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Analyses of a slender body moving near a curved ground
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The irrotational flow induced by a slender body moving near a curved ground is analyzed by
extending the classical slender body theory. The flow far away from the body is shown to be a direct
problem, represented by the line source distribution along the body long axis, whose strength is at
the variation rate of the double cross-section areas of the body. The flow near the body is reduced
to the two-dimensional flow problem of the deformation, vertical and lateral translations of double
cylinders in a symmetrical manner. In particular, an analytical flow solution is obtained for a slender
body of revolution at angles of attack and yaw, moving near an arbitrary curved ground. The
attraction and side force, and pitching and yaw moments, acting on the body, are obtained in the
form of the integrals along the body length by using the control volume method. Numerical analyses
are then performed for the body moving near flat, convex, concave, and wavy grounds, respectively.
The analyses reveal the orders of the attraction and side force, and pitching and yaw moments, as
well as their variation trends in terms of the angles of attack and yaw of the body, the profile of the
curved ground, and the clearance between them, etc. These irrotational dynamic features provide a
basic understanding of the problem, which will be beneficial to further numerical and experimental
studies involving more physical effects. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2034867�
I. INTRODUCTION

The so-called extreme ground effect is for a body mov-
ing in very close proximity to a weakly curved ground �or a
water surface�, where the ratio of the clearance beneath the
body to the body length is under 10%. A wing in the extreme
ground effect was studied by Widnall and Barrows,1 Yih,2

Tuck,3,4 Newman,5 and Wang.6 Those works are based on the
potential flow theory and the method of matched asymptotic
expansions. It has been proven that, up to the third-order
approximation, the flow above the wing is reduced to a direct
problem and the flow beneath it appears to be a two-
dimensional channel flow. Thus, as indicated by Widnall and
Barrows,1 the extreme-ground-effect theory for wings forms
an interesting complement to Prandtl’s lifting line theory and
Jones’s slender body theory. Reviews about the extreme
ground effect on wings can be found in Refs. 7 and 8.

There have been only a very few theoretical studies on a
body in ground effect based on the potential flow theory.
Newman9 studied a slender body of revolution at zero inci-
dence moving over a flat wall, by representing the flow in
terms of a curved line source along the body, together with
its image to the flat wall. Tuck and Newman,10 Yeung and
co-workers,11,12 and Cohen and Beck13 analyzed two slender
bodies far apart using the far-field approximations of the
slender body theory, assuming the clearance between them is
comparable to their lengths.

In contrast, a slender body in ground effect is of practical
importance in a few fields. It has applications for a ship
moving near a bank �such as berthing to a quay wall�, near
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another ship, or in shallow water, and a submarine moving
close to the seabed. For those cases, the attraction due to
ground effect may be comparable to the buoyancy acting on
the body, as to be shown in Sec. IV. It also has applications
for ground vehicles at very high speeds.14 As an illustration,
the maximum speed of magnetic trains reaches 360 mph. As
to be shown in Sec. IV too, the attraction acting on a train at
such a high speed due to ground effect may be three orders
larger than the air buoyancy on it. The applications exist as
well for a missile skimming over a sea surface.

Most of the studies on ground effect concern only a flat
ground. But the ground �or water surface� is actually curved
in the practical problems. Furthermore, the unsteady effect
due to the ground curvature is of the same order as the cor-
responding flat ground effect, when the undulation amplitude
of the curved ground is comparable with the clearance be-
tween the body and ground.6,15,16

With the above considerations, this work addresses a
slender body in extreme curved-ground effect. We assume
that the transverse scales and angles of attack and yaw of the
body, the amplitude of the ground undulation, and the clear-
ance between them are small quantities of the same order of
magnitude. This work is based on the potential flow theory
too, since it provides a good approximation for high Rey-
nolds number flows. The flow analysis is carried out by ex-
tending the classical slender body theory

A few decades ago, the slender body theory was one of
the most popular theorems in aerodynamics as well as in
marine hydrodynamics.17–21 Such a success was, in part, be-
cause of the poor computational abilities of that time. Nowa-
days, the powerful modern computational capabilities allow

us to compute the flow around bodies of arbitrary form. Nev-
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ertheless, it remains highly desirable to be able to predict,
and to explain, at reasonable time cost, the main features of a
flow around a body; clearly the numerical way does not pro-
vide the whole answer. Hence, in the case of a slender body
in extreme ground effect, a formal and asymptotic perturba-
tion theory remains quite useful.

The remainder of the paper is organized as follows. In
Sec. II, the flow problem of a slender body in curved-ground
effect is analyzed using the method of matched asymptotic
expansions. In Sec. III, an analytical flow solution is ob-
tained for a slender body of revolution at angles of attack and
yaw in curved-ground effect using the conformal mapping.
The formulas for the force and moment on the body are
obtained in Sec. IV using the control volume method. Sec-
tion V performs the numerical analyses for the body moving
over flat, convex, concave, and wavy grounds, respectively.
Section VI contains the summary and conclusions of this
work.

II. FLOW ANALYSIS OF SLENDER BODY
IN CURVED-GROUND EFFECT

A. Mathematical modeling

Consider a slender body at angles of attack �* and yaw
�*, translating horizontally in close proximity to a weakly
curved ground of infinite extent, as shown in Fig. 1. A Car-
tesian coordinate system O-xyz fixed to the body is defined,
with the origin located at the center point of its long axis, x
axis along the flow direction at infinity and z axis pointing
upwards. Denote the body length as L and the body horizon-
tal velocity as U. The slender body can be represented as

r2 = a�x,�� for 0 � � � 2� and �x� � L/2, �1�

where

r2 = ��y − �*x�2 + �z + �*x�2, � = arctan� z + �*x

y − �*x
� , �2�

and a�r ,�� is the radius distribution of the cross section of
the body, which is required to be a smooth function, to be
vanished at the nose and to vary slowly along the body.

FIG. 1. A slender body in a horizontal transl
The curved ground can be expressed as
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z = − h0 + fg�x − Ut,y� , �3�

where h0 is the elevation of the body center above the mean
plane of the curved ground.

Following the geometrical assumption outlined in Sec. I,
it is assumed that

a�x,��,�*,�*,h0, fg�x − Ut,y� = O��� , �4a�

where � is the ratio of the maximum radius of the cross
section of the body to the length of the body. We therefore
can express those parameters as

a�x,�� = �A�x,�� ,

�* = ��, �* = ��, h0 = �H0,

fg�x − Ut,y� = �Fg�x − Ut,y� , �4b�

where

A�x,��,�,�,H0,Fg�x − Ut,y� = O�1� . �4c�

We further assume that the fluid is inviscid and incom-
pressible and that the flow is irrotational. A disturbance ve-
locity potential ��x ,y ,z , t� exists in the fluid domain
bounded by the body and ground, and satisfies the Laplace
equation in the fluid domain,

�xx + �yy + �zz = 0, �5a�

subjected to suitable boundary conditions. � is required to
vanish at infinity. The impermeable boundary condition on
the body surface is

�n�1 + �a�

a
�2

= − U	ax + �* cos � − �* sin �

+
a�

a
��* sin � + �* cos ��
 + O���� ,

�5b�

where n is the unit outward normal vector of the fluid do-
main on the body surface.

