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Abstract

Let G and H be k-graphs (k-uniform hypergraphs); then a perfect H-packing in G
is a collection of vertex-disjoint copies of H in G which together cover every vertex
of G. For any fixed k-graph H let δ(H,n) be the minimum δ such that any k-graph G
on n vertices with minimum codegree δ(G) ≥ δ contains a perfect H-packing. The
problem of determining δ(H,n) has been widely studied for graphs (i.e. 2-graphs),
but little is known for k ≥ 3. Here we determine the asymptotic value of δ(H,n)
for all complete k-partite k-graphs.
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1 Introduction.

A k-uniform hypergraph, or k-graph H consists of a vertex set V (H) and an
edge set E(H), where every e ∈ E(H) is a set of precisely k vertices of H. So
a 2-graph is a simple graph. We write |H| to denote the number of vertices
of H. If G and H are k-graphs, then an H-packing in G (also known as an
H-tiling or H-matching) is a collection of vertex-disjoint copies of H in G.
This is a generalisation of a matching in G, which is the case of an H-packing
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when H has k vertices and one edge. A matching or H-packing in G is perfect
if it covers every vertex of G.

We shall focus on the case when H is a fixed k-graph and |G| is much larger
than |H|. Our general question is then: what minimum degree is sufficient to
guarantee that a k-graph G contains a perfect H-packing? There are several
notions of minimum degree for k-graphs, but we shall consider here only one,
which is often referred to as the codegree. So let G be a k-graph on n vertices.
For any set S ⊆ V (G) of size k − 1, the degree d(S) of S is the number of
edges of G which contain S as a subset. The minimum degree δ(G) of G is
then the minimum of d(S) over all sets of k − 1 vertices of G. Note that this
coincides with the standard notion of degree for graphs. For any fixed k-graph
H and any integer n we define δ(H, n) to be the smallest integer δ such that
any k-graph G on n vertices with minimum degree δ(G) ≥ δ contains a perfect
H-packing. Clearly this is only possible if |H| | n, and we only consider these
values of n. Under this restriction, we wish to determine how δ(H, n) behaves
for any fixed k-graph H when n is large.

For graphs this question has been widely studied, and the value of δ(H, n)
has been determined up to an additive constant for any graph H. Indeed,
the celebrated Hajnal-Szemerédi theorem [3] determined that δ(Kr, n) = (r−
1)n/r, and Komlós, Sárközy and Szemerédi [7] showed that for any graph
H there exists a constant C such that δ(H, n) ≤ (1 − 1/χ(H))n + C. This
confirmed a conjecture of Alon and Yuster [1], who had proved this result
with a linear error term. Finally Kühn and Osthus [8] determined the value
of δ(H, n) up to an additive constant for any graph H by using the critical
chromatic number χcr(H) first introduced by Komlós [6]. They showed that
δ(H, n) depends on certain divisibility properties of H in a manner that is
similar to our results for k-partite k-graphs.

On the other hand, for k ≥ 3 far less is known. Until very recently even the
asymptotic value of δ(H, n) was known only for the case of a perfect matching
(i.e. a Kk

k -packing). The first bounds for this case were given by Daykin and
Häggkvist [2]; Rödl, Ruciński and Szemerédi [11] later determined δ(Kk

k , n)
precisely for all sufficiently large n (the value is always between n/2 − k and
n/2). Very recently Keevash and Mycroft [5] used hypergraph matching results
to show that δ(K3

4 , n) = 3n/4 + o(n). This proved an asymptotic version of
a conjecture of Pikhurko [10], who had previously shown that δ(K3

4 , n) ≤
0.8603n.

The results of the next section are taken from [9]. These provide upper
bounds on δ(K, n) for any k-partite k-graph K. For complete k-partite k-
graphs we provide matching lower bounds, thus determining the asymptotic
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value of δ(K, n) for any complete k-partite k-graph K.

