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Abstract

Three essential improvements are described to the treecode in terms of the expansion formula, the choice of the

expansion order as well as the tree structure. Firstly, the multipole expansion is based on the real spherical harmonic

functions to reduce the CPU time. Secondly, the expansion order is given in terms of the ratio of the distance of a field

point to a source box to the box size, which reflects the relative error of the expansion. With that, a large portion of the

sources has been evaluated by the multipole expansion at low levels of the source tree, which is around two-thirds of

sources at the first two levels of the tree averagely. The algorithm reduces the CPU time dependency on expansion order

p from O(p2) of the classical treecode to be lower than a linear dependency in pmax, where pmax is the maximum ex-

pansion order used in the variable order expansion. Thirdly, a revised binary tree is built by performing the bisections

thrice at each tree level, discarding the boxes generated in the first two bisections and remaining only the boxes gen-

erated in the last one. This tree avoids the disadvantage of a binary treecode demanding significantly more CPU time

than an oct-treecode. It has high adaptiveness to the source distribution and perfect load balancing for performing the

parallelization. Simulations are carried out for N vortex elements and N field points distributed randomly in a cube, a

5:1:1 parallelepiped, and a 10:1:1 parallelepiped, using the oct-tree and revised binary tree, respectively. The algorithm

is an order of magnitude faster than those of Strickland et al. [ESAIM: Proceedings 7 (1999) 408], Warren and Salmon

[Comput. Phys. Commun. 87 (1995) 266], and Lindsay and Krasny [J. Comput. Phys. 172 (2001) 879]. Simulations also

demonstrate the efficiency of the revised binary treecode for an inhomogeneous source distribution.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The classical N -body problem simulates the movement of a set of particles under the influence of the

gravitational, electrostatic, or other typed forces. N -body algorithms have a number of important applica-

tions in the fields of astrophysics, plasma physics, molecule dynamics, fluid dynamics, computer graphics,

and linear matrix equations, etc [4,5]. The problem can be simulated straightforwardly by computing all N 2

pairwise interactions, but it is prohibitively expensive for a large-scale system. The treecode by Barnes and
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Hut [4] and the fast multipole expansion method (FMM) by Greengard and Rokhlin [5] dramatically ac-

celerate this kind evaluation to O(N logN ) and O(N ), respectively, with controllable errors. The basic idea of

the treecode is to approximate the potential at a distant target due to a source cluster by an expansion in the
spherical harmonic functions, termed as the multipole expansion. FMMgoes one step further by converting a

multipole expansion to a local expansion to represent the target value in a local domain [5–8].

As compare to FMM, the treecode is simple to be implemented, requiring less memory and having

higher parallel efficiency [9,10]. The treecode was implemented to molecular dynamics [11–16], and as-

trophysics [17–20], to solve the dense linear matrix equations [21–23], among others. It was developed and

applied in the vortex method for fluid flows [24–34]. However, the treecode does not perform well at high

level accuracy. Blelloch and Narlikar [9] made a direct comparison between their treecode and FMM code

for the potential problem of random sources. They found that, at RMS Error¼O(10�3), FMM did not
outperform the treecode until N > 108; at RMS Error¼O(10�5), the FMM code was faster than the

treecode for N > 104. For N ¼ 7� 106 point sources and N field points at RMS-error¼ 2� 10�3, the op-

eration count of the treecode was about one third that of the FMM code. At RMS-error¼ 2� 10�5, the

operation count of the treecode was about twice that of the FMM code.

The conventional treecodes use a uniform expansion order. Most treecodes use only three terms up to the

quadruple moment. To achieve higher accuracy, one needs to use a higher order expansion with its CPU time

increasing at O(p2). Alternatively, one can select a largerminimumwell-separation distance for employing the

multipole expansion; consequently, the costly direct evaluation has to be performed for more sources.
The variable order expansion technique was implemented to speedup the treecode at high accuracy

by Petersen et al. [13]. A higher expansion order is employed for source boxes near a field leaf, and

gradually lower expansion order for source boxes far away. Salmon and Warren [17] derived an error-

bound of the multipole expansion for vortex elements. Grama et al. [22,23] improved their treecode

accuracy at a small computational overhead by increasing the expansion order with the strength sum of

a source cluster, based on the error bound of the multipole expansion for potentials. The error bounds

were derived assuming a field point is far away from a source cluster, but the expansion is usually

performed as a field point is not far away. It has been found that the error-bounds are generally over
strict. For this reason, Lindsay and Krasny [3] used the first term of the expansion as a heuristic es-

timate of the error for their treecode.

In the above works, the expansion order is determined according to the error produced by the multipole

expansion, which is proportional to the strength sum of a source box. Consequently, the multipole ex-

pansion is apt to be performed on small boxes at high levels of the source tree. As an alternative, the

expansion order in this work is given in terms of the ratio of the distance of a field point to a source box to

the box size. Simulations in Section 4 showed the ratio reflects the relative error of the multipole expansion.