The impermeable boundary condition on the curved

in very close proximity to a curved ground.
ation
ground is

AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



097102-3 Analyses of a slender body Phys. Fluids 17, 097102 �2005�
�z = fgx�x + fgy�y on z = − h0 + fg�x − Ut,y� . �5c�

As an illustration, we discuss the physical assumptions
for typical marine vessels and high-speed trains, which are
usually streamlined slender bodies. The Reynolds numbers
Re of those flow problems in terms of the body length are at
the order of O�108� or larger, and consequently thin turbulent
boundary layers surround the bodies. Since the body is with
small angles of attack and yaw and a gradual change of ra-
dius, there should be no significant boundary layer separa-
tion. The maximum displacement thickness of the boundary
layer can be estimated as �d=0.046LRe

−0.2�1	10−3L �cf.
Ref. 22�. The potential flow model is thus suitable when the
minimum clearance Cmin between the body and wall is one
order larger than �d, i.e., Cmin
1	10−2L. In addition, the
condition on the minimum clearance may be violated locally
without destroying the validity of the potential flow solution
as a whole.23 When the boundary layer thickness is compa-
rable to the clearance, the viscous and inertial forces are
comparable in the flow field beneath the body.24

B. Outer expansion

In the outer region far away from the body, x ,y ,z
=O�1�, where the boundary condition on the ground surface
�5c� becomes

�z = O���� on z = O��� . �6�

To the first-order approximation, the curved ground can thus
be regarded as a plane wall with no flux boundary condition
for the outer expansion. Using the image method, the flow
disturbance in the outer region can be regarded as the repel-
lence of the fluid due to the body and its reflected image to
the plane wall z=0. Both the slender body and its image
shrink to the line segment, �x��L /2 and y=z=0, as seen by
an outer observer. In fact, the flux per unit length of the body
is specified and the no flux boundary condition on the ground
implies that the resulting disturbance must be found in the
half space instead of a full space. It is therefore inferred that
the outer expansion �o can be expressed in terms of the line
source along the segment

�o�x,y,z,t� = �2�
−L/2

L/2 F���d�

��x − ��2 + y2 + z2
+ o��2� , �7�

where 4�F��� is the strength of the line source. The above
equation can be derived from the Green formula for �o since
the contribution of the doublet distribution in the far field is
one order smaller than that of the source distribution. F���
will be determined in Sec. II D as the variation rate of the
double cross-section areas of the slender body,

F�x� =
U

2�

d

dx	�0

2� A2�x,��
2

d�
 . �8�

The velocity potential in the outer region is thus steady, axi-
symmetric, and is equal to the flow around a slender body of
revolution at the double cross-section areas in an unbounded
fluid. In particular, for a slender body of revolution,
F�x� = UA�x�Ax�x� . �9�
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C. Inner expansion

We next consider the flow in the inner region, where x
=O�1� and y, z=O���. Introduce the inner variables

x = x, Y = �y − �*x�/�, Z = �z + �*x�/� . �10�

The inner limit of the outer expansion �o can obtained
from �7�

��o�i = �2G�x� − 2�2 ln �F�x� − �2F�x�ln�Y2 + Z2�

+ o��2� , �11a�

where

G�x� = �
−L/2

L/2

F����ln�2� − 2x�d� . �11b�

The inner expansion of the velocity potential can be conjec-
tured from the inner limit of the outer expansion of �11a�

�i = �2G�x� − 2�2 ln �F�x� + �2��x,Y,Z,t� + o��2� , �12�

where � satisfies the Neumann boundary-value problem of
the two-dimensional Laplace equation in a triply connected
domain in the cross-flow plane, obtained from �5� and �12�

�YY + �ZZ = 0, �13a�

�n�1 + �A�

A
�2

= − U	Ax + � cos � − � sin �

+
A�

A
�� sin � + � cos ��


on R2 = A�x,�� , �13b�

�Z = 0 on Z = − H�x,t� , �13c�

where

R2 = �Y2 + Z2, � = arctan�Z/Y� ,

H�x,t� = H0 − �x − Fg�x − Ut,0� . �14�

Using the image method and examining �13�, one can
see that the flow near the body is reduced to the two-
dimensional flow problem of the deformation, the vertical
and lateral translations of double cylinders, in a symmetrical
manner. The influence of the deformation, corresponding to
the variation of the cross-section shape of the body, propa-
gates to the outer region; whereas other influences are lim-
ited in the inner region. The three problems cannot be decou-
pled as that for a slender body in an unbounded fluid. The
unsteady effect of the ground curvature depends only on the
ground undulation along the body length, and is limited in
the inner region. Note that the kinematic features observed
above are limited to the first-order approximation.

D. Matching of inner and outer expansions

Because � satisfies the two-dimensional Laplace equa-
tion �13a� and zero flux boundary condition �13c� on Z
=−H, � can be expressed as follows using the Green for-

mula:
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��x,Y,Z,t� = �
C1

	G�Y,Z,Y0,Z0�
���x,Y0,Z0,t�

�n

−
�G�Y,Z,Y0,Z0�

�n
��x,Y0,Z0,t�
dl�Y0,Z0� .

�15�

Note that the integral is carried out only on the periphery C1

of the cross section of the body, since the boundary condition
on ground �13c� has been taken into account in the Green
function G�Y ,Z ,Y0 ,Z0�,

G�Y,Z,Y0,Z0� =
1

2�
ln
��Y − Y0�2 + �Z − Z0�2���Y − Y0�2

+ �Z − Z0 + 2H�2�� . �16�

As R2=�Y2+Z2→
, �15� becomes

��x,Y,Z,t� =
1

�
ln R2�

C1

���x,Y0,Z0,t�
�n

dl�Y0,Z0�

+ O�R2
−1� . �17�

Substituting normal derivative �n of �13b� into �17� and us-
ing

�
0

2� 	� cos � − � sin � +
A�

A
�� sin � + � cos ��
Ad�

= �
0

2� d

d�
�A�� sin � + � cos ���d� � 0, �18�

the outer limit of � is obtained as

� = −
U

�
ln R2

d

dx
� A2�x,��

2
d� + O�R2

−1� . �19�

The matching condition �8� can be obtained by equating
the inner limit of the outer expansion �11a� to the outer limit
of the inner expansion �12� and �19�, according to Van
Dyke’s matching principle.23

III. ANALYTIC FLOW SOLUTIONS FOR SLENDER
BODY OF REVOLUTION

We consider a special case in this section where a slen-
der body of revolution moves near a curved ground. The
cross-flow boundary-value problem of � �13� is simplified as

�YY + �ZZ = 0, �20a�

�R = U�Ax + � cos � − � sin �� on R2 = A�x� , �20b�

�Z = 0 on Z = − H�x,t� ,

�20c�
H�x,t� = H0 − �x − Fg�x − Ut,0� .

