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Abstract

An unstructured mixed-Eulerian–Lagrangian model (MEL) is described for the simulation of the nonlinear wave–

body interaction, as opposed to the structured model used widely in this field. In present model, the free surface is inter-

polated accurately using a polynomial scheme coupled with the moving least-squares method, and is triangulated with a

local interrogation method coupled with the advancing front method to provide a high quality mesh. A new method is

devised to update the free surface intersection with the body, based on the desingularized boundary-integral method.

Double desingularized point sources are used for a control point at the intersection, with one inside the body and the

other above the free surface, to satisfy both the body and free surface boundary conditions over there. The desingular-

ized point sources are positioned in terms of the element sizes as well as solid angles of the boundary surface, so as to

avoid possible overcrowding of the sources at the corners of the surface. Solid angles on the surface are computed ana-

lytically using the spherical triangle theory. As an illustration, the algorithm is used to simulate the wave generation for

a Wigley hull, which impulsively starts to move at a constant speed on a calm water surface. The anticipated Kelvin

ship-wave pattern is well simulated. The wave profiles along the hull agree well with the measured results of Nobeless

and McCarthy [Proceedings of the 2nd DTNSRDC Workshop, Maryland, 1983, pp. 5–35]. As compared to a struc-

tured approach, the unstructured model reduces the CPU time and memory requirements and, being robust in handling

complex geometries, is more versatile in practical applications.
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1. Introduction

The interaction between the free surface wave and a floating body poses an interesting theoretical prob-

lem of practical importance in naval architecture and ocean engineering. The linearized water wave theory

is often sufficient for routine design. But the nonlinear effects must be considered in the case of the extreme
loads and motions, which are essential to the critical performance, safety, and even survival of marine ves-

sels and offshore structures (cf. [2–4]).

For a body moving steadily in a calm water surface, nonlinear computations can be performed using an

iterative technique to solve a series of linearized boundary value problems, in which each iterative solution

is linearized to the solution of the previous iteration [5–8]. It has the advantage of converging to the fully

nonlinear solution in lesser CPU time than a time-domain method, and is one of the major tools used for

predicting the wave resistance for ships. However, this modelling approach is only suitable for simulating

the steady problems.
Longuet-Higgins and Cokelet [9] invented a mixed-Eulerian–Lagrangian method (MEL) to model the

transient steep water waves. This method has been applied to a wide variety of water wave problems, both

with and without a floating body present. MEL was implemented for the computations of two-dimensional

water waves [10–12]. It was developed for the simulations of three-dimensional water waves by Dommer-

muth et al. [13], Cao et al. [14], Maskew [15–17], Beck et al. [18–21], Liu et al. [22], and Xue et al. [23],

among the others. The time-domain scheme is more powerful, since it can be used to simulate the nonlinear

transient wave–body interactions. Compared to the three-dimensional domain approaches [24–26], MEL

reduces the dimensions of the problem by one and avoids the tedious volumetric mesh. To date, the non-
linear transient three-dimensional results are still limited by theoretical complexity and computational bur-

den. Reviews on this topic may be found in [3,4].

The above MEL studies for both the steady and unsteady water wave problems were based on a struc-

tured mesh. Although a structured mesh is relatively easy be generated, it is difficult to obtain a good qual-

ity mesh and to generate it automatically for a complex surface. An unstructured approach is presented in

this work alternatively based on the following considerations. Firstly, the simulation of ship waves is asso-

ciated with a large computational domain of the free surface, around 5 · 3 hull lengths in the stream-wise and

span-wise directions, respectively. In addition, it is a multi-scaled problem, because the length of a ship hull
is usually one order larger than its draft. The physical scale of the free surface wave near the hull is of the

ship�s draft, where the free surface wave is steep, and is of the wavelength of the ship Kelvin wave far away,

which is at the order of the ship�s length. The free surface can be triangulated with a smooth and variable

mesh density distribution. The element size of the free surface near a ship hull can be chosen being small

compared to the draft, gradually becoming coarser away from the hull, and being small compared with the

wavelength far away. Secondly, an unstructured mesh is generally more robust than a structured one; a

complex surface can be triangulated automatically [27]. An unstructured approach is therefore more ver-

satile in practical applications.
In the MEL model, the free surface has to be interpolated and meshed at every time step. As the process

needs to be repeated hundreds of times, a high quality mesh and an accurate interpolation for the free sur-

face are necessary to keep the accuracy. In the present work, a polynomial scheme coupled with the moving

least-squares method is implemented to interpolate accurately the free surface. A local interrogation meth-

od coupled with the advancing front method is devised to generate the high quality unstructured mesh of

the free surface.