With that, the multipole expansion in the treecode is performed on large boxes at low levels of the source
tree. In addition, the relative error of the treecode is limited when the relative errors of all of the multipole

expansions performed are small.

The other main part of a treecode beside the multipole expansion is the tree structure, which is a hi-

erarchical partition of the computation domain. Most of treecodes are based on the oct-tree, staring with a

cube containing all particles, and level Lþ 1 of the tree being obtained by subdividing all the cubes in level L
into eight equal smaller cubes. Its adaptiveness to the source distribution is low. Clarke and Tutty [34] and

Strickland et al. [1] implemented a binary tree, in which, a box is divided along its longest dimension into

two subdomains containing equal particles, termed as the bisection. The binary treecode has high adap-
tiveness to the source distribution and high parallel efficiency. However, at the same resolution, a binary

tree has about 1.75 times more boxes and three times more levels than an oct-tree demanding significantly

more CPU time [1].

A revised binary tree is proposed as follows to keep the advantages of an oct-tree and a binary tree and

avoid their disadvantages. At each tree level, the bisection is performed for three times in a row, discarding
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the boxes generated in the first two bisections and remaining only the boxes generated in the last one. By

doing this, a box in this tree has eight children as that in an oct-tree. In the meantime, the revised binary

treecode has high adaptiveness to the source distribution and high parallel efficiency.
The rest of the paper is organized as follows. Firstly, the multipole expansion is introduced based on the

real spherical harmonic functions in Section 2. A revised binary tree is illustrated in Section 3. A variable

order multipole expansion and the criterion for choosing the expansion order are described in Section 4. In

Section 5, the treecode is first compared with those of Strickland et al. [1], Warren and Salmon [2], and

Lindsay and Krasny [3]. Simulations are then described for N vortex elements and N field points distributed

randomly in a cube, a 5:1:1 parallelepiped, and a 10:1:1 parallelepiped, using the oct-treecode and revised

binary treecode, respectively. Section 6 contains the summary and conclusions of the present work.
2. Multipole expansion in real spherical harmonic functions

Consider N point vortexes of circulations ~x1; ~x2; . . . ; ~xN located at q1; q2; . . . ; qN with spherical coor-

dinates ðrj; aj; bjÞ, j ¼ 1; 2; . . . ;N . The velocity at field point p with spherical coordinates ðq; h;wÞ induced
by the N vortex points is given by the Biot–Savart law

vðpÞ ¼ 1

4p

XN
j¼1

~xj � ðp� qjÞ
p� qj
�� ��3 ¼ 1

4p

XN
j¼1

~xj �rq

1

p� qj
�� ��

 !
: ð1Þ

Without losing generality, let points q1; q2; . . . ; qN located inside a sphere of radius a centered at the origin.

Suppose field point p is outside of the sphere, i.e., jpj > a > jqjj, 1=jp� qjj can be expanded in terms of the

spherical harmonic functions as follows:

1

p� qj
�� �� ¼X

1

n¼0

Xn
m¼�n

rnj Y
�m
n aj; bj

� � Y m
n ðh;wÞ
qnþ1

; ð2Þ

where spherical harmonic function Y m
n ðh;wÞ is

Y m
n ðh;wÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� mj jð Þ!
nþ mj jð Þ!

s
P mj j
n cos hð Þeimw for n ¼ 1 to 1 and m ¼ �n to n ð3Þ

with Pm
n ðxÞ being the associate Legendre function.

Each term in (2) consists of two parts of rnj Y
�m
n ðaj; bjÞ and Y m

n ðh;wÞ=qnþ1, in terms of information as-
sociated only with the sources and field point, respectively. Noticing this and inserting (2) into (1), one

obtains

vðpÞ ¼
X1
n¼1

Xn
m¼�n

Mm
n

Y m
n ðh;wÞ
qnþ1

�
Xp
n¼1

Xn
m¼�n
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qnþ1

; ð4Þ

where P is the expansion order and Mm
n are the multipole expansion coefficients given by source parameters

only

Mm
n ¼

XN
j¼1

~xj �r rnj Y
�m
n aj; bj

� �� �
: ð5Þ

Thus, the target values at various field points can be calculated by first accumulating the source influences into

themultipole expansion coefficients of (5) and then evaluating the single truncatedmultipole expansion of (4).
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The derivative in (1) may be performed either to source coordinate q or to field coordinate p. We have

purposely chosen to perform the derivative to source coordinate q. With that, the derivative calculation is

performed while calculating the multipole expansion coefficients of (5). Otherwise, if we performed the
derivative to field coordinate p in (1) and calculated the derivative at the function evaluation stage of (4),

substantially more CPU time would be needed, since this step is the bottleneck of a treecode.