� thus can be regarded as the two-dimensional velocity po-
tential induced by the double circular cylinders at the radii
A�x�, expanding �contracting� at the velocity UAx�x�, ap-
proaching each other at the velocity U�, and moving perpen-
dicular to the line connecting their centers at the velocity U�.

25
Wang obtained the velocity potential for two arbitrary
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moving circular cylinders. For completeness, the solution of
�20� is briefed as follows.

To solve the problem of �20�, a linear fractional confor-
mal mapping is introduced between the cross-flow plane of
T=Y + iZ and the mapped plane of �=�ei�,

T = iC
� + C

� − C
− iC coth � , �21�

where

C = �H2 − A, � = arcsinh�C/A� . �22�

It maps the domain outside two circles C1, �T�=A, and C2,
�T−2Hi�=A, in the cross-flow plane T to the domain between
the two concentric circles B1, ���=�1, and B2, ���=�2, in the
mapped plane �, as sketched in Fig. 2. �1 and �2 are

�1 = Ce�, �2 = Ce−�. �23�

Note that C2 is the image of C1 to the ground Z=−H. The
mapping also transforms the line Cg, Z=−H, in the cross-
flow plane T to the circle B0, ���=C, in the mapped plane �.

To simplify the problem of �20�, we then introduce

� = F ln � − 2F ln�� − C� + � . �24�

The boundary problem of � becomes

��� +
1

�2��� = 0, �25a�

��

��
= U��f1��� − �f2���� on B1, �25b�

��

��
= U�2��f1��� + �f2���� on B2, �25c�

where f1��� and f2��� can be obtained from �20�–�24�,

f1(� = 2 sinh �	 coth �

e2� − 2e� cos � + 1

−
e2� − 1

�e2� − 2e� cos � + 1�2
 , �26a�

f2��� =
4 sinh � sin �

�e2� − 2e� cos � + 1�2 . �26b�

f1��� and f2��� can be expanded in the Fourier series in
� as follows:

f1��� = − �
n=1




n
cos�n��
e�n+1�� , �27a�

f2��� = 2�
n=1




n
sin�n��
e�n+1�� �27b�

by using the following integral formulas:

�2� cos n� d�

a2 − 2a cos � + 1
=

2�

an�a2 − 1�
for a � 1, �28a�
0
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�
0

2� cos n� d�

�a2 − 2a cos � + 1�2

=
2�

an�a2 − 1�3 �2 + �n + 1��a2 − 1�� for a � 1. �28b�

We further assume that the solution of �25� takes the
form

� = �
n=1




�Cn
1�n + Cn

2�−n�cos�n��

+ �
n=1




�Cn
3�n + Cn

4�−n�sin�n�� . �29�

Determining the coefficients Cn
i , i=1,2 ,3 ,4, in �29� with the

boundary conditions �25b�, �25c�, and �27� and then substi-
tuting �29� into �24�, we obtain

� = F ln� �

�2 − 2� cos � + C2�
+ UC�

n=1



1

sinh�n��	� �

�1
�n

+ ��2

�
�n
�� cos�n��

− � sin�n��� . �30�

The series in �30� is absolutely convergent in the whole
cross-flow domain corresponding to �2����1 and 0��

FIG. 2. The conformal mapping of �a� the domain outside two circles C1 an
circles B1 and B2, in the mapped plane �=�ei�.
�2�.
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IV. FORMULAS FOR FORCE AND MOMENT

A. Slender body

The hydrodynamic force f and moment m0 acting on a
body moving in a potential flow can be expressed as follows,
by using the control volume approach �cf. Appendix A�:

f

� f
= −

d

dt
�

Sb

�ndS − �
Sc

��n � � − n
1

2
� � · ���dS ,

�31a�

m0

� f
= −

d

dt
�

Sb

��R0 	 n�dS

− �
Sc

R0 	 ��n � � − n
1

2
� � · ���dS , �31b�

where Sb is the body surface, Sc is a fixed control surface
exterior to Sb, and n is the unit outward normal vector of the
control volume on the control surfaces, as shown in Fig. 3.
“d /dt” is the material time derivative. m0 is the moment to
the initial body center at t=0, and R0 is the vector of a point
on the control surfaces from the initial body center.

Sc is chosen consisting of the fixed ground Sg and the
upper half of a large spherical surface S
 in the far field, cut
by each other, as shown in Fig. 4. The asymptotic behaviors

in the cross-flow plane T=Y + iZ, to �b� the domain between two concentric
d C2,
of � in the far field can be estimated from �7� and �8�,
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� → O� 1

r2�, ���� → O� 1

r3� ,

�32�

�n → O� 1

r3� as r = �x2 + y2 + z2 → 
 .

Since the surface area of S
 is proportional to r2, the contri-
bution to the second integrals in �31a� and �31b� from S
 will
be of order r−4 and r−3, respectively, and will vanish as r
tends to infinity. Noticing further that �n=0 on the ground
Sg, we obtain

f

� f
= −

d

dt
�

Sb

�ndS +
1

2
�

Sg

��� · ���ndS . �33�

One can obtain D’Alembert’s paradox for a body moving in
ground effect from �33�. In fact, for a body in a steady hori-
zontal translation near a plane wall, the first integral in �33�
does not depend on time, and the second integral is nonzero
only in the vertical direction, hence no drag and side forces
act on the body.

For a slender body in curved-ground effect, using the
slenderness assumption and inner expansion of �12� and �33�
can be simplified as

FIG. 3. The control volume V�t� enclosed between a moving body surface
Sb and a fixed control surface Sc exterior to Sb.

