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The fixed points of coprime action

By

PauL FLAVELL

Abstract. Let P be an odd z-group that acts as a group of automorphisms on the
soluble 7'-group G. We obtain generators for the fixed points of P on [G, P).

Let 7 be a set of primes and suppose that the s-group P acts as a group of automorphisms
on the finite z/-group G. It is convenient to work in the semidirect product GP. An
elementary but important consequence of the Schur-Zassenhaus Theorem is

G = C6(P)[G, P).

Moreover, if G is abelian then G = Cg(P) x [G,P] and in particular, Cjgp(P)=1. In
general however, P does have fixed points on [G, P]. This certainly happens if P has prime
order and [G, P] is not nilpotent. It is the purpose of this paper to obtain generators for

Cie.p/(P).
For each g € G define

lg.P] = (lg,a] | o € P).

Then [g, P] is P-invariant but not necessarily g-invariant. An elementary argument shows that
(P,P%y =[g,PIP and [g,P]=(P,P')NG.

Sometimes it is helpful to think of [g, P] in this way. We have
(G, P]=([g,P]|g€G).

We shall prove the following result.

Theorem A. Let 7 be a set of odd primes and suppose that the s-group P acts as a group of
automorphisms on the soluble finite '-group G. Then

Cio.p(P) = (Cyp(P)| g€ G).

The restriction that 7 consist only of odd primes is essential. Indeed, if |P| = 2 then (P, P9) is
dihedral so [g, P] is inverted by P. Thus Cy, p(P) =1 for all g € G.

Conjecture. Theorem A holds for all finite '-groups G.
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In what follows we assume Theorem A to be false and that G is a minimal
counterexample. Then P acts non trivially on G. Since G = Cg(P)[G,P] we have
[G, P] = [|G, P, P] so the minimality of G forces

G=[G,P].

Let
D = (Cyp(P)|g€G)

so that D is a proper normal subgroup of C¢(P). Note also that
G (g, P

for all g € G. Moreover G is nonabelian since otherwise Cig pj(P) = 1.

Lemma 1. Let V =1 be a proper P-invariant normal subgroup of G. Then the following
hold.

(a) C5(P)=DCy(P) and Cy(P)£D.

(b) There is a prime q such that F(G) is a q-group.
(¢) If V is nilpotent then V is elementary abelian.
(d) Z(G)ND =1 and Z(G) = Cg(P).

Proof. (a) Let G = G/V. Then as G = [G, P] we have G = [G, P] and the minimality of
G implies that

Cz(P) = (Cyp(P)|g € G).

If g € G then [g, P] maps onto [g, P] so Cj, p(P) maps onto Cj5 pj(P) by [2, Theorem 6.2.2(iv),
p. 224]. Thus C5(P) = D whence Cg(P) = DV and then Cg(P) = DCy/(P). This proves (a).
(b) Let g be a prime divisor of | F(G) |. Since a Sylow g-subgroup of F(G) is normal in G, it
follows from (a) that C;(P)/D is a nontrivial g-group. Applying this argument again, we see
that g is the only prime divisor of |F(G)]|.
(c) Suppose that @(V), the Frattini subgroup of V, is nontrivial. From (a) we have
Cg(P) = Dc(p(v) (P) Then

V =1[V,P|Cy(P)=[V,P[(DNV)Cqy)(P).

Recall that [V, P] LV so [V, P|(D N V) is asubgroup. As V = [V, P|(D N V)®(V) we deduce
that V = [V, P|(DNV). Thus Cy(P) = Cy p(P)(D NV). The minimality of G implies that
Civ,p(P) = D whence Cy(P) =D, a contradiction. We deduce that @(V) =1, so V is
elementary abelian.

(d) Note that Z(G) N D and [Z(G), P] are proper P-invariant normal subgroups of G.
Moreover, as Z(G) is abelian we have Cz ) p(P) = 1. Now apply (a). O

Lemma 2. G is not nilpotent.

Proof. Assume that G is nilpotent. Let G = G/G'. Now G is soluble so G = 1. As
G =[G, P} we have G = [G, P] and as G is abelian we have C5(P) =1 so Cg(P) = G'. Let
g € G. The subgroup G'[g,P] is P-invariant and normal in G. Since G = [g,P] and
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G' = ©(G) we have G'[g,P]+ G. Lemma 1(c) implies that G’[g,P] is abelian. Now
G =[G, P] so we deduce that G’ = Z(G). Using Lemma 1(d) it follows that

G = Z(G) = Cs(P).

Let g € G and a € P. Working in the semidirect product GP we have (P, P9) = [g, P|P. By
the Schur-Zassenhaus Theorem there exists / € [g, P] such that PY = P". Let ¢ = gh™! so that
g =ch. We have [P,c] = PN G =1 so c € Cg(P) = Z(G). The previous paragraph implies
that [g, P] is abelian so since it is P-invariant, we see that & commutes with A“. Since
¢ € Cg(P) = Z(G) it now follows that

9,9 = 1.

