Archiv der Mathematik

The fixed points of coprime action

By

PAUL FLAVELL

Abstract. Let *P* be an odd π -group that acts as a group of automorphisms on the soluble π' -group *G*. We obtain generators for the fixed points of *P* on [*G*, *P*].

Let π be a set of primes and suppose that the π -group P acts as a group of automorphisms on the finite π' -group G. It is convenient to work in the semidirect product GP. An elementary but important consequence of the Schur-Zassenhaus Theorem is

$$G = C_G(P)[G, P].$$

Moreover, if G is abelian then $G = C_G(P) \times [G, P]$ and in particular, $C_{[G,P]}(P) = 1$. In general however, P does have fixed points on [G, P]. This certainly happens if P has prime order and [G, P] is not nilpotent. It is the purpose of this paper to obtain generators for $C_{[G,P]}(P)$.

For each $g \in G$ define

$$[g,P] = \langle [g,\alpha] \mid \alpha \in P \rangle.$$

Then [g, P] is P-invariant but not necessarily g-invariant. An elementary argument shows that

 $\langle P, P^g \rangle = [g, P]P$ and $[g, P] = \langle P, P^g \rangle \cap G$.

Sometimes it is helpful to think of [g, P] in this way. We have

$$[G,P] = \langle [g,P] \mid g \in G \rangle.$$

We shall prove the following result.

Theorem A. Let π be a set of odd primes and suppose that the π -group P acts as a group of automorphisms on the soluble finite π' -group G. Then

$$C_{[G,P]}(P) = \langle C_{[g,P]}(P) \mid g \in G \rangle.$$

The restriction that π consist only of odd primes is essential. Indeed, if |P| = 2 then $\langle P, P^g \rangle$ is dihedral so [g, P] is inverted by P. Thus $C_{[q,P]}(P) = 1$ for all $g \in G$.

Conjecture. Theorem A holds for all finite π' -groups G.

Mathematics Subject Classification (1991): 20D45.

174

In what follows we assume Theorem A to be false and that G is a minimal counterexample. Then P acts non trivially on G. Since $G = C_G(P)[G,P]$ we have [G,P] = [[G,P],P] so the minimality of G forces

$$G = [G, P].$$

Let

 $D = \langle C_{[q,P]}(P) \mid q \in G \rangle$

so that D is a proper normal subgroup of $C_G(P)$. Note also that

 $G \neq [g, P]$

for all $g \in G$. Moreover G is nonabelian since otherwise $C_{[G,P]}(P) = 1$.

Lemma 1. Let $V \neq 1$ be a proper P-invariant normal subgroup of G. Then the following hold.

(a) $C_G(P) = DC_V(P)$ and $C_V(P) \leq D$.

(b) There is a prime q such that F(G) is a q-group.

(c) If V is nilpotent then V is elementary abelian.

(d) $Z(G) \cap D = 1$ and $Z(G) \leq C_G(P)$.

Proof. (a) Let $\overline{G} = G/V$. Then as G = [G, P] we have $\overline{G} = [\overline{G}, P]$ and the minimality of G implies that

$$C_{\overline{G}}(P) = \langle C_{[\overline{g},P]}(P) | \, \overline{g} \in \overline{G} \rangle.$$

If $g \in G$ then [g, P] maps onto $[\overline{g}, P]$ so $C_{[g,P]}(P)$ maps onto $C_{[\overline{g},P]}(P)$ by [2, Theorem 6.2.2(iv), p. 224]. Thus $C_{\overline{G}}(P) = \overline{D}$ whence $C_G(P) \leq DV$ and then $C_G(P) = DC_V(P)$. This proves (a).

(b) Let q be a prime divisor of |F(G)|. Since a Sylow q-subgroup of F(G) is normal in G, it follows from (a) that $C_G(P)/D$ is a nontrivial q-group. Applying this argument again, we see that q is the only prime divisor of |F(G)|.