Proper updating of the intersection between the body and free surface is critical to the prediction of the

wave run-up along and wave loads on the body. Both the body and free surface boundary conditions need
to be satisfied at the intersection and, consequently, the problem becomes overdetermined over there. Mas-

kew [15–17] avoided the problem by using boundary elements with constant distributions of sources and

doublets and choosing the control points at the centres of the elements. The accuracy of this approach
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is however compromised at the intersection. Cao et al. [14], Beck [21], and Xue et al. [23], among others

used double control points at a grid at the intersection, satisfying the body and free surface boundary con-

ditions, respectively. Their approach, in principle, results in the discontinuity of the velocity potential

across the intersection.

An alternative method is devised here to update the intersection based on the desingularized boundary-
integral method for ship waves [14,21]. Double desingularized point sources are chosen for a control point at

the intersection, one inside the body and the other above the free surface. Their strengths are determined by

enforcing both the body and free surface boundary conditions at the control point. The resulting solution

of the velocity potential is smooth across the intersection, and the overdetermined problem is resolved.

The remainder of the paper is organized as follows. The mathematical formulation of the water wave

problem is briefed in Section 2. The unstructured MEL model is described in Section 3, in which particular

attentions are paid to the new numerical techniques introduced in this work. The interpolation and trian-

gulation of the free surface are described in Sections 4 and 5, respectively. In Section 6, the algorithm is used
to simulate the wave generated by a Wigley hull piercing the water surface. The wave profiles along the hull

are compared with the testing result. Section 7 contains the summary and conclusions.
2. Mathematical formulation

Consider a ship moving on a free surface, as shown in Fig. 1. A Cartesian coordinate system o-xyz fixed

to the body is built, with its z-axis in the opposite direction of gravity, plane z = 0 at the undisturbed free
surface, and x-axis in the longitudinal direction towards the stern of the ship. We assume that the fluid is

inviscid and incompressible, and the flow induced is irrotational. A velocity potential exists in the fluid do-

main, bounded by the wetted body surface and free surface. The potential can be decomposed as, Vb Æ r +
u(r, t), where r = (x,y,z), and Vb = (Ub,Vb,Wb) is the body velocity. The disturbance velocity potential u
satisfies the Laplace equation in the fluid domain
Du ¼ 0; ð1Þ

subjected to the following boundary conditions. u vanishes at infinity. It satisfies the impermeable bound-

ary condition on the wetted surface of the body SB
ou
on

¼ Vb � n; as r on SB; ð2Þ
where n is the unit outward normal vector of the fluid domain on the body surface.
z

y

Intersection

Free surface SW

o
x

Wet Surface SB

Fig. 1. The Cartesian coordinate system o-xyz and notations for a ship hull moving at a free surface.
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The evolution of the free surface SF is governed by the kinematic and dynamic boundary conditions,

requiring a point on the surface to remain on the surface and the pressure to be continuous across the sur-

face, respectively,
Fig. 2.

on a w
dr

dt
¼ Vb þru; as r on SF; ð3Þ

du
dt

¼ 1

2
jruj2 � gz as r on SF; ð4Þ
where g is the gravitational acceleration.
An oval shape computational domain of the free surface is chosen in the unstructured approach, having

only upstream and downstream edges, as shown in Fig. 2. Compared to a rectangle truncated free surface

used in a structured approach, as shown by dotted lines in the figure, the relatively farer portions are further

truncated, leaving a smaller computation domain. Following Cao et al. [14], zero free surface elevation and

zero disturbance velocity potential are imposed on the upstream edge of the computational domain. The

grids are dropped, when they move out of the computational domain in the downstream.

Suitable initial conditions are required in the MEL modelling. The quiescent initial condition is usually

set for a body piercing on a calm water surface
uðr; 0Þ ¼ 0. ð5Þ

Apparently, the initial condition (5) is not compatible with the impermeable body boundary condition (2).