FIG. 4. The control volume, for a slender body moving near a wall, sur-
rounded by the body surface Sb, ground Sg, and the upper half of a large

sphere surface S
 in the far field.
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f

� f�
3 = −

d

dt
�

−L/2

L/2

dx�
C1

�ndl

−
k

2
�

−L/2

L/2

dx�
Cg

��Y
2 + �Z

2�dl + O��� , �34�

where k is the unit vector along the z axis.
Introducing I1�x , t�, J1�x , t�, and J2�x , t�, as follows:

I1(x,t) = �
C1

� cos � dl , �35a�

J1(x,t) = �
C1

� sin � dl , �35b�

J2�x,t� =
1

2
�

Cg

��Y
2 + �Z

2�dl , �35c�

the side force fy and vertical force fz can be given as follows
from �34�:

fy

� f�
3 = �

−L/2

L/2

I1t�x,t�dx + O��� , �36a�

fz

� f�
3 = �

−L/2

L/2

�J1t�x,t� − J2�x,t��dx + O��� . �36b�

In the similar way, using the slenderness assumption,
�31b� can be simplified as

m0

� f�
3 = −

d

dt
�

−L/2

L/2

dx�
C1

�R0 	 ndl −
1

2
�

−L/2

L/2

R0 	 kdx

	�
Cg

��Y
2 + �Z

2�dl + O��� , �37�

where

R0 = �x − Ut�i + yj + zk = �x − Ut�i + O��� , �38a�

n = cos � j + sin � k + O��� , �38b�

where i and j are the unit vectors along x and y axes.
Substituting �38� into �37�,

m0

� f�
3 =

d

dt
�

−L/2

L/2

�x − Ut�dx�
C1

��cos � k − sin � j�dl

+ j
1

2
�

−L/2

L/2

�x − Ut�dx�
Cg

��Y
2 + �Z

2�dl + O���

=
d

dt
�

−L/2

L/2

�x − Ut��I1k − J1j�dx

+ j�
−L/2

L/2

�x − Ut�J2dx + O���

= − Ut�L/2

�I1tk + �J2 − J1t�j�dx

−L/2
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+ �
−L/2

L/2

��UJ1 − xJ1t + xJ2�j

+ �− UI1 + xI1t�k�dx + O���. �39�

Considering that the body moves at the velocity −Ui, the
pitching moment my to the y axis and the yaw moment mz to
the z axis can be given as

my

� f�
3 = �

−L/2

L/2

�UJ1�x,t� − xJ1t�x,t� + xJ2�x,t��dx + O��� ,

�40a�

mz

� f�
3 = �

−L/2

L/2

�− UI1�x,t� + xI1t�x,t��dx + O��� . �40b�

To calculate the differential lateral force df along the
body length, �31a� is applied to a thin slice of fluid of differ-
ential thickness dx, as shown in Fig. 5. Here Sb in �31a� is
chosen as the differential length of the body surface. Sc con-
sists the differential length of the ground surface dSg, the two
lateral planes S0 separated by a distance of dx external to the
body and above the ground, and a closure surface dS
 at a
large radial distance from the body.

The contributions to the second integration of �31a� from
the two lateral planes S0 are

Ey = −
�

�x
�

S0

��

�x

��

�y
dS, Ez = −

�

�x
�

S0

��

�x

��

�z
dS . �41�

To estimate Ey and Ez, S0 is divided into two parts: S01,
where r=o�1� with the area A1=o�1�, and S02, where r

O�1� with the area A2=O�r2�. Using the slenderness as-
sumption, we have

�x = O��2�, �y = O���, �z = O��� on S01. �42a�

Using �7� and �8�, we know

�x = O��2/r3�, �y = O��2/r3�, �z = O��2/r3� on S02.

�42b�

With the above estimations, one can obtain Ey, Ez=o��3�.
Similar to the derivation of �36�, and considering the

contribution from the two lateral planes S0 canceled, one can

FIG. 5. The control volume for the evaluation of the differential force df on
a cross section of a slender body moving over ground.
obtain the differential force components dfy and dfz,
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dfy

� f�
3 =

dI1�x,t�
dt

+ o�1� , �43a�

dfz

� f�
3 =

dJ1�x,t�
dt

− J2�x,t� + o�1� . �43b�

Note here that Lighthill19 used the above approach to
calculate the differential lateral force in analyzing the swim-
ming motion of slender fish.

B. Slender body of revolution

The three integrals in �35� can be integrated analytically
for a slender body of revolution �cf. Appendix B�

I1�x,t� = − 4�C2U��
n=1




�n coth�n��e−2n�� , �44a�

J1�x,t� = 2�F�H − C� + 4�C2U��
n=1




�n coth�n��e−2n�� ,

�44b�

J2�x,t� =
�

C	F2 + 2AFU�e−�

+ 2C2U2��2 + �2��
n=1




cn�cn − cn+1�
 , �44c�

where

cn =
2ne−2n�

1 − e−2n� . �45�

I1t, J1t needed in �36� and �40� can be obtained from �44a�
and �44b� as follows:

I1t�x,t� = − 4�CU��
n=1




dne−2n�, �46a�

J1t�x,t� = 2�F�Ht − Ct� − 8�CU��
n=1




dne−2n�, �46b�

where

dn = n�2�Ct − nC�t�coth�n�� − nC�t csch2�n��� . �47�

Ct, Ht, and �t needed in �46� and �47� can be obtained from
�20c� and �22�,

Ht = UFgx, Ct =
HHt

C
, �t =

Ct

A cosh �
. �48�

The three series in �44� and �46� are convergent absolutely.
Noticing from �44�–�46�, I1�x , t�, and I1t�x , t� are linear

to �, J1�x , t� and J1t�x , t� do not depend on �, and J2�x , t� is
proportional to �2. Noticing further from �36� and �40�, the
side force and yaw moment are proportional to the angle of
yaw, whereas the vertical force and pitching moment are

proportional to the square of the angle of yaw.
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At zero angles of attack and yaw, the attraction and
pitching moment are

fz = − ��3� fU
2�

−L/2

L/2 �F2

C
+ 2U

H − C

C
FFgx�dx + O��4� ,

�49a�

my = ��3� fU
2�

−L/2

L/2 	F2

C
x + 2U

H − C

C
FFgxx

+ 2UF�H − C�
dx + O��4� . �49b�

If the ground is flat, �49� can be further simplified as

fz = − ��3� fU
2�

−L/2

L/2 �AAx�2

�H0
2 − A2

dx + O��4� , �50a�

my = ��3� fU
2�

−L/2

L/2 	 x�AAx�2

�H0
2 − A2

+ 2AAx�H0 − �H0
2 − A2�
dx + O��4� . �50b�

fz in �50a� is the same as that obtained by Newman.9

For a slender spheroid,

a�x� = ��1 − 4�x/L�2, for �x� � L/2. �51�

fz in �50� can be integrated analytically,

fz = − ��3� fU
2L2	2H0 + �H0

2 − 1�log�H0 − 1

H0 + 1
�
 . �52�

The attraction reaches its maximum of 2��3� fU
2L2 at H0

=1 when the lowest point of the body slides on the wall.
Taking �=0.1, the maximum attraction is equal to 0.1, 1.0,
10, 100, and 1000 times of the buoyancy on the body at U
=1.8, 5.7, 18, 57, and 180 m/s, respectively.