The multipole expansion of (4) can be recast in terms of the real spherical harmonic functions as follows:

vðpÞ ¼
X1
n¼1

Xn
m¼0

Cm
n Y

c
nmðh;wÞ þDm

n Y
s
nmðh;wÞ

qnþ1
�
Xp
n¼1

Xn
m¼0

Cm
n Y

c
nm h;wð Þ þDm

n Y
s
nm h;wð Þ

qnþ1
; ð6Þ

where Y c
nmðh;wÞ and Y s

nmðh;wÞ are the real spherical harmonic functions

Y c
nmðh;wÞ ¼ Pm

n cos hð Þ cosmw; Y s
nmðh;wÞ ¼ Pm

n cos hð Þ sinmw for n ¼ 1 to p and m ¼ 0 to n: ð7Þ

Cm
n and Dm

n are the multipole expansion coefficients determined by the source parameters

Cm
n ¼
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PN
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ðnþmÞ!

PN
j¼1 ~xj � C cos mbj

� �
þD sinðmbjÞ

� �
for n > 0;

8<
: ð8aÞ
Dm
n ¼ ðn� mÞ!

nþ mð Þ!
XN
j¼1

~xj � C sinðmbjÞ
�

�D cosðmbjÞ
�

ð8bÞ

with

C ¼ 2
sin aj
rn�1
j
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� ��

� ðnþ mÞPm
n�1 cos aj
� ��

ea
�
; ð9aÞ
D ¼ �2
sin aj
rn�1
j

mPm
n cos að Þeb; ð9bÞ

where er, ea and eb are the three unit coordinate vectors for the spherical coordinate system.
The multipole expansion of (6) based on the real spherical harmonic functions reduces the CPU time and

memory requirements significantly. To elaborate this comment, let us compare the two approaches. To

calculate velocities at N field points, the function evaluation of (4) or (6) requires O(p2N ) operation. In

principle the calculation of the multipole expansion coefficients of (5) or (8) requires O(p2N ) operation too.

However, this step costs only a small part of the CPU time. The simulations in Section 5 revealed that the

CPU time is consumed predominantly for the function evaluation, being from 93% to 97% for 104–106

vortex elements distributed randomly in a cube.

The function evaluation consists of two steps: calculating the spherical harmonic functions needed in (4) or
(6), and evaluating (4) or (6). Denoting Oc(f ) as the operation count of f , and comparing (3) and (7), one has

OcðY m
n ðh;wÞÞ

OcðY c
nmðh;wÞÞ þOcðY s

nmðh;wÞÞ
> 1: ð10Þ

Considering the number of the spherical functions needed in the two approaches, one can see that the

operation count of Y m
n ðh;wÞ (for n ¼ 1 to p and m ¼ �n to n) needed in (4) is more than 2ðp þ 2Þ=ðp þ 3Þ

times that of the real spherical harmonic functions Y c
nmðh;wÞ and Y s

nmðh;wÞ (for n ¼ 1 to p and m ¼ 0 to n)
needed in (6). With the spherical harmonic functions calculated, the operation count of (4) is
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4ðp þ 2Þ=ðp þ 3Þ times that of (6). Therefore, the multipole expansion of (6) reduces the CPU time

significantly.

We further compare the memory requirements of the two approaches. The multipole expansion coef-
ficients of source boxes consist of a substantial part of the total memory requirement. The memory re-

quirement of real vectors Cm
n and Dm

n (for n ¼ 1 to p and m ¼ 0 to n) is only about (p +1)/(2p +1) times that

of complex vector Mm
n (for n ¼ 1 to p and m ¼ �n to n). Each coefficient of Mm

n is a complex vector, and it

needs 24 bytes in single precision. The memory requirement of Mm
n (for n ¼ 1 to p and m ¼ �n to n) for all

source box is of

M ¼ 24pð2p þ 1ÞNotc ðBytesÞ;

where Notc is the number of source boxes. For a uniform source distribution in a cube, Noct ¼ ð8lþ1 � 1Þ=7,
where l is the level of the tree. As an illustration, M � 560 MB at p ¼ 6 and l ¼ 6. For this case, about 260
MB memory is saved with the multipole expansion of (6) based on the real spherical harmonic functions.

A vortex element with the Gaussian smoothed core function, termed as the vorton, is usually deployed to

provide smooth and stable flow solutions in the vortex method. Velocity v(p) at field point p generated by a

vorton with circulation of ~x centered at position q is [27]

vðpÞ ¼ 1

4p

~x� p� qð Þ
p� qj j3

1� e�
p�qj j
dð Þ3

� �
; ð11Þ

where d is termed as the vorton radius, which was set to be 1.5 times of the average neighboring distances of

vortons in the simulations in Section 5. The vorton contribution (11) is non-Coulomb interaction. With the
Gaussian smoothing function decaying exponentially, (11) can be approximated as a point vortex with a

relative error from 3.4� 10�4 to 1.6� 10�7 when a cutoff distance is chosen from 2d to 2.5d from the vorton

centre. The vorton, in this work, has been approximated as a point vortex with a relative error at 1.6� 10�7

with a cutoff distance at 2.5d from the vorton centre. As such, significantly more direct calculations have to

be performed and the speedup of a treecode or FMM code is slow down significantly as compared to pure