The incompatible problem exists too for a wave diffraction problem, where the initial condition is usually

set at the prescribed incident wave field [23]. To resolve this difficulty, two treatments were implemented

and evaluated: (i) allowing the body speed to accelerate from rest to the actual value [14,21]; and (ii) allow-

ing the body boundary to possess an initial permeability which gradually vanishes [17,23].
Following Maskew [17], we implemented a sieve technique to allow the body boundary to be fully per-

meable initially at t = 0, and to become impermeable gradually over a short period. The boundary condi-

tion (2) on the wetted surface of the body SB is adjusted as
ouðr; tÞ
on

¼ SvðtÞVb � n; as r on SB; ð6Þ
where the sieve function Sv(t) is chosen as a smooth function
SvðtÞ ¼
3 t

tc

� �2

� 2 t
tc

� �3

; as 0 6 t 6 tc;

1; as t > tc;

8<
: ð7Þ
Vb

Downstream
Upstream

Ship hull

Sketch of an oval-type computational domain of the free surface, with only upstream and downstream edges, for a ship moving

ater surface.
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and tc is the end time of the sieve treatment, which, in this work, is set at tc = 0.3L/Ub. Under this setting,

the ship hull gradually becomes impermeable after it moves 0.3L.
3. Unstructured MEL method

The MEL model consists of two sub-steps at every time step. In sub-step (i), the wetted body surface SB

and free surface SF are known with the solutions of the previous time step. The potential u on the free sur-

face SF equals to the solution of the previous time step un
Fðr; tÞ
uðr; tÞ ¼ un
Fðr; tÞ; as r on SF. ð8Þ
u is then obtained by solving the Cauchy problem (1), (6), and (8) using the boundary-integral method
(BIM). In sub-step (ii), the free surface SF and potential u on it are updated by integrating the kinematic

and dynamic boundary conditions (3) and (4) on the free surface in time.
3.1. Double-source technique for modelling intersections

The updating of the intersection between the body and free surface is a challenging problem in the MEL

model. Not only the body boundary condition (6) but also the free surface boundary condition (8) has to be

satisfied at the intersection. As the result, the problem is overdetermined over there. A choice has to be
made between satisfying the body boundary condition alone at the intersection and satisfying the free sur-

face condition alone. Maskew [15–17] avoided this problem using the boundary elements with uniform dis-

tributions of sources and doublets, and choosing the control points at the element centres. Having avoided

the direct modelling of the intersection, his algorithm is quite stable, but the accuracy is compromised at the

intersection, where the physical quantities have to be obtained by extrapolation.

Cao et al. [14], Beck [21], and Xue et al. [23], among others used double control points at a grid at the

intersection, a body control point and a free surface control point. The potential at the body control point,

satisfying the body boundary condition, is obtained by solving the Cauchy problem of (1), (6), and (8). The
potential at the free surface control point, satisfying the free surface boundary condition, is obtained by

integrating the dynamic boundary condition of the free surface (4) in time. As the result, the potential is

discontinuous across the intersection. In principle, this is incompatible with the basic continuity assumption

of the velocity potential.

An alternative method is presented here to update the intersection, based on the desingularized BIM. In

line with the conventional BIM, the single-layer potential is introduced over the boundary surface of the

fluid domain S
uðr; tÞ ¼ 1

4p

Z
S

rðrs; tÞ
jr� rsj

dS; ð9Þ
where r is the unknown source density, r is the field point, and rs is the source point.

In a desingularized BIM, the integral surface S in (9) is positioned slightly off the boundary surface out-

side the fluid domain. After the boundary surface is meshed, all the grids on it are chosen as the control

point rci . For each control point rci , a desingularized point source rsi is placed slightly off the fluid domain,

as shown in Fig. 3. Double desingularized point sources are chosen for a control point rc at the intersection,
one at rsb inside the body and the other at rsf above the free surface. Their strengths are determined by

enforcing both the body and free surface boundary conditions at the control point rc. Consequently, the
overdetermined problem is resolved, the potential solution is smooth across the intersection, and both of

the two boundary conditions are satisfied over there simultaneously.
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Fig. 3. Sketch of the desingularized point sources, with double point sources (marked in gray circles) used for a control point at the

intersection between the body and free surface, one at rsb inside the body, and the other at rsf above the free surface.
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The desingularization replaces the integral (9) by a summation of point sources
uðr; tÞ ¼ 1