2 Packing k-partite k-graphs.

Let K be a k-graph on vertex set U with at least one edge (if K has no edges
then trivially δ(K, n) = 0). A k-partite realisation of K is a partition of U into
vertex classes U1, . . . , Uk so that for any e ∈ K and j ∈ [k] we have |e∩Uj| = 1.
Note in particular that we must have |Uj| ≥ 1 for every j ∈ [k]. We say that
K is k-partite if it admits a k-partite realisation. In a slight abuse of notation,
we write e.g. “K is a k-partite k-graph on vertex set U = U1 ·∪ . . . ·∪Uk” to
mean that K is a k-partite k-graph with vertex classes U1, U2, . . . , Uk. We
say that a k-partite k-graph K on vertex set U = U1 ·∪ . . . ·∪Uk is complete if
every set e ⊆ U with |e ∩ Uj| = 1 for all j ∈ [k] is an edge of K. Observe
that a complete k-partite k-graph has only one k-partite realisation (up to
permutations of the vertex classes U1, . . . , Uk).

We categorise all k-partite k-graphs according to the divisibility relations
between the sizes of their vertex classes. Indeed, let K be a k-partite k-graph
on vertex set U . Then we define

S(K) :=
⋃

{|U1|, . . . , |Uk|} and D(K) :=
⋃

{||Ui| − |Uj|| : i, j ∈ [k]},

where in each case the union is taken over all k-partite realisations U =
U1 ·∪ . . . ·∪Uk of K. The greatest common divisor of K, denoted gcd(K), is then
defined to be the greatest common divisor of the set D(K) (if D(K) = {0}
then gcd(K) is undefined). We say that

(i) K is type 0 if gcd(S(K)) > 1 or |U1| = |U2| = . . . = |Uk| = 1, and

(ii) for d ≥ 1, K is type d if gcd(S(K)) = 1 and gcd(K) = d.

Note that if gcd(K) is undefined then K is type 0. So every k-partite k-graph
falls into one of these types. Our first theorem states that for any k-partite
k-graph K, regardless of type, we have δ(K, n) ≤ n/2 + o(n). Furthermore,
Proposition 2.2 uses a well-known construction to show that this bound is
asymptotically best possible for complete k-partite k-graphs of type 0.

Theorem 2.1 Let K be a k-partite k-graph. Then for any α > 0 there exists
n0 such that any k-graph G on n ≥ n0 vertices with |K| | n and δ(G) ≥
n/2 + αn contains a perfect K-packing.

Proposition 2.2 Let K be a complete k-partite k-graph such that p | gcd(S(K))
for some p > 1. Then for any n there exists a k-graph G on n vertices with
δ(G) ≥ n/2 − k such that G does not contain a perfect K-packing.
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Proof. Let A and B be disjoint sets of vertices such that |A|, |B| ≥ n/2 − 1,
p � |A| and |A ∪ B| = n, and let G be the k-graph on vertex set A ∪ B whose
edges are all k-tuples e ⊆ A∪B such that |e∩A| is even. Then δ(G) ≥ n/2−k.
Also let U = U1 ·∪ . . . ·∪Uk be the (unique) k-partite realisation of K. Then
since K is complete k-partite any copy of K in G must have either Uj ⊆ A
or Uj ⊆ B for each 1 ≤ j ≤ k. So in particular, the number of vertices in A
covered by a given copy of K in G must be a multiple of p. Since p � |A| we
may deduce that no K-packing in G covers every vertex of |A|. �

The next theorem shows that we have a much stronger bound on δ(K, n)
for k-partite k-graphs of type 1. For any k-partite k-graph K, we define the
smallest class ratio of K, denoted σ(K), by

σ(K) :=
minS∈S(K) S

|V (K)| .

So for any k-partite realisation of K, any vertex class of that realisation must
have size at least σ(K)|V (K)|. Note that we must have σ(K) ≤ 1/k. Theo-
rem 2.3 shows that the parameter σ(K) provides an upper bound on δ(K, n)
for any k-partite k-graph K of type 1. If K is also complete k-partite, then
Proposition 2.4 (another well-known construction) shows that δ(K, n) is ac-
tually asymptotically equal to this bound.

Theorem 2.3 Let K be a k-partite k-graph with gcd(K) = 1. Then for any
α > 0 there exists n0 such that any k-graph G on n ≥ n0 vertices with |K| | n
and δ(G) ≥ σ(K)n + αn contains a perfect K-packing.