Coulomb interactions.
3. Revised binary tree structure

The multipole expansion can only be performed when the sources and targets are well separated. To

satisfy this condition, the sources and targets must be clustered properly so that the multipole expansions

can be performed efficiently without significant loss in accuracy. This is achieved by the use of a hierarchical

partition of the computation domain, termed as the tree structure. Most treecodes are based on the oct-tree,

staring with a cube containing all particles termed as the root. Level Lþ 1 of the tree is obtained by

subdividing all the cubes in level L into eight equal smaller cubes. The end boxes in the tree are termed as
the leaves. In an adaptive approach, only boxes with sufficient particles are further divided, leading to an

irregular tree. A non-adaptive tree is a complete tree whose leaves all have the same depth, which is not

suitable for non-uniform particle distributions. In this work, two adaptive oct-trees are generated for

sources and targets, respectively, for flexibility, since they may be different in applications.

Strickland et al. [1] implemented a binary tree for their treecode, which yielded a very high parallel

efficiency. In fact, they obtained over 90% parallel efficiency for up to 2048 processors. The binary tree was

first introduced by Clarke and Tutty [34] for their two-dimensional treecode. The root of the binary tree is

defined by the range of sources in the x, y and z directions. This box is then divided into two sub-domains
along its longest dimension with equal numbers of sources. Each sub-domain is then shrunk to the smallest

box to exactly contain its designated sources. This bisection and shrinkage continue until the number of
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sources at the finest level is below some specified value. A binary tree is adaptive to the source distribution

and its parallel efficiency is very high.

At the same resolution, the depth of a binary tree is three times that of an oct-tree. The box number of a
binary-tree of depth 3l is Nbn ¼ 23lþ1 � 1, and the box number of an oct-tree of depth l is Noct ¼
ð8lþ1 � 1Þ=7. Thus

Nbn=Noct ¼ 7 23lþ1
�

� 1
�
= 8lþ1
�

� 1
�
� 1:75 as lP 3:

The binary tree has about 1.75 times more boxes than an oct-tree at the same resolution. For sources evenly

distributed in a cube, the operation count of the oct-treecode Ccub and that of the binary treecode Cbn are

Ccub ¼ 189p2N log8 N þ 27sN ; ð12aÞ
Cbn ¼ 189p2N log2 N þ 27sN : ð12bÞ

The CPU time of the binary treecode is thus about three times slower than an oct-treecode.

As an alternative, a revised binary tree is proposed in this paper as follows. At each tree level, the bi-

section and shrinkage are performed for three times in a row, discarding the boxes generated in the first two

bisections and remaining only the boxes generated in the last one. The revised binary tree is similar to the

traditional oct-tree used in treecodes or FMM codes. A box in this tree has eight children as that in an oct-

tree, and it avoids the disadvantage of a binary tree demanding significantly more CPU time. Also, the oct-

tree codes do not have to use cubic boxes (cf. [16]). But, as compare to an oct-tree, the revised binary tree

has the following essential advantages. Its adaptiveness to the computational domain and source distri-
bution is as high as that of a binary tree. In this tree, the boxes at a given level contain essentially the same

number of sources (within �1), thus has perfect load balancing for performing the parallelization. It is an

adaptive tree but it is a complete tree whose leaves all have the same depth, the parallelization of a revised

binary treecode is thus as simple as that of a non-adaptive approach.

The children boxes of a parent box in a revised binary tree may not be octahedral sited. As simple il-

lustrations, Fig. 1 shows the first level of the revised binary trees for (a) an 8:1:1 parallelepiped domain and

(b) a 4:2:1 parallelepiped domain with uniform sources. Each box has at most three neighboring boxes,

including itself, for the 8:1:1 parallelepiped domain (Fig. 1(a)) and six neighboring boxes for the 4:2:1
parallelepiped domain (Fig. 1(b)); all other boxes are well separated from the box and are suitable for

performing the multipole expansion calculation. If an oct-tree is used, each box has eight neighboring boxes

in the first level tree for both of the two cases. The revised binary tree is thus much more accommodative to

a non-cube domain as compare to an oct-tree.
(a)

(b)

Fig. 1. The first level revised binary trees of (a) an 8:1:1 parallelepiped domain and (b) a 4:2:1 parallelepiped domain with uniform

sources.
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4. Variable order multipole expansion

A treecode starts by forming the multipole expansion coefficients for all source boxes. The function
evaluation is then performed at field points in all field leaves (the finest boxes in the field tree). For each field

leaf, starting from the coarsest level of the source tree and for all boxes at that level, a logic check and a

function evaluation are conducted as follows:

(1) If the number of sources in the box is smaller than a prescribed number, which in this work is chosen at

20, the direct evaluation is used.