Since G’ = Z(G) = C(P) the maps x — [g,x] and x — [x, g] are endomorphisms of G and
[x*,y*] = [x,y] for all x,y € G. Choose x,y € G. Then

1 =[xy, (xy)"]

= [y, x4 [xy, v

= b, ]y, x4, y¥y, v

= [y, %] e, ]

= [y ey

= [y ey

= %,y al}.
It follows that [y, «?] € Z(G) and then that ¢ acts trivially on G. Since & acts trivially on G’
and since a® has order coprime to G it follows that a® acts trivially on G. Since « is an

arbitrary element of P and since P has odd order we deduce that P acts trivially on G, a
contradiction. Thus G is not nilpotent. O

We have shown that G + F(G) so Lemma 1 implies that F(G) is an elementary abelian
g-group. Let K be the inverse image in G of a minimal P-invariant normal subgroup of
G/F(G). Then K is P-invariant and normal in G. Since G/F(G) is soluble, K/F(G) is an
elementary abelian r-group for some prime r. Since F(G) is a g-group we have r = g. By [2,
Theorem 2.2.6(i), p. 224], K possesses a P-invariant Sylow r-subgroup R. Then K = RF(G)
and R is elementary abelian. The Frattini Argument yields

G = Ng(R)F(G).
Now K is not nilpotent since F(G) < K whence [F(G),R] +1. As G = Ng(R)F(G) it
follows that [F(G), R] is a P-invariant normal subgroup of G. Let V be a minimal P-invariant

normal subgroup of G contained in [F(G), R]. Since F(G) is abelian we have Cipg) g (R) =1
whence

Cyv(R) =1.

Lemma 3. G = RV.

Proof. We consider V as a PR-module over GF(q). Since [RV,P] < PRV we see that
VN [RV,P] is a PR-submodule. As PR has order coprime to ¢ it follows from Maschke’s
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Theorem that V contains a PR-submodule W such that
(%) V=Wx (VNI[RV,P)).

Now [W,P] = WN (VNI[RV,P]) =1so P acts trivially on W. Then so also does [R, P]. We
have

R = [R,P]CRr(P)
so as Cy(R) =1 we see that Cy (Cg(P)) = 1. Consequently
W = [W,Cgr(P)].

Recall that D £ C;(P) so Lemma 1(a) implies that C;(P)/D is a g-group. Since r = q it
follows that Cr(P) = D. Since P acts trivially on W we have W = Cs(P) whence
W = [W,Cr(P)| = D.

From (x) we have

Cy(P) =W x (VN Cry p(P)).

Lemma 1(a) implies that Cy(P)£D whence Cpry p/(P)£D. The minimality of G forces
G=RV. O

We are now in a position to complete the proof of Theorem A. We will regard V as a GP-
module over GF(q). Let G = G/V. Since G =[G, P] we have G = [G, P]. The previous
lemma implies that G is abelian whence C5(P) =1 and then Cg(P) = V. In particular,
Cr(P) = 1. Choose g € R*. Now [g, P] #+ 1 is a P-invariant subgroup of R, R is abelian and
G = RV. The minimal choice of R implies that R = [g, P].

Let v€ V and consider the P-invariant subgroup [gv, P]. We have [gv, P] = [gv, P] =
[9,P] = R = G whence

G = [gv,P]V.

Now G = [gv, P] and V is a minimal P-invariant normal subgroup of G. Then [gv, PNV =1
and it follows that [gv, P] is a P-invariant Sylow r-subgroup of G. Since R is also a P-invariant
Sylow r-subgroup of G, there exists u € Cg(P) such that [gv, P]* = R by [2, Theorem 6.2.2(ii),
p. 224].

Working in the semidirect product GP, we have

(P,P%y =[g,PIP=RP and (P,P%) = gv,P]P.

Then P9 = ([gv, P]P)"= RP and PY = RP. Now Cg(P) =V sou € Cy(P) and also vu € V.
Then

[vu, PY) = (P9, Py V = PROV =1
so vu € Cy(P?). We deduce that V = Cy(P)Cy(PY) whence
dim (V) = 2dim (Cy (P)).

Recall that Cy(R) =1, that Cg(P) =1 and that R is abelian. The following lemma
provides a contradiction and completes the proof of Theorem A.
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Lemma 4. Suppose that V is an X-module over a field of characteristic ¢ where X = RP, R
is an abelian normal subgroup of X, (|P|,|R|) =1, R = [R,P], Cy(R) = 0 and X is a q'-group.
If t is the smallest prime dividing |P| then

dim (V) = tdim (Cy(P)).

Proof. We may assume that the field is algebraically closed and that X acts irreducibly
and faithfully on V. Let Vi,...,V, be the homogeneous components of R, so that
V=Vi®&...®8V, and P acts transitively on {V7,...,V,}. If n = 1 then since R is abelian, it
is cyclic and acts as scaler transformations on V. But then [R, P] = 1, a contradiction. Thus
n>1.

For each i>1, choose a; € P such that Via; =V; and define f§;:V; — [V, P] by
npf; =na; —v. Clearly dimIm(B;) =dim(V;) and it is readily verified that
Im (8;) N (Im(B,) + --- +Im(B,_;)) = O for all i = 3. Consequently,

dim ([V,P]) = (n — 1)dim (V7).
Now dim (V) = dim ([V, P]) + dim (Cy(P)) and dim (V) = ndim (V;) whence
dim (V) = ndim (Cy/(P)).

Since P acts transitively on {Vi,...,V,} we have that n divides |P| and as n > 1 we have
n = t. Hence result [

Remark. Theorem A can be used to construct signalizer functors when studying variants
of the problem considered in [1].
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