4p

XNþN I

j¼1

rj

jr� rsjj
; ð10Þ
where N is the number of the grids on the boundary surface, NI is the number of the grids at the intersec-

tion. The strengths rj are determined by the boundary conditions on the wetted body surface (6) and free

surface (8)
1

4p

XNþN I

j¼1

rj

jrci � rsjj
¼ ui; as rci on SF; ð11aÞ

1

4p

XNþN I

j¼1

ni � rci � rsj

� �
jrci � rsjj

3
rj ¼ �SvðtÞVb � ni; as rci on SB. ð11bÞ
When the control point rci is at the intersection, both (11a) and (11b) are satisfied, hence (11) has N + NI

equations with N + NI unknowns, and are solvable. ScaLAPACK was used in the algorithm for solving

the linear algebra equations (11) for a high accuracy. Its CPU time is at the order of O(N3).

No numerical integration is required in the desingularized BIM. After the source strengths rj are deter-
mined from (11), the material velocity on the free surface can be obtained by direct differentiation of (10).

In contrast, the calculation of the material velocity on the free surface is a tedious task in the conventional
BIM [28].

3.2. Positioning desingularized point sources

The desingularized point source rsj, corresponding to a control point rcj , is placed at
rsj ¼ rcj þ dsnj; ð12Þ
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where nj is the unit outward normal vector of the boundary surface at rcj . The shift distance ds is chosen at

the order of the local element size
ds ¼ bdm; ð13Þ

where dm is the mean distance of the surrounding grids to rcj . Parameter b was chosen at 0.85, since the

accuracy and convergence of the solution is insensitive to b in the range of 0.8–0.9.

The normal vectors nj of the surface at control point rcj need in (12) to position the desingularized

sources, but are undefined, after the surface has been meshed. To resolve this problem, nj is calculated

by an weighted average of the normal vectors of its surrounding triangles nek
nj ¼
PM s

k¼1wkn
e
kPM s

k¼1wk

; ð14Þ
where Ms is the number of the surrounding triangles, and wk is the weighted function for each of the tri-

angles. The element normal nek can be regarded as the approximate normal vector of the surface at the tri-

angle centre rek. wk thus should decrease with the distance between rcj and rek, and is chosen to decease

exponentially with the distance
wk ¼ exp �
jrek � rcj j
dM

� �
; ð15Þ
where dM ¼ maxkjrek � rcj j, for k = 1,2, . . .,Ms.

We then concern about positioning the desingularized sources at corners of the body surface. A ship hull

may have corners at its bow, stern, and bottom, etc. The isolated sources may be overcrowding at the cor-
ners. Fig. 4(a) illustrates the isolated sources near a corner, where Cj and Sj, j = 1,2,3, . . ., denote the con-
trol points and corresponding sources in sequence starting from the corner. One can see that the source S1

for the control point C1 at the corner is very close to its neighbouring source S2. Consequently, the

coefficient matrix formed for the linear algebra equations of (11) is poorly conditioned, and the solution

becomes inaccurate.

Cao et al. [14] remedied the problem by reducing the disingularized distances to 0.1ds for the control

points at the sharp bow and stern, and improved their simulations significantly. Their technique is suitable

for two-dimensional sharp corners. As a generalization of this technique for three-dimensional corners and/
or non-sharp corners, the shift distance �ds is chosen as follows
�ds ¼ 0.1ds þ 0.9ds

a
2p

; ð16Þ
where a is the solid angle of the meshed surface at the control point considered. The solid angle a at a point

on a surface represents the openness of the surface over there, and it is of 2p as the surface is smooth at the

point. The crowding of the sources near corners is lessened with the revised desingularized distance (16), as

shown in Fig. 4(b).

3.3. Calculation of solid angles

We further consider the calculation of solid angles needed in (16). For a closed surface, solid angles
are available as a subset of the influence coefficients in the BIM modelling. The calculation of solid

angles on an open surface is a tedious task. One can calculate solid angles by adding some artificial

surfaces to make it a closed surface, but considerable CPU time is required. This is because the mesh

of the artificial surfaces must be fine enough to provide a reasonable result. Zhang et al. [29] calculated

a solid angle involving elliptic functions, and subsequently they calculated a solid angle at a grid by

summing the solid angles subtended by the triangles to the grid [30]. Actually, a solid angle can be
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Fig. 4. Sketch of desingularized point sources near a corner when (a) the conventional shift distance is defined by (13), and (b) the

revised shift distance is defined by (16).
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calculated straightforwardly using the following formula, which was derived from the spherical triangle

theory
a ¼
XM s

k¼1

dk þ ð2� N bÞ � p; ð17Þ
where Ms is the number of the surrounding elements to a grid considered, and dk is the angle between every

two connected surrounding elements, as shown in Fig. 5. The angle between the positive sides of the two
elements, in terms of their outer normal directions, is chosen as dk. By the way, Eq. (17) for the solid angle is

also applicable for a structured mesh.