Before ending this section, we discuss the situation when
the lowest point of the body slides on the wall. The parts of
the integrants containing �H0

2−A2�−1/2 in �50a� and �50b� are
singular at the contact point, but the integrals are convergent.
In fact, near the contact point x=x0,

A2�x� = H0
2 + 2AAx�x − x0� + O��x − x0�2� , �53�

As an illustration, the integrand of �50a� is

�AAx�2

�H0
2 − A2

=
�AAx�2

�2AAx�x − x0� + O��x − x0�2�
. �54�

The integral of �50a� is thus convergent. The above analysis
is for the case of zero incidence. As for cases at an angle of
attack, it has been noticed too in the simulations of Sec. V
that the integrals in �36� and �40� are convergent numerically,
when the body slides on the wall.

In real applications, the viscous effects are significant
near the contact point since the clearance beneath the body is
smaller than the thickness of the boundary layer over there.
As a result, the velocity, pressure, and stress are finite near

the impact point. The hydrodynamic load exerted over the

Downloaded 18 Mar 2006 to 147.188.56.50. Redistribution subject to 
small region near contact is at the order of the area of the
region, and is small as compared to the global force. The
potential flow theory still holds globally when the contact
happens locally.

V. NUMERICAL EVALUATION

The force and moment on a slender body of revolution in
ground effect, modeled in Sec. IV, are calculated using MAT-

LAB. The three series in �44� and �46�, with their terms de-
caying exponentially, converge rapidly. The series are
summed at a very high accuracy, with the series truncated
when the terms are at O�10−10� since the CPU time needed is
minimal. The components of the force and moment of �36�
and �40� are integrated using the recursive adaptive Simpson
quadrature, with the error limit set at 10−7. The calculation
results are given in dimensionless parameters defined as fol-
lows:

Fy =
fy

� fU
2L2�3 , Fz =

fz

� fU
2L2�3 , �55a�

My =
my

� fU
2L3�3 , Mz =

mz

� fU
2L3�3 . �55b�

A. Flat-ground effect

We first consider the case where a slender spheroid
moves over a plane wall, a steady problem. Figure 6�a�
shows the attraction −Fz on the body versus its center height
H0 at the angles of attack �=0.0, 1.0, 1.5, and 2.0, respec-
tively. Attraction acts on the body as expected, because the
flow moves faster and the pressure is thus lower beneath the
body than those above it, due to the constraining effect of the
wall. When the minimum clearance beneath the body is
within the radius of the ellipsoid, H0�2.0, the attraction is
prominent and increases rapidly with decreasing H0. The at-
traction increases with the angle of attack too. Each curve in
Fig. 6�a� starts at the minimum value of H0, at which the
lowest point of the body is sliding on the wall. One can see
that the attraction reaches its maximum value of 2� at �
=0.0 and H0=1. Figure 6�b� shows the corresponding pitch-
ing moment coefficient My /� vs H0 for the case. My is in the
direction of the pitching and My /� increases with the prox-
imity of the body to the ground and also with the angle of
attack.

To explain these trends to the angle of attack, we calcu-
lated the distribution of the differential vertical force dFz

= fz / �� fU
2�3� of �43b�. Figure 7 shows dFz vs x for the

spheroid at H0=1.5 and various angles of attack. At �=0.0,
dFz is symmetrical about the center position x=0 of the
body, positive near its two ends, negative along the large
middle part, and reaches its minimum at the center. As �
increases, the increment of dFz in the fore half of the body,
farther from the ground, is less than the decrement in the aft
half, due to nonlinear effect, and therefore the attraction and
pitching moment increase.

The positive dFz at the two ends of the body may be

interpreted as follows. A body experiences the repellence
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when it approaches �or departs from� a wall �or another
body�;2,25,26 whereas it experiences attraction when it passes
by a wall �or another body�.11,12,25,27 In this case, the two
ends of the spheroid appear approaching �departing from� the
wall locally, therefore, dFz over there is positive.

We then compare the two slender bodies of revolution
defined as

A�x� = �1 − 4x2/L2�� for �x� � L/2, �56�

at �=1/2 �spheroid� and 1/3, moving over a flat ground.
Figures 8�a� and 8�b� show the attractions −Fz and pitching
moment My vs H0, at �=0.0 and 1.0. The attraction and
pitching moment on the body at �=1/3 are larger than those
on the ellipsoid, and the differences are prominent when the
clearance beneath the body is small, H0�1.5. This is as ex-
pected since the clearance beneath the body at �=1/3 is
smaller. The attraction and pitching moment on the body at
�=1/3 increase with its proximity to the ground and with the
angle of attack too.

We further analyze the effects of the angle of yaw �.
Figures 9�a� and 9�b� show the attraction −Fz and pitching
moment My vs H0, for a slender spheroid in ground effect, at
�=1.0 and �=0.0, 0.5, and 1.0, respectively. When H0

�1.5, the attraction and pitching moment increase rapidly
with �. As noticed in Sec. III, there is a lateral cross flow at
the velocity of U� due to yaw, which moves faster beneath
the body, because of the constraining effect of the wall.
When the body is very close to the wall, the imbalance of the
lateral cross flow is strong and the attraction increases sig-
nificantly. This flow imbalance is stronger for the aft half of
the body closer to the wall at �=1.0, hence the pitching
moment increases too.

As noticed in Sec. IV B, no side force acts on a body at
an angle of yaw when it is in a steady horizontal translation
near a wall. Nevertheless the body experiences a yaw mo-
ment. Figure 10 shows the yaw moment coefficient Mz /� vs
H0 for the body at �=1.0 and �=0.0, 1.0, 1.5, and 2.0. The

FIG. 7. The differential vertical force dFz vs x on a
slender spheroid at H0=1.5 and various angles of attack
moving over a flat ground.
FIG. 6. �a� The attraction −Fz and �b� pitching moment coefficient My /� vs
the body center height H0 for a slender spheroid at �=0.0, 1.0, 1.5, and 2.0
moving over a flat ground.
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yaw moment is in the direction of the yaw and its amplitude
increases with the proximity of the body to the wall and also
with the angle of attack.

FIG. 8. �a� The attraction Fz and �b� pitching moment My vs H0 for slender
bodies of revolution defined by �56� at �=1/2, 1 /3 and �=0.0, 1.0 moving
over a flat ground.
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B. Convex- and concave-ground effects

The curved-ground effect is a transient problem. Sup-
pose a part of the ground is of a cylindrical quadratic profile
as follows:

FIG. 9. �a� The attraction −Fz and �b� pitching moment My vs H0 for a
slender spheroid at �=1.0 and various angles of yaw � moving over a flat
ground.
Fg�x − Ut,y� = �B�1 −
�x + L/2 + � − Ut�2

�2 � for �x + L/2 + � − Ut� � � ,

0 for �x + L/2 + � − Ut� � � ,
� �57�
where B and 2� are the amplitude and range of the curved
part. With the definition, the nose of the body is precisely
above the beginning of the curved part at time t=0 and its aft
end is above the end of the curved part at t= �L+2�� /U.

