small, we can be
sure that for some ordering of the vertices of G, almost all of the edges of G
are directed according to this order. So G contains T , as desired.

So suppose instead that at some stage we stop because the largest part
of G is a robust outexpander of linear minimum semidegree. Then we divide
T into parts to be embedded amongst the parts of G, so that each part of
G receives a part of T approximately proportional to its size. However, the
robust outexpander part of G will actually receive slightly more vertices of T
than it would from a proportional split. It turns out that our previous results
guarantee that this part of T can still be embedded into the corresponding
part of G. Since then the other parts of G will receive slightly fewer vertices
of T than they would from a proportional split it will be possible to embed
the remainder of T .
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[9] S. Janson, T. �Luczak and A. Ruciński, Random graphs, Wiley-Interscience,
2000.

[10] D. Kühn, R. Mycroft and D. Osthus, An approximate version of Sumner’s
universal tournament conjecture, Journal of Combinatorial Theory, Series B, to
appear.
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