3.4. Lagrangian time integration

With the material velocity on the free surface calculated, the free surface and velocity potential on the

surface can be updated by integrating the kinematic and dynamic boundary conditions, (3) and (4), on

the free surface in time. As the remeshing is performed at every time step, the first order Euler–Cauchy
method is used for the time integration.

To update the intersection between the ship hull and free surface, the hull surface is represented by a set

of curves distributed longitudinally. The position and velocity potential at a grid at the intersection are first

updated by integrating (3) and (4) in time. The cross points between the hull curves and updated free sur-

face are then solved as the intersection, using the free surface interpolation to be described in Section 4. The
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Fig. 5. Sketch of the surrounding elements to a control point rcj , the outward normal nek and geometry centres rek of the elements, and

the angles dk between the positive sides of every two connected triangles.
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velocity potentials at the intersection are obtained using the free surface interpolation too. Each hull curve

is re-meshed to fit to the new intersection, and the wetted surface of the body SB is thus updated.
4. Free surface interpolation

At every time step, the free surface needs to be interpolated before meshing. As the process is repeated

hundreds of times, the interpolation must be accurate to keep the accuracy. A linear interpolation was used
initially, and the free surface waves were damped out by the numerical damping involved as the waves

developed. A higher order interpolation scheme is required. We implemented and compared three high or-

der interpolation approaches, i.e., a conventional polynomial scheme, a polynomial scheme coupled with

the moving least-squares method, and a second order shape function of nine grids [30]. The polynomial

scheme coupled with the moving least-squares method proved to be most accurate and robust, which is

described as follows.

4.1. Polynomial coupled with weighted moving least-squares method

The free surface may be steep or even parallel to the z-axis locally, which causes a polynomial interpo-

lation to be poor or even singular. A local Cartesian co-ordinate system O-XYZ is thus introduced, with its

origin O at the point considered and its Z-axis in the normal direction of the element to which the point

belongs. The second order polynomial is implemented for both the free surface shape and velocity potential

distribution on the surface
Z ¼ F ðX ; Y Þ ¼ a1 þ a2X þ a3Y þ a4X 2 þ a5XY þ a6Y 2. ð18Þ
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By the way, Zinchenko et al. [31] and Zhang et al. [30] made the Z-axis exactly at the normal direction

of the surface using an iteration method. However, the Z-axis is not necessary to be at the exact

normal direction for the interpolation, and neither the iteration method improves the accuracy of the

interpolation.

The six coefficients ai, i = 1,2, . . ., 6, for the polynomial of (18) are determined from the nearest
neighbouring grids within 2d from the point considered, where d is the local mesh size. Denote the nearest

neighbouring grids set as (Xk,Yk,Zk), k = 1,2, . . .,Nb, where Nb is the number of the grids in the set.

The coefficients are determined by the weighted moving least-squares method with the error function given

as
rða1; a2; a3; a4; a5; a6Þ ¼
XNB

k¼1

W k½F ðXk; Y kÞ � Zk�2; N P 6; ð19Þ
where Wk is the weight function for the neighbouring grid rk, which should decrease with the distance

between rk and the point considered r0. Wk is chosen as
W k ¼ expð� jrk � r0j
2d

Þ. ð20Þ
Let or
oaj

¼ 0 using (21), one can obtain the linear algebra equations for determining aj
X6

j¼1

Aijaj ¼ Bi; for i ¼ 1; 2; . . . ; 6; ð21Þ
where Aij and Bi are given in terms of Wk and (Xk,Yk,Zk), for k = 1,2, . . .,Nb
Aij ¼
XNb

k¼1

W kbkjbki; Bi ¼
XNb

k¼1

W kZkbki; ð22aÞ

bk1 ¼ 1; bk2 ¼ X k; bk3 ¼ Y k

bk4 ¼ X 2
k ; bk5 ¼ X kY k; bk6 ¼ Y 2

k

�
for k ¼ 1; 2; . . . ;Nb. ð22bÞ
The above interpolation scheme holds for the velocity potential distribution on the free surface too, except

that Zk in (19) and (22a) should be replaced by the velocity potential uk.
4.2. Treatments of special situations