Proposition 2.4 Let K be a complete k-partite k-graph. Then for any n
there exists a k-graph G on n vertices with δ(G) ≥ σ(K)n− 1 which does not
contain a perfect K-packing.

Proof. Let A and B be disjoint sets of vertices with |A| = σ(K)n − 1 and
|A ∪ B| = n, and let G be the k-graph on vertex set A ∪ B whose edges are
all k-tuples e ⊆ A ∪ B with |e ∩ A| ≥ 1. Then δ(G) = |A| = σ(K)n − 1. Also
let U = U1 ·∪ . . . ·∪Uk be the k-partite realisation of K. Since K is complete
k-partite, any copy of K in G must have Uj ⊆ A for some 1 ≤ j ≤ k. So
every copy of K in G has at least min1≤j≤k |Uj| ≤ σ(K)|K| vertices in A, and
so any k-packing in G covers at most |A|/σ(K) < n vertices of G. �

Finally, for k-partite k-graphs K of type d ≥ 2 the next theorem show that
δ(K, n) is bounded above by the larger of threshold of Theorem 2.3 and an
additional threshold determined by gcd(K).
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Theorem 2.5 Let K be a k-partite k-graph with gcd(K) > 1 and gcd(S(K)) =
1, and let p be the smallest prime factor of gcd(K). Then for any α > 0 there
exists n0 such that any k-graph G on n ≥ n0 vertices contains a perfect K-
packing if |K| | n and

δ(G) ≥ max{σ(K)n + αn,
n

p
+ αn}.

If K is complete k-partite, then Proposition 2.4 and the next proposition
together show that the bound of Theorem 2.5 is asymptotically best possible.
This is achieved through an interesting generalisation of the construction of
Proposition 2.2. Indeed, the latter is the construction of Proposition 2.6 for
p = 2.

Proposition 2.6 Let K be a complete k-partite k-graph, and suppose that
p ≥ 2 satisfies p | gcd(K). Then for any n there exists a k-graph G on n
vertices with δ(G) ≥ n/p−k such that G does not contain a perfect K-packing.

Proof. Let Lp be the (p − 1)-dimensional sublattice of Zp
p generated by the

vectors v1, . . . ,vp−1, where for each 1 ≤ j ≤ p − 1 we define

vj = (

j−1︷ ︸︸ ︷
0, . . . , 0, 1,

p−j−1︷ ︸︸ ︷
0, . . . , 0, j − 1).

Then (†) for any vector v ∈ Zp
p there is precisely one coordinate of v which

when incremented by one (modulo p) yields a vector v′ ∈ Lp. Take disjoint sets
of vertices V1, . . . , Vp such that V :=

⋃p
j=1 Vj has |V | = n. For any S ⊆ V we

define the index vector i(S) of S to be the vector in Zp
p whose j-th coordinate

is |S ∩ Vj| mod p. Fix the sizes of V1, . . . , Vp such that |Vj| ≥ n/p − 1 for
each j and i(V ) /∈ Lp, and let G be the k-graph on vertex set V whose edges
are those k-tuples e ⊆ V with i(e) ∈ Lp. Then by (†) we have δ(G) ≥ n/p−k.

Since K is complete k-partite, by (†) any copy K ′ of K in G must have the
property that i(e) is constant over all edges e of K ′. Also, since p | gcd(K), and
each coordinate of i(V (K ′)) is taken modulo p, it follows that i(V (K ′)) ∈ Lp.
So if a K-packing in G covers precisely V ′ ⊆ V , then we must have i(V ′) ∈ Lp.
Since i(V ) /∈ Lp, there can be no perfect K-packing in G. �

The proofs of Theorems 2.1, 2.3 and 2.5 each use strong hypergraph regu-
larity and the recent hypergraph blow-up lemma due to Keevash [4]. Indeed,
the minimum degree conditions in each case are required to permit the dele-
tion from G of a small number of copies of K to prepare G for the application
of the blow-up lemma to complete the perfect K-packing.
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We conclude by summarising our results for complete k-partite k-graphs K
in tabular form. Let p(d) denote the smallest prime factor of d. Then:

K is complete k-partite of δ(K, n) =

type 0 n/2 + o(n)

type 1 σ(K)n + o(n)

type d > 2 max{σ(K)n, n
p(d)

} + o(n)
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