(2) If the number of the sources in the box is not small and the box is well separated from the field leaf, the

multipole expansion evaluation is used.

(3) Otherwise, the evaluation is passed onto the next finer level at which the same logical check is per-
formed on the boxes whose contributions have not been counted.

When the finest level of the source tree is reached, the influences from the boxes that do not meet the well-

separation condition are computed using the direct method.

As discussed in Section 1, a variable order multipole expansion is implemented in this work. A uniform

expansion order pmax is used to calculate the multipole expansion coefficients for all source boxes, since this

step costs only a small part of the total CPU time. But, a variable expansion order is used to calculate the

target values, the bottleneck of the treecode. A higher expansion order p6 pmax is deployed for source boxes

near a field leaf, and a gradually lower order for source boxes far away.
Ideally, the expansion order should be given in terms of the analytical error-bounds of the multipole

expansion, but the available error-bounds were all obtained assuming the field point is far away from a

source cluster (cf. [17]), and the multipole expansion is actually performed when the field point is not far

away. It has been found that the error-bounds are generally over strict. Because of this, Lindsay and

Krasny [3] used the first term of the expansion as a heuristic estimate of the error for their variable order

treecode. In the previous treecodes, the expansion order is determined according to the error produced by

the multipole expansion, which is proportional to the strength sum of a source box. Consequently, the

multipole expansion is apt to be performed on small boxes at high levels of the source tree.
With the above considerations, the expansion order here is given in terms of separation distance D

between a field leaf and a source box and diagonal length d of the source box (or the diameter of the

smallest sphere containing all the sources in the box)

D
d
P hðpÞ; ð13Þ

where hðpÞ depends on the accuracy required and expansion order p.
To decide hðpÞ, a numerical testing is devised for a field point at various distance D to a unit sphere

containing various numbers of random point vortexes, with random positions and random circulations, as

shown in Fig. 2(a). A single multipole expansion is used to calculate the induced velocity at the field point.

Fig. 2(b) shows the error of the multipole expansion at p ¼ 6 versus D=d for various numbers of point

vortexes at N ¼ 20, 102, 104, and 105. One can see that the error reduces rapidly with D=d. The error in-

creases from three to four orders of magnitude while the number of point vortexes increases from N ¼ 20 to
105. Therefore, for a treecode with the well-separation condition given in terms of the expansion error, the

multipole expansion has to be performed on small source boxes at high levels of the source tree. This is not

surprising. The more interesting feature is the variation of the relative error with N and D=d. Fig. 2(c)
shows the corresponding relative error of the multipole expansion versus D=d. The relative error reduces

rapidly with D/d, falling about 9 orders of magnitude as D=d increases from 0.5 to 11. In contrast, the

relative error reduces less than one order of magnitude, being about 5 times, as the number of the point

vortexes increases in four orders of magnitude.
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Fig. 2. (a) A unit sphere containing N random point vortexes and a field point p at distance D from the sphere. (b) The error and (c)

relative error of the single multipole expansion at p ¼ 6 versus D=d for N ¼ 20; 100; 10 and 100 K.
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With the above analyses, we reach the following conclusions. The ratio of D=d reflects the relative error

of the multipole expansion and, at least, decides the order of the relative error. This feature of the multipole

expansion even stands for the field point near the source cluster. The well-separation condition and the
multipole expansion order thus should be based on the relative error rather than the error. With that, the

multipole expansion is apt to be performed on large source boxes at the low levels of the source tree. In

addition, the relative error of the treecode is limited when all of the multipole expansions are performed at a

small relative error.

Fig. 3 shows the relative error of the multipole expansion versus D=d for the testing at N ¼ 1000 and

various expansion orders from p ¼ 1 to 10. The relative error reduces rapidly with expansion order p and

the ratio of D=d. Based on the figure, we set

pmax ¼ 6 and hð6Þ ¼ 0:75; hð5Þ ¼ 1:0; hð4Þ ¼ 1:35; ð14aÞ

to keep the relative error for velocity at O(10�4); and set

pmax ¼ 7 and hð7Þ ¼ 0:75; hð6Þ ¼ 1:0; hð5Þ ¼ 1:35; hð4Þ ¼ 1:8; ð14bÞ

to keep the relative error for velocity at O(10�5). Those choices of hðpÞ have been evaluated in the simu-

lations of Section 5.
5. Numerical results

The algorithm described in Sections 2–4 has been implemented in Fortran 77, and simulations have been

carried out on a PC with Pentium 4 CPU 2.66 GHz and 0.99 GB of RAM. Three cases are considered for n
vortons and N field points distributed randomly in a cube, a 5:1:1 parallelepiped, and a 10:1:1 parallele-

piped, respectively. The three cases may represent the vortex element distributions for simulating the flow

around a bluff body at different stages of the wake development.