Figures 11�a� and 11�b� show the attraction −Fz and
pitching moment My versus time t when a slender spheroid at
�=1.0 and H0=2.0 moves over the curved ground at �

=1.0 and B=0.0, ±0.25, ±0.50, and ±0.75. The magnitudes
of the attraction and pitching moment increase �decrease�
when the body moves over the convex �concave� ground.
This is because the constraining effect of the ground on the
flow beneath the body is strengthened �weakened� by a con-
AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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vex �concave� ground. The variations of the attraction and
pitching moment appear antisymmetrically between B
= ±0.25, but become asymmetric at B= ±0.50, ±0.75, where
the increments due to the convex ground are much larger.
This is because, compared to B=−0.5,−0.75, the clearance
beneath the body at B=0.5,0.75 is much smaller.

The reverse trend for the attraction is noticed in Fig.
11�a� when a small fore part of the body enters over the
curved part of the ground or a small rear part of the body
leaves over the curved part. Under those situations, the at-
traction decreases �increases� due to the convex �concave�
ground. This is because the differential vertical force near the
two ends is positive as noticed in Fig. 7. The reverse trend
for the pitching moment in Fig. 11�b�, as a small rear part of
the body leaving over the curved part, is due to the same
reason.

We next consider the influence of the curvature of the
curved ground. Figures 12�a� and 12�b� show the attraction
−Fz and pitching moment My versus time when the spheroid
at �=1.0 and H0=2.0 moves over the convex ground �solid

FIG. 12. �a� The attraction −Fz and �b� pitching moment My vs time for a
slender spheroid at �=1.0 and H0=2.0 moving over the convex ground
�solid line�, flat ground �dot line�, and concave ground �dash line�, defined
by �57�, at various wavelengths.
FIG. 10. The yaw moment coefficient Mz /� vs H0 for a slender spheroid at
�=1.0 and �=0.0, 1.0, 1.5, and 2.0 moving over a flat ground.
FIG. 11. �a� The attraction −Fz and �b� pitching moment My vs time for a
slender spheroid at �=1.0 and H0=2.0 moving over the convex ground
�solid line�, flat ground �dash-dot line�, and concave ground �dash line�,
line, B=0.5�, flat ground �dot line�, and concave ground
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�dash line, B=−0.5� at �=0.5, 1.0 and 2.0, respectively. The
variation in amplitude of the attraction increases slightly
with the ground curvature, whereas the variation in ampli-
tude of the pitching moment decreases slightly with the
ground curvature.

If the body is at an angle of yaw, a side force is gener-
ated by the coupling of the lateral cross flow due to yaw and
the unsteady effect due to ground curvature. Figure 13�a�
shows the side force coefficient Fy /� versus time when the
body at �=1.0, �=1.0 and H0=2.0 moves over the curved
ground at �=1.0 and B=0.0, ±0.25, ±0.50, and ±0.75. Fy /�
is negative as the body moves over the rising part �in the
direction of the body motion� of the curved ground and vice
versa. Its magnitude increases with the slope of the curved
ground and also with the proximity of the body to the
ground. Figure 13�b� shows the corresponding yaw moment
coefficient Mz /� versus time. Mz /� increases �decreases�
when the body moves over the convex �concave� ground.
The variation amplitudes of Fy /� and Mz /� for the convex
ground at B=0.5,0.75 are much larger than those for the

FIG. 13. �a� The side force coefficient Fy /� and �b� yaw moment coefficient
Mz /� vs time for a slender spheroid at �=1.0, �=1.0, and H0=2.0 moving
over the convex ground �solid line�, flat ground �dot line�, and concave
ground �dash line�, defined by �57�, at �=1.0 and various amplitudes.
corresponding concave ground too.
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In conclusion, the attraction, pitching moment, and yaw
moment depend largely on the clearance beneath the body,
and increase �decrease� when the body is over the convex
�concave� ground. However, the side force depends largely
on and increases with the slope of the curved ground.

C. Wavy-ground effect

We further consider the case where a slender spheroid
moving over a wavy ground

Fg�x − Ut,y� = B sin�2��x − Ut�/�� , �58�

where B and � are its wave amplitude and wavelength. The
force and moment on the body are oscillating functions at the
oscillation period of � /U.

We first consider the variations of the force and moment
versus time. Figures 14�a� and 14�b� show the attraction −Fz

and pitching moment My versus time when the body at �
=1.0 and H0=2.0 moves over the wavy ground at B=0.5 and
various wavelengths. For comparison, we depict the corre-
sponding values of −Fz and My for the body over the flat
ground at the mean surface of the wavy ground �dash-dot

FIG. 14. �a� The attraction −Fz and �b� pitching moment My vs time for a
slender spheroid at �=1.0 and H0=2.0 moving over the wavy ground at
amplitude B=0.5 and various wavelengths.
line�. We also depict the wavy-ground height beneath the
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body center versus time. The attraction and pitching moment
are roughly in phase with the wave height beneath the body
center. This is because both the attraction and pitching mo-
ment increase with the proximity of the body to the ground.
The clearance between them is out of the phase with the
wave height, i.e., the clearance appears the smallest �largest�
when its center is over the peak �trough� of the wavy ground.
When the wavelength is comparable to the body length, at
�=4 and 2, the phase of −Fz is slightly behind that of the
wave height. This is because, at �=1.0, the aft half of the
body closer to the ground has more contributions to −Fz. The
variation in amplitude of −Fz and My is much larger when
the body center is over the upper half of the wavy ground
than that over the low half.

Figures 15�a� and 15�b� show the side force coefficient
Fy /� and yaw moment coefficient Mz /� versus time when
the body at �=1.0, �=1.0, and H0=2.0 moves over the wavy
ground at B=0.5 and various wavelengths. For comparison,
we also depict the slope of the wavy ground beneath the
body center versus time. Fy /� is roughly in phase with the
slope of the wavy ground. Mz /� appears in phase with the

FIG. 15. �a� The side force coefficient Fy /� and �b� yaw moment coefficient
Mz /� vs time for a slender spheroid at �=1.0, �=1.0, and H0=2.0 moving
over the wavy ground at amplitude B=0.5 and various wavelengths.
wave height beneath the body center.
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In conclusion, the attraction, pitching moment, and yaw
moment on the body are roughly in phase with the wave
height beneath the body center because they depend largely
on the clearance beneath the body, as noticed in Sec. V B.
However, the side force is roughly in phase with the slope of
the wavy ground. This is because the side force is generated
by the coupling of the lateral cross flow due to yaw and the
unsteady effect due to ground curvature, and depends largely
on the slope of the curved ground.