(c) Suppose that $\Phi(V)$, the Frattini subgroup of V, is nontrivial. From (a) we have $C_G(P) = DC_{\Phi(V)}(P)$. Then

$$V = [V, P]C_V(P) = [V, P](D \cap V)C_{\Phi(V)}(P).$$

Recall that $[V, P] \leq V$ so $[V, P](D \cap V)$ is a subgroup. As $V = [V, P](D \cap V)\Phi(V)$ we deduce that $V = [V, P](D \cap V)$. Thus $C_V(P) = C_{[V,P]}(P)(D \cap V)$. The minimality of G implies that $C_{[V,P]}(P) \leq D$ whence $C_V(P) \leq D$, a contradiction. We deduce that $\Phi(V) = 1$, so V is elementary abelian.

(d) Note that $Z(G) \cap D$ and [Z(G), P] are proper *P*-invariant normal subgroups of *G*. Moreover, as Z(G) is abelian we have $C_{[Z(G),P]}(P) = 1$. Now apply (a). \Box

Lemma 2. G is not nilpotent.

Proof. Assume that G is nilpotent. Let $\overline{G} = G/G'$. Now G is soluble so $\overline{G} \neq 1$. As G = [G, P] we have $\overline{G} = [\overline{G}, P]$ and as \overline{G} is abelian we have $C_{\overline{G}}(P) = 1$ so $C_G(P) \leq G'$. Let $g \in G$. The subgroup G'[g, P] is P-invariant and normal in G. Since $G \neq [g, P]$ and

 $G' \leq \Phi(G)$ we have $G'[g, P] \neq G$. Lemma 1(c) implies that G'[g, P] is abelian. Now G = [G, P] so we deduce that $G' \leq Z(G)$. Using Lemma 1(d) it follows that

$$G' = Z(G) = C_G(P).$$

Let $g \in G$ and $a \in P$. Working in the semidirect product GP we have $\langle P, P^g \rangle = [g, P]P$. By the Schur-Zassenhaus Theorem there exists $h \in [g, P]$ such that $P^g = P^h$. Let $c = gh^{-1}$ so that g = ch. We have $[P, c] \leq P \cap G = 1$ so $c \in C_G(P) = Z(G)$. The previous paragraph implies that [g, P] is abelian so since it is *P*-invariant, we see that *h* commutes with h^a . Since $c \in C_G(P) = Z(G)$ it now follows that

$$[g,g^{\alpha}]=1.$$

Since $G' = Z(G) = C_G(P)$ the maps $x \mapsto [g, x]$ and $x \mapsto [x, g]$ are endomorphisms of *G* and $[x^{\alpha}, y^{\alpha}] = [x, y]$ for all $x, y \in G$. Choose $x, y \in G$. Then

$$\begin{split} 1 &= [xy, (xy)^{a}] \\ &= [xy, x^{a}][xy, y^{a}] \\ &= [x, x^{a}][y, x^{a}][x, y^{a}][y, y^{a}] \\ &= [y, x^{a}][x, y^{a}] \\ &= [x^{a}, y]^{-1}[x, y^{a}] \\ &= [x^{a}, y^{-1}][x^{a}, y^{a^{2}}] \\ &= [x^{a}, y^{-1}y^{a^{2}}]. \end{split}$$

It follows that $[y, \alpha^2] \in Z(G)$ and then that α^2 acts trivially on \overline{G} . Since α^2 acts trivially on G' and since α^2 has order coprime to G it follows that α^2 acts trivially on G. Since α is an arbitrary element of P and since P has odd order we deduce that P acts trivially on G, a contradiction. Thus G is not nilpotent. \Box