For each case, the numerical tests are performed with both the oct-treecode and revised binary treecode,

respectively. For the cube case, the results of the two treecodes were close to each other, therefore only the

results of the oct-treecode will be discussed. For the two cases of 5:1:1 and 10:1:1 parallelepipeds,
the speedups of the oct-treecode are just slightly better than that of the cube case, whereas the speedups of

the revised binary tree-code increase significantly and will be discussed.

The velocity results and CPU times of the treecode are compared with those of the direct calculation.

Obviously, it is not practical to apply the direct calculation for large-scale ensembles of field points due to

excessive computation time. The direct calculation is thus only performed for Ndir ¼ N field points as

N 6 105, and for first Ndir ¼ 105 field points for N > 105 and the resulting CPU time is extrapolated. RMS

error E1 and maximum relative error E2 for velocity of the treecode are calculated at the first Ndir field points

via the following formulae

E1 ¼
PNdir

i¼1 vtc pið Þ � vdir pið Þ
�� ��2PN
i¼1 vdir pið Þj j2

 !1=2

; ð15aÞ
E2 ¼
Max vtc pið Þ � vdir pið Þ

�� ��2
Max vdir pið Þj j2

 !1=2

; ð15bÞ
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Fig. 3. (a) The relative errors of a single multipole expansion versus D=d for N ¼ 103 point vortexes distributed randomly in a sphere

at various expansion orders p. (b) A local amplified view of (a).
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where vtcðpiÞ and vdirðpiÞ are the velocities at field point pi calculated from the treecode and direct calcu-

lation, respectively. The speedup, the ratio of the CPU time of the direct calculation to that of the treecode,

is used to measure the algorithm.
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5.1. Cubic domain

We first consider vortons distributed randomly in a cube, a worst scenario test, since both the CPU and
memory requirements of a treecode or an FMM code are at maximums for homogeneous distributions (cf.

[8,25]). Table 1 lists the treecode performance in terms of the CPU time, maximum relative error and RMS

error for various numbers of vortons from N ¼ 500 to 3� 106. The maximum expansion order in this case

is chosen as pmax ¼ 6 and hðpÞ in (13) is set according to (14a). With that, the RMS error and maximum

relative error for velocity have been well kept at O(10�4) as shown in the table. The breakeven point be-

tween the CPU times of the treecode and the direct calculation is less than N ¼ 103. The treecode is of one

order of magnitude faster than the direct calculation at N ¼ 104, and is of two orders of magnitude faster at

N ¼ 2� 105. The speedup reaches three orders of magnitude at N ¼ 3� 106.
Fig. 4 compares the speedup of the treecode versus the number of vortons to that of Strickland et al. [1]

for the same problem and at the same level of accuracy. The speedup of the present treecode is of 60 times

higher than theirs in the range from N ¼ 2� 104 to 3� 106. It should be mentioned that their treecode was

mainly apt for the parallel performance. We also plotted the results of Warren and Salmon [2] for vortex

elements on the surface of a sphere, and the results of Lindsay and Krasny [3] based on the Taylor

expansion for vortex elements with the Rosenhead–Moore kernel on a surface. The treecode for vortex

elements on a surface should be much more efficient than that for the case considered here. Nevertheless,

the speedup of the present treecode is still 20 times higher than that of Warren and Salmon from N ¼ 105 to
3� 106, and 7 times faster than that of Lindsay and Krasny.

Fig. 5 compares the speedups versus the number of vortons N between the treecodes using real spherical

harmonic functions (solid line) and the complex spherical harmonic functions (dashed line) for N vortons

and N field points distributed randomly in a cube. For the later approach, pmax and hðpÞ are chosen as same

as the above, and the RMS error and maximum relative error for velocity have been kept at O(10�4) too.

Comparing the results, one can see that the approach based on the real spherical harmonic functions re-

duced the CPU time significantly. About 36% of the CPU time is saved at N ¼ 106. As such, all other

simulations in this paper are performed with the treecode with the real spherical harmonic functions.

5.2. Computational features of the treecode

We then proceed to analyze the computational features of the treecode. Table 2 provides the proportions

of the CPU time spent for generating the source and target trees, calculating the multipole expansion

coefficients for the source boxes, and evaluating the function for N vortons and N field points distributed
Table 1

Performance of the treecode at pmax ¼ 6 for N vortons and N field points distributed randomly in a cube

Number of vortons N CPU time for

treecode (s)

CPU time for direct

calculation (s)

Maximum relative

error

RMS error

500 0.078 0.063 0.00004 0.00000

1000 0.28 0.312 0.00057 0.00011

5000 2.19 16.09 0.00049 0.00012

10,000 5.95 85.47 0.00042 0.00018

50,000 55.7 2753 0.00050 0.00024

100,000 161.3 11,675 0.00042 0.00021

500,000 1064 246,984 0.00052 0.00022

1,000,000 1975 928,859 0.00047 0.00022

2,000,000 4465 3,715,400 0.00048 0.00023

3,000,000 7384 7,436,906 0.00049 0.00023



Fig. 5. Comparison of the speedups versus the number of vortons N between the treecodes using real harmonic functions (solid line)

and complex harmonic functions (dashed line) for N vortons and N field points distributed randomly in a cube.
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randomly in a cube. The tree generation only consumes a small potion of the CPU time, ranging from 1.3%

to 0.35% for vortons from N ¼ 5� 103 to 3� 106, which decreases with the number of vortons. Calculation

of the multipole expansion coefficients consumes from 6% to 2% of the CPU time in the range, which
decreases with the number of vortons too. The CPU time is consumed predominantly to calculate the target

values, and its proportion is from 93% to 98% in the range, and increases with the number of vortons.