To make the interpolation robust, attentions must be paid for a few special situations, where the above
polynomial interpolation scheme is inaccurate or does not work. Firstly, when a point near or at the bound-

aries of the truncated free surface, including the intersection between the body and free surface, its neigh-

bouring grids are not evenly distributed. The following degenerate polynomial scheme is used instead
Z ¼ F ðX ; Y Þ ¼ a1 þ a2X þ a3Y þ a4X 2; ð23Þ

where the local X-axis is chosen along the tangential direction of the boundary of the truncated free surface.

The polynomial is therefore the second order along the boundary, and linear along the direction perpen-

dicular to the boundary.

Secondly, the neighbouring grids defined above are occasionally less than six. Thirdly, the matrix Aij in

(21) is occasionally poorly conditioned or even singular. Under the two situations, the above polynomial

interpolation scheme is inaccurate or does not work; hence a linear interpolation is used instead to avoid
the problems. As these two situations seldom happen, the linearization does not cause significant loss of

accuracy.
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Note here that the polynomial interpolation scheme described in this section for an unstructured mesh is

a local interpolation. Its interpolation results are poorer for a coarse mesh, compared with a global cubic

interpolation for a structured mesh.
5. Free surface triangulation

At every time step of the MEL simulation, the free surface needs to be remeshed to conform to the up-

dated body/free surface intersection. One of the main efforts of this work is to develop an triangulation pro-

gram for curved surfaces. A curved surface can be triangulated using the advancing front method

[27,32,33]. To provide a high quality mesh, Anastasiou and Chan [34] triangulated a curved surface in

two separated steps, i.e., planting all grids by an interrogation method and then connecting the grids by

the advancing front method. In the first step, potential locations of grids are interrogated at a small inter-
rogation step, which is one order smaller than the mesh size. As a result, this step needs the CPU time at the

order of O(102N).

5.1. Grid generation

A smoothed curved surface is considered, which may be multi-connected. A piecewise smooth surface

can be handled by dividing it into several smooth patches. Following Anastasiou and Chan [34], a curved

surface is triangulated here in the two separated steps, i.e., planting all grids and then connecting the grids.
But we have devised a local interrogation method coupled with the advancing front method to generate

grids to reduce the CPU time.

We first discuss the generation of grids on the curved surface. As in the conventional advancing front

method, the initial front consists of all the grids at the boundaries of the surface, including both its external

and inner boundaries. Consider a segment FiFi+1 on the front. We draw two circles on the local tangential

plane of the surface, with their centres at Fi and Fi+1 and their radii at the local mesh size d, as shown in

Fig. 6. Denote the cross point of the two circles on the side to be meshed as Ci. We further draw two groups

of circles on the local tangential plane, with their centres at Fi and Fi+1 too and radii from dmin to dmax.
Here dmin and dmax are the minimum and maximum acceptable local mesh sizes. The cross points of the

two groups of the circles on the side to be meshed provide the local interrogation points for the front seg-

ment FiFi+1. dmin and dmax, in this work, are chosen at 0.9d and 1.1d in the inner part of the surface, and at

0.85d and 1.15d on its boundary.

The interrogation points are then examined in the order of their distances to the point Ci, starting with

the point Ci. A point among them is chosen, when no existing grid is within the sphere centred at the point

with radius dmin. This point is then projected to the curved surface to generate a new grid Ni. The segment

FiFi+1 is removed from the front segment set after it has been interrogated, and the segments FiNi and
NiFi+1 are added to the set, if the grid Ni is generated. This grid generation process terminates, when

the front segment set becomes empty.

5.2. Surface triangulation

After all the grids have been generated, they are connected to form an unstructured mesh using the

advancing front method. To save the CPU time in connecting grids, the neighbouring grid set is sorted

for every grid. The initial front again consists of all the grids on the boundaries of the surface. Consider
a segment FiFi+1 on the front. A grid Mi, among the neighbouring grids of Fi and Fi+1, is chosen to form

a triangle with the segment FiFi+1 based on the following two criteria. Firstly, the newly formed triangle



D2

Ci

Fi

D3

D1

D4

Fi+1

Fig. 6. The generation of the local interrogation points in the zone D1D2D3D4 corresponding to a segment FiFi+1 on the advancing

front.
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does not overlap with any existing triangles. Secondly, the triangle possesses the best obtainable shape fac-

tor. The shaper factor of a triangle is defined as
c ¼ 2Rin=Rout; ð24Þ

where Rin and Rout are the radii of the incircle and circumcircle of a triangle. The shape factor of an equi-

lateral triangle achieves the maximum value of 1.