We then consider the mean values of the oscillating force
and moment. It can be verified using �36�, �40�, and �44�–
�48� that their mean values do not vary with the wavelength
of the wavy ground. Figures 16�a� and 16�b� show the mean

attraction −F̄z and mean pitching moment M̄y vs H0 when the
spheroid at �=1.0 moves over the wavy ground at B=0.0

�flat ground�, 0.5, and 1.0. Both −F̄z and M̄y increase with
the wave amplitude and also with the proximity of the body
to the ground. This is because of the dynamic asymmetry
between the body over the upper and lower halves of the

FIG. 16. �a� The mean attraction −F̄z and �b� mean pitching moment M̄y vs
H0 for a slender spheroid at �=1.0 moving over the wavy ground at ampli-
tudes B=0.0 �flat ground�, 0.5, and 1.0.
wavy ground, as noticed in Fig. 14. Figures 17�a� and 17�b�
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show the mean side force coefficient F̄y /� and mean yaw

moment coefficient M̄z /� vs H0, as the body is at �=1.0 and
�=1.0. They both increase with the wave amplitude and with
the proximity of the body to the ground too.

At last, we consider the peak to trough variations of the
force and moment, which are the difference between the
maximum and minimum values of the oscillating functions.
Figures 18�a� and 18�b� show the peak to trough variations
of the attraction −Fz and pitching moment My versus the
wavelength when the spheroid at �=1.0 and H0=2.0 moves
over the wavy ground at B=0.25, 0.50, and 0.75, respec-
tively. The variation amplitude of the attraction first in-

FIG. 17. �a� The mean side force coefficient F̄y /� and �b� mean yaw mo-

ment coefficient M̄z /� vs H0 for a slender spheroid at �=1.0 and �=1.0
moving over the wavy ground at amplitudes B=0.0 �flat ground�, 0.5, and
1.0.
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creases with the wavelength, reaches its maximum in the
range of � /L=1.0–1.5, and then decreases slowly. In con-
trast, the variation amplitude of the pitching moment first
decreases rapidly with the wavelength, reaches its minimum
around � /L�1.0, and increases slowly after that �Fig.
18�b��.

The above variation trends can be interpreted by exam-
ining the clearance distribution beneath the body. As an il-
lustration, we discuss the attraction versus the wavelength
for the case of ��L. The attraction reaches its peak �trough�
when the body center is over the peak �trough� of the wavy
ground �Fig. 14�a��. Figures 19�a� and 19�b� show the clear-

FIG. 18. The peak to trough variations of �a� the attraction −Fz and �b�
pitching moment My, vs the wavelength, for a slender spheroid at �=1.0
and H0=2.0 moving over the wavy ground at amplitudes B=0.25, 0.50, and
0.75, respectively.

FIG. 19. A slender body moving over
�a� the peak and �b� trough of a wavy
ground for ��L.
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ance distribution beneath the body as the body center over
the peak and trough of a wavy ground at ��L. As the body
center over the peak of the wavy ground �Fig. 19�a��, if the
wavelength increases, the clearance decreases beneath the
middle part of the body and increases near its two ends.
Because the middle part of the body experiences the attrac-
tion and its two ends experiences repellence �Fig. 7�, the
peak of the attraction thus increases. As the body center over
the trough of the wavy ground �Fig. 19�b��, if the wavelength
increases, the clearance increases beneath the middle part of
the body and decreases near its two ends, hence the trough of
the attraction decreases. Consequently the peak to trough
variation of the attraction −Fz increases with the wavelength
as ��L. Similar interpretations are suitable for the case of
��L as well as for the pitching moment.

Figures 20�a� and 20�b� show the peak to trough varia-
tions of the side force coefficient Fy /� and yaw moment
coefficient Mz /� versus the wavelength when the body at
�=1.0, �=1.0, and H0=2.0 moves over the wavy ground.

FIG. 20. The peak to trough variations of �a� the side force coefficient Fy /�
and �b� yaw moment coefficient Mz /� vs the wavelength, for a slender
spheroid at �=1.0, �=1.0, and H0=2.0, moving over the wavy ground at
amplitudes B=0.25, 0.50, and 0.75, respectively.
The variation amplitude of Fy /� first increases with the
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wavelength, reaches its maximum in the range of � /L
=1.0–1.5, and then decreases slowly. In contrast, the varia-
tion amplitude of Mz /� first decreases with the wavelength,
reaches its minimum around � /L�1.25, and increases after
that.

VI. SUMMARY AND CONCLUSIONS

The irrotational flow induced by a slender body in a
horizontal translation over a curved ground was analyzed by
extending the classical slender body theory. Like a slender
body in an unbounded field, the flow far away from the body
was shown to be a direct problem, represented by the line
source distribution along the body length, but at the double
strength. The flow near the body was reduced to the two-
dimensional flow problem of the deformation, the vertical
and lateral translations of double cylinders, in a symmetrical
manner. The unsteady effect of the ground curvature depends
only on the ground undulation along the body length.

An analytical flow solution was obtained for a slender
body of revolution at angles of attack and yaw, moving over
an arbitrary curved ground. The attraction and side force, and
pitching and yaw moments, were obtained in the form of the
integrals along the body length. Numerical analyses were
carried out for the body in curved-ground effect. Some irro-
tational dynamic features were noticed as follows.

�1� The body experiences an attraction and a pitching mo-
ment in the direction of the pitching, when it moves near
ground, and their magnitudes increase with the angle of
attack and also with its proximity to the ground.

�2� When the body is at an angle of yaw, it experiences a
yaw moment in the direction of yaw, and a side force too
if the ground is curved. The side force coefficient Fy /�
is negative as the body moves over the rising part �in the
direction of the body motion� of the curved ground and
vice versa. The side force and yaw moment are propor-
tional to the angle of yaw, whereas the attraction and
pitching moment are proportional to the square of the
angle of yaw.

�3� The attraction and side force are at the order of �3� fU
2L2

and pitching and yaw moments are at the order of
�3� fU

2L3, where � is the ratio of the maximum radius of
the cross section of the body to the length of the body.

�4� The ground effect is prominent when the minimum
clearance beneath the body is within the body radius,
and is small if the clearance is larger than twice of the
diameter. The ground effect is strengthened �weakened�
by a convex �concave� ground. The variations of the
force and moment due to a convex ground can be sig-
nificantly larger than that due to the concave ground at
the same amplitude.