Table 3 provides the averaging proportion of the vortons evaluated by the multipole expansion in the

first two levels of the source tree for all field leaves for N vortons and N field points distributed randomly in

a cube. The averaging proportion of the sources being handled by the multipole expansion is from 34% to

40% at the first level of the tree for N ¼ 104 to 106; and it is from 68% to 73% at the first two levels of the

tree for N ¼ 104 to 106. The contribution of two-thirds of the sources has thus been calculated by the

multipole expansion at first two levels of the tree averagely.
To examine the performance of the treecode in terms of the expansion order, simulations are performed

for 105 vortons and 105 field points distributed randomly in a cube with various maximum expansion orders

pmax from 1 to 20. A uniform expansion order is used as pmax 6 4. The variable expansion order is used as

pmax > 4, and hðpÞ in (13) is set as follows:

hðpÞ ¼ 0:75þ 0:2 � ðpmax � pÞ þ 0:05 � ðpmax � pÞ2 for p ¼ 4; . . . ; pmax: ð16Þ

Note here that (14a) and (14b) are two special cases of (16) at pmax ¼ 6 and 7, respectively.

Fig. 6(a) shows the treecode CPU time (solid line) versus maximum expansion order pmax comparing the

linear dependency of C ¼ C1 � pmax (dashed line), where C1 is the CPU time at pmax ¼ 1. Comparing the two

curves, one can see that the algorithm reduces the CPU time dependency on expansion order p from O(p2)
of the classical treecode to be significantly lower than a linear relation in pmax for pmax ¼ 2; 3; . . . ; 20. The
maximum relative error and RMS error for velocity versus pmax is shown in Fig. 6(b). The treecode per-

formance for the case is also listed in Table 4. For only one order increase in the CPU time as pmax increases
Table 2

The proportions of the CPU time used for generating the trees, calculating the multipole expansion coefficients, and evaluating the

functions for N vortons and N field points distributed randomly in a cube

Number of vortons N CPU time percentages

Tree generation (%) Multipole expansion coefficients (%) Function evaluation (%)

5000 1.3 6 93

10000 1 6 93

50,000 0.68 4 95

100,000 0.49 2.9 96

1,000,000 0.47 2.7 97

3,000,000 0.35 2 98

Table 3

The averaging proportion of the vortons handled by the multipole expansion at the first two levels of the tree for N vortons and N field

points distributed randomly in a cube

Number of vortons N Proportion of vortons handled by multipole expansion

At level 1 At level 2

10,000 34.0% 34.4%

100,000 38.3% 33.7%

1,000,000 40.3% 32.9%
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from 1 to 20, the maximum relative error is reduced by five orders of magnitude (from 2� 10�2 to 1� 10�7),

and the RMS error is reduced by six orders of magnitude (from 2� 10�2 to 3� 10�8). With the traditional

treecode of O(p2), the corresponding increase in the CPU time would be two orders of magnitude.
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Table 4

Performance of the treecode for 105 vortons and 105 field points distributed randomly in a cube at various expansion orders. The CPU

time for the direct calculation for the case is of 11,200 s

Maximum expansion order pmax CPU time (s) Maximum relative error RMS error

1 76.3 0.0209603 0.01771557

2 91.5 0.0037439 0.00226992

4 127 0.0035168 0.00176195

6 181 0.0003878 0.00020270

8 227 0.0001398 0.00006106

10 280 0.0000475 0.00001515

15 519 0.0000011 0.00000035

20 869 0.0000001 0.00000003
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5.3. Parallelepiped domains

At last, two cases are considered for N vortons and N field points distributed randomly in a 5:1:1

parallelepiped and a 10:1:1 parallelepiped, respectively. The simulations are performed for various numbers

of vortons from N ¼ 500 to 2� 106. The maximum expansion order is chosen at pmax ¼ 7 and hðpÞ in (13) is
set according to (14b). The RMS error and maximum relative error for velocity have been kept at O(10�5)

for both of the two cases. Fig. 7 displays the speedups of the treecode versus the number of vortons with the

revised binary tree (solid line) against that with the oct-tree (dashed line) for the case of a 5:1:1 parallel-

epiped. As expected, the revised binary treecode reduces the CPU time significantly for this case because of

its high adaptiveness to the computational domain. In fact, its speedup is about 2 times higher than that of
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the oct-treecode at N ¼ 106. The revised binary treecode is faster than the direct method at N ¼ 500, of one
order of magnitude faster at N ¼ 5� 103, and of two orders of magnitude faster when N ¼ 3� 105. Its

speedup is close to 500 times at N ¼ 2� 106.