While selecting Mi for the front segment FiFi+1 to form the triangle FiFi+1Mi, we consider not only the

shape factor of the current triangle, but also the shape factors of the two triangles to be possibly formed

from FiMi and MiFi+1. As the result, the determined shape factor of the triangle to be connected to the

front FiFi+1 is defined as
c ¼ c0
ffiffiffiffiffiffiffiffi
c1c2

p
; ð25Þ
where c0 is the shape factor of the triangle FiFi+1Mi, c1 and c2 are the shape factors of the two triangles to

be possibly formed from FiMi and MiFi+1, respectively.
After the triangulation, the Laplace smoothing technique is used to further improve the mesh quality,

whereby each of the interior grids is shifted to the centre of its surrounding polygon [27]. The iteration

for smoothing is terminated when no significant improvement is achieved for the overall average shape fac-

tor measure
QN e

i¼1ðciÞ
1=N e , where ci is the shape factor of triangle i, and Ne is the number of the elements

generated.

Fig. 7 shows the unstructured mesh of the truncated free surface pierced by a Wigley hull. The mesh is

extended 1.5 hull lengths behind the stern, a half hull lengths upstream before the bow, and 1.2 hull lengths

in the transverse direction. The mesh density of the free surface is fine near the hull, and becomes coarse
gradually far away. The mesh density has also been set finer near the edges of the truncated free surface,

to prepare enough grids for improving the local interpolation over there.



Fig. 7. The triangulation of the truncated free surface for a Wigley hull piercing on a water surface.
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By the way, a half of the wetted surface of a ship hull is a rectangle type surface, hence it is first meshed

into rectangles, and each of the rectangles is then divided into two triangles.
6. Results and discussions

A FORTRAN code, named UFS (unstructured free surface), was developed based on the techniques

described in Sections 2–5. As an illustration, we simulate the Wigley hull, which impulsively starts to move
at a constant speed on a calm water surface. The Wigley hull is a mathematical hull from, whose geometry

is defined as
yðx; zÞ ¼
B
2

1� 4x2

L2

� �
1� z2

T 2

� �
; as � D 6 z 6 0;

B
2

1� 4x2

L2

� �
; as z > 0;

8><
>: for � L=2 6 x 6 L=2; ð26Þ
where L, B and D are the length, beam and draft of the hull, respectively. To compare with the experiment

of Noblesse and McCarthy [1], we choose L/B = 10 and B/D = 1.6. The hull is set to move at the Froude

number F r ¼ Ub=
ffiffiffiffiffiffi
gL

p
¼ 0.316.

The problem is symmetric to the centerline of the hull, so that only a half of the geometry needs to be

modelled. We use about 500 grids on half of the hull and 4500 grids on half of the truncated free surface, as



Fig. 8. The generation of the Kelvin ship-wave for a Wigley hull, impulsively started to move at Fr = 0.316 through a calm water, at the

normalized time of Ub t/L = (a) 1.0, (b) 2.0, and (c) 3.0, respectively.
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shown in Fig. 7. The grid number changes with time, since the mesh is performed every time step. The min-

imum mesh size of the free surface is chosen as 0.02L, which is attained at the intersection between the body

and free surface. The time step is set to 0.02L/Ub, i.e., the hull moves a minimum mesh size of the free sur-

face every time step.

We first consider the wave generation process. The free surface elevation contours simulated are shown

in Figs. 8(a)–(c) at the time steps when the hull has moved for 1.0, 2.0, and 3.0 hull lengths, respectively.

The free surface wave is smooth and physically reasonable at all time steps. When the hull has moved for

one hull length (Fig. 8(a)), the free surface rises up near the bow and falls down before the amidships, and it
first falls down and then rises up behind the stern. When the hull has moved for two and three hull lengths,

the wave propagates downstream (Figs. 8(b) and (c)). The free surface wave is well developed, after the hull

has moved for three hull lengths (Fig. 8(c)), and does not change significantly after that. The anticipated

Kelvin ship-wave pattern is well simulated. The half angle of the Kelvin wave wedge is close to the analyt-

ical solution of 19.5� (cf. [35, Chapter 3]), denoted by in the pink lines in Fig. 8(c).