�5� In the wavy-ground effect, the attraction and pitching
and yaw moments appear in phase with the wave height
beneath the body center, but the side force appears in
phase with the wave slope beneath the body center. The
nonlinear/unsteady effects are significant when the
wavelength is comparable to the body length and/or the
wave amplitude is comparable to the clearance between

them. The mean force and moment components increase
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with the wave amplitude. The variation in amplitude of
attraction and side force first increases with the wave-
length, reaches their maximums in the range of � /L
=1.0–1.5, and then decreases slowly. In contrast the
variation in amplitude of the pitching and yaw moments
first decreases with the wavelength, reaches their mini-
mums in the range of � /L=1.0–1.5, and increases after
that.
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APPENDIX A: THE DERIVATION OF „31…

Although formulas �31� of the force and moment on a
body in a potential flow are standard �cf. Ref. 28, Chap. 4�,
they play a crucial role in this paper, which are derived
briefly in this appendix. Using the Bernoulli equation, the
force f and moment m0 on the body are

f

� f
= − �

Sc

� ��

�t
�n +

1

2
� � · ���ndS , �A1a�

m0

� f
= − �

Sc

� ��

�t
�n +

1

2
� � · ����R0 	 n�dS , �A1b�

where Sb is the body surface and Sc a fixed control surface
exterior to Sb, as shown in Fig. 3.

On the fixed control surface Sc,

d

dt
�

Sc

�ndS = �
Sc

��

�t
ndS . �A2�

Using the Gauss theorem and then the transport theorem,

d

dt
�

Sc+Sb

�ndS =
d

dt
�

V�t�
� �dV

= �
V�t�

� � ��

�t
�dV + �

Sc+Sb

� �vndS

= �
Sc+Sb

� ��

�t
n + ���n�dS

= �
Sb

� ��

�t
n +

��

�n
� ��dS + �

Sc

��

�t
ndS ,

�A3�

where V�t� is the control volume surrounded by Sb and Sc. �n

is the normal velocity on the surfaces, being zero on Sc and
equaling �n on Sb.
Subtracting �A2� from �A3�,
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d

dt
�

Sb

�ndS = �
Sb

� ��

�t
n +

��

�n
� ��dS . �A4�

Adding �A4� to �A1�,

f

� f
= −

d

dt
�

Sb

�ndS + �
Sb

��n � � − n
1

2
� � · ���dS .

�A5�

Using the Gauss theorem,

�
Sb+Sc

��n � � − n
1

2
� � · ���dS

= �
V�t�

	 �

�xj
� ��

�xj
� �� −

1

2
� ��� · ���
dV

= �
V�t�

� ���dV = 0. �A6�

It follows that the second integral in �A5� may be replaced
by the negative of the same integral over Sc to give the
desired expression of �31a�.

Similarly, the relation

� � 	 QdV =� �n 	 Q�dS �A7�

can be used to derive from �A1b� an alternative expression
for the moment as given in �31b�.

APPENDIX B: THE DERIVATION OF „44…

To calculate the three integrals in �44� along C1 and Cg

in the cross-flow plane T, we transform them to that along
the corresponding circles B1 and B0 in the mapped plane �,

I1�x,t� = �
C1

� cos � dl = �
B1

� cos �J dl , �B1�

J1�x,t� = �
C1

� sin � dl = �
B1

� sin �J dl , �B2�

J2�x,t� =
1

2
�

Cg

��Y
2 + �Z

2�dl =
1

2
�

B0

���
2 +

1

�2��
2 �J−1dl ,

�B3�

where J= �dT /d��. Using �21�–�23�, �26�, and �27�, one can
obtain J cos � and J sin � on B1 and J on B0,

��J cos ���B1
= f2��� =

2

e� �
n=1




n
sin�n��

en� , �B4�

��J sin ���B1
= − f1��� =

2

e� �
n=1




n
cos�n��

en� , �B5�

�J�B0
=

1
. �B6�
1 − cos �
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To calculate I1 and J1, we expand ���B1
in terms of the

Fourier series in �

���B1
= A0 + 2�

n=1



1

n
�An cos�n�� + Bn sin�n��� , �B7�

where

A0 = − F ln �1, An = �F + nCU� coth�n���e−n�,

�B8�
Bn = − nCU� coth�n��e−n�.

Substituting �B4� and �B7� into �B1�, we have

I1�x,t� = 2C�
0

2� 	�
n=1




n
sin�n��

en� 

	�A0 + 2�

n=1



1

n
�An cos�n�� + Bn sin�n����d�

= 4�C�
n=1




�Bne−n��

= − 4�C2U��
n=1




�n coth�n��e−2n�� . �B9�

In the above equation, we have used the following integral
formulas

�
0

2�

sin�n��cos�m��d� = 0,

�B10�

�
0

2�

sin�n��sin�m��d� = ��nm for n,m 
 1,

where �nm is the Kronecker delta, i.e., �nm=0 as n�m and
�nm=1 as n=m.

Similarly substituting �B5� and �B7� into �B2�, we have
n=1 m=1

Downloaded 18 Mar 2006 to 147.188.56.50. Redistribution subject to 
J1�x,t� = 2C�
0

2� 	�
n=1




n
cos�n��

en� 

	�A0 + 2�

n=1



1

n
�An cos�n�� + Bn sin�n����d�

= 4�C�
n=1




�Ane−n��

= 2�F�H − C� + 4�C2U��
n=1




�n coth�n��e−2n�� .

�B11�

To calculate J2, we need �� and �� on B0. Noticing the
normal derivative of � is zero on Cg in the cross-flow plane
T, we have

����B0
= 0. �B12�

We further expand �� on B0 in terms of the Fourier series in
� using �30�

����B0
= − F

sin �

1 − cos �
+ 2�

n=1




Cn sin�n��

+ 2�
n=1




Dn cos�n�� , �B13�

where

Cn = − CU�cn, Dn = − CU�cn, �B14�

and cn is given in �45�.
Substituting �B6�, �B12�, and �B13�–�B14� into �B3�,

one can obtain
J2�x,t� =
1

2C
�

0

2�

��1 − cos ����
2 �B0

d�

=
1

2C
�

0

2� 	F2 sin2 �

1 − cos �
− 4F sin ��

n=1




Cn sin�n�� + 4�1 − cos ��	�
n=1




Cn sin�n��
2

+ 4�1 − cos ��	�
n=1




Dn cos�n��
2
d�

=
1

2C
�

0

2� 	F2 sin2 �

1 − cos �
− 4F sin ��

n=1




Cn sin�n��

+ 2�1 − cos ����
n=1




�
m=1




CnCm
cos��n − m��� − cos��n + m�����
+ 2�1 − cos ����




�



DnDm
cos��n − m��� + cos��n + m�����
d�
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=
�

C	F2 + 2AFU�e−� + 2C2U2��2 + �2��
n=1




cn�cn − cn+1�
. �B15�
�B10� as well as the following integral formulas have been
used in the above equation

�
0

2�

cos � cos��n + m���d� = 0, �B16a�

�
0

2�

cos � cos��n − m���d� = �0 as�n − m� � 1,

� as n = m ± 1,
�

�B16b�

for n ,m
1.
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