Fig. 8 compares the speedup of the revised binary treecode for N vortons and N field points distributed

randomly in a 10:1:1 parallelepiped (solid line) against that for a 5:1:1 parallelepiped (dashed line). One can

see that the speedup for the case of a 10:1:1 parallelepiped is obviously higher, being 1.5 times that of a 5:1:1

parallelepiped at N ¼ 106. For this case, the revised binary treecode is about 2 times faster than the direct

method at N ¼ 500, of one order of magnitude faster at N ¼ 5� 103, and of two orders of magnitude faster

when N ¼ 2� 105. The speedup is at 700 times at N ¼ 2� 106.
We note here that the vorton distribution of (11) is non-Coulomb interaction, which, in this work, is

approximated as a point vortex with a relative error at 1.6� 10�7 with a cutoff distance at 2.5d from the

vorton centre. As such, significantly more direct calculations have to be performed as compare to pure

Coulomb interactions. The CPU time for the multipole expansion has been reduced dramatically by the

utilization of the variable expansion order and a new criterion for choosing the order, etc. Because of the

above reasons, a large portion of the CPU time is used for the direct-close interactions in the treecode;

consequently, the further reducing of the CPU time due to the revised-binary tree is not dramatic. But the

speedup of the revised binary treecode as compared to the direct method is significant, which is at 700 times
at N ¼ 2� 106 and RMS Error¼O(10�5) for the case of a 10:1:1 parallelepiped. By the way, the revised

binary tree devised here is mainly for the parallel efficiency and parallelization easiness of a treecode.
6. Summary and conclusions

Three important improvements are described to the treecode, which are illustrated and applied to cal-

culate the velocity induced by vortex elements. Firstly, the multipole expansion is implemented based on the
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real spherical harmonic functions rather than the complex ones deployed in the field, which reduces about

one-third of the CPU time.

Secondly, the expansion order is given in terms of the ratio of the distance of a field point to a source box
to the box size, which reflects the relative error of the multipole expansion. The variable order treecode has

the following features:

(1) The contribution of a large portion of the sources has been evaluated by the multipole expansion at low

levels of the source tree. The averaging proportion of the sources handled by the multipole expansion is

from 34% to 40% at the first level of the tree for N ¼ 104 to 106; and it is from 68% to 73% at the first

two levels of the tree. The contribution of two-thirds of the sources has been calculated by the multipole

expansion at first two levels of the tree averagely.

(2) With a higher order expansion deployed for source boxes near a field leaf, the minimum well-separation
distance for deploying the expansion is reduced and the direct evaluation is limited to smaller number

of sources.

(3) It decreases the CPU time dependency on expansion order p. The simulations have indicated that the

dependency drops from O(p2) of the classical treecode to be significantly lower than a linear dependency

in pmax for pmax ¼ 2; 3; . . . ; 20, where pmax is the maximum expansion order used in the variable order

expansion.

(4) It maintains the high parallel efficiency of the classical treecode.

The efficiency of the algorithm is mainly due to the utilization of the variable order expansion and the
new criterion for choosing the expansion order.

Thirdly, a revised binary tree is built by performing the bisections three times in a row at each tree level,

discarding the boxes generated in the first two bisections and remaining only the boxes generated in the last

one. The revised binary tree has the following features:

(1) The revised binary tree avoids the disadvantages of a binary tree having about 1.75 times more boxes,

three time more levels and consequently requiring more CPU time.

(2) As compared to an oct-tree, this tree has much higher adaptiveness to the computational domain and

source distribution.
(3) In this tree, the boxes at a given level contain essentially the same number of sources (within �1), thus

has perfect load balancing for performing the parallelization.

(4) It is an adaptive tree but it is a complete tree whose leaves all have the same depth, the parallelization of

a revised binary treecode is thus as simple as that of a non-adaptive approach.

Simulations have been performed for N vortons and N field points distributed randomly in a cube, a

5:1:1 parallelepiped, and a 10:1:1 parallelepiped, using the oct-treecode and revised binary treecode, re-

spectively. The algorithm is an order faster than those of Strickland et al. [1], Warren and Salmon [2], and

Lindsay and Krasny [3]. Simulations also demonstrate the high efficiency of the revised binary treecode for
an inhomogeneous source distribution.

Finally, the variable order revised binary treecode developed here can be applied for the gravitational

and electrostatic potentials straightforwardly; it can also be implemented for the screened electrostatic

potential and general power-law interactions in molecular dynamics. The revised binary tree and the

multipole expansion based on the real harmonic functions devised here may be applied to the fast multipole

expansion too.
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