We then consider the wave elevation along the hull. Fig. 9 shows the comparison of the wave elevations

along the hull simulated in the present work against the testing result of Nobelesse and McCarthy [1]. The

computational results are chosen after the hull has moved for three hull lengths, when the free surface wave
is stabilized. To illustrate the convergence of the algorithm, the computational results are provided with

about 5000 grids (solid line) and 3500 grids (dash line). One can see that the numerical results are conver-

gent well with the mesh size, and in good agreement with the testing result. The bow wave height computed

agrees with that of the measurement too, which is typically underpredicted by the linear theories [21]. How-

ever, there are discrepancies between the computed and measured wave height in the vicinities of the bow

and stern, which may be due to viscous effects neglected in the present modelling, and/or the presence of the

spray in the physical experiment. It may be also due to the insufficient resolution of the free surface mesh



Fig. 9. The comparison of the computed and measured wave elevations along the Wigley hull at Fr = 0.316. The results shown are: the

unstructured MEL profile with about 5000 grids (solid line) and 3500 grids (dash line), and the measurement result of Nobelesse and

McCarthy [1] (h).
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near the bow and stern. In principle, the physical size of the free surface wave near the bow (stern) should

be the curvature radius of the bow (stern), which is very small.
The author performed the simulation using USAERO/FSP, a commercial software for ship waves based

on the structured MEL method [15–17]. At the same minimum mesh size, about 8000 grids were used in

USAERO/FSP. Simulations of the two algorithms, on an IBM POWER3 RS/6000 workstation with a

CPU clock rate of 375 MHz, showed that about two thirds of the CPU time were saved by the unstructured

approach.

By the way, the unstructured MEL model described here had been earlier on used to simulate the evo-

lution of bubbles near a wall, and their interaction with a free surface. More validations on the convergence

and accuracy of the algorithm are referred to [28,36].
7. Summary and conclusions

The simulation of ship waves is associated with a large computational domain of the free surface, and it is

a multi-scaled problem. An unstructured approach appears ideal for simulating this problem. The mesh size

of the free surface near a ship hull can be chosen as being small compared with the draft, where the free

surface wave is steep, becoming gradually coarser away, and being small compared with the wavelength
of the Kelvin ship-wave far away. This paper describes an unstructured MEL modelling for the simulation

of the nonlinear wave–body interaction, which may be summarized as follows:

(i) An unstructured MEL model is described for the simulation of the wave–body interaction.

(ii) Double desingularized point sources are used for a control point at the body/free surface intersection to

satisfy both the body and free surface boundary conditions over there. As a consequence, the solution

of the velocity potential is smooth across the intersection.

(iii) The desingularized point sources are positioned in terms of the element sizes and solid angles of the
boundary surface, which can effectively avoid possible overcrowding of the sources at the corners of

the surface. Solid angles on the surface are computed analytically.
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(iv) The free surface is interpolated accurately using a polynomial scheme coupled with the moving least-

squares method, and is triangulated with a local interrogation method coupled with the advancing

front method to provide a high quality mesh.

(v) Based on the above techniques, a Fortran code, named UFS, is developed to simulate the nonlinear

unsteady ship waves.

The algorithm is used to simulate a Wigley hull piercing on a clam water surface. It is shown to be con-

vergent with the mesh size. The wave profiles along the hull calculated agree well with the testing results of

Noblesse and McCarthy [1]. The unstructured MEL model is found costing less CPU time and memory

requirements compared to a structured one.

Being robust in handing complex and/or time varying geometries, the unstructured approach is versatile

in practical applications. In particular, it has a potential to be developed to simulate and study the follow-

ing problems, which have not been well handled by the structured one.

(i) The interaction of two ships moving in close proximity.

(ii) Ship motions in confined water, such as: a ship moving near a bank, berthing to a quay wall, or mov-

ing in shallow water or in a harbor (marine traffic simulation).

(iii) The wave run-up along multi-columns of offshore platforms.

In those problems, the geometries of the free surface and the wetted surface of the body are complex,

multi-connected, and varying with time at large amplitudes. The free surface and wetted surfaces of the
bodies need to be meshed at every time step, to conform to the new body/free surface intersections.
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