We have shown that $G \neq F(G)$ so Lemma 1 implies that F(G) is an elementary abelian q-group. Let K be the inverse image in G of a minimal P-invariant normal subgroup of G/F(G). Then K is P-invariant and normal in G. Since G/F(G) is soluble, K/F(G) is an elementary abelian r-group for some prime r. Since F(G) is a q-group we have $r \neq q$. By [2, Theorem 2.2.6(i), p. 224], K possesses a P-invariant Sylow r-subgroup R. Then K = RF(G) and R is elementary abelian. The Frattini Argument yields

$$G = N_G(R)F(G).$$

Now *K* is not nilpotent since F(G) < K whence $[F(G), R] \neq 1$. As $G = N_G(R)F(G)$ it follows that [F(G), R] is a *P*-invariant normal subgroup of *G*. Let *V* be a minimal *P*-invariant normal subgroup of *G* contained in [F(G), R]. Since F(G) is abelian we have $C_{[F(G), R]}(R) = 1$ whence

$$C_V(R) = 1.$$

Lemma 3. G = RV.

Proof. We consider V as a PR-module over GF(q). Since $[RV, P] \leq PRV$ we see that $V \cap [RV, P]$ is a PR-submodule. As PR has order coprime to q it follows from Maschke's

Theorem that V contains a PR-submodule W such that

(*)
$$V = W \times (V \cap [RV, P]).$$

Now $[W, P] \leq W \cap (V \cap [RV, P]) = 1$ so P acts trivially on W. Then so also does [R, P]. We have

$$R = [R, P]C_R(P)$$

so as $C_V(R) = 1$ we see that $C_W(C_R(P)) = 1$. Consequently

$$W = [W, C_R(P)].$$

Recall that $D \leq C_G(P)$ so Lemma 1(a) implies that $C_G(P)/D$ is a q-group. Since $r \neq q$ it follows that $C_R(P) \leq D$. Since P acts trivially on W we have $W \leq C_G(P)$ whence $W = [W, C_R(P)] \leq D$.

From (*) we have

$$C_V(P) = W \times (V \cap C_{[RV,P]}(P)).$$

Lemma 1(a) implies that $C_V(P) \leq D$ whence $C_{[RV,P]}(P) \leq D$. The minimality of G forces G = RV. \Box

We are now in a position to complete the proof of Theorem A. We will regard V as a GPmodule over GF(q). Let $\overline{G} = G/V$. Since G = [G, P] we have $\overline{G} = [\overline{G}, P]$. The previous lemma implies that \overline{G} is abelian whence $C_{\overline{G}}(P) = 1$ and then $C_G(P) \leq V$. In particular, $C_R(P) = 1$. Choose $g \in R^{\sharp}$. Now $[g, P] \neq 1$ is a P-invariant subgroup of R, R is abelian and G = RV. The minimal choice of R implies that R = [g, P].

Let $v \in V$ and consider the *P*-invariant subgroup [gv, P]. We have $\overline{[gv, P]} = [\overline{gv}, P] = [\overline{g}, P] = \overline{R} = \overline{G}$ whence

$$G = [gv, P]V.$$

Now $G \neq [gv, P]$ and V is a minimal P-invariant normal subgroup of G. Then $[gv, P] \cap V = 1$ and it follows that [gv, P] is a P-invariant Sylow r-subgroup of G. Since R is also a P-invariant Sylow r-subgroup of G, there exists $u \in C_G(P)$ such that $[gv, P]^u = R$ by [2, Theorem 6.2.2(ii), p. 224].

Working in the semidirect product GP, we have

$$\langle P, P^g \rangle = [g, P]P = RP$$
 and $\langle P, P^{gv} \rangle = [gv, P]P$.

Then $P^{gvu} \leq ([gv, P]P)^u = RP$ and $P^g \leq RP$. Now $C_G(P) \leq V$ so $u \in C_V(P)$ and also $vu \in V$. Then

$$[vu, P^g] \le \langle P^g, P^{gvu} \rangle \cap V \le PR \cap V = 1$$

so $vu \in C_V(P^g)$. We deduce that $V = C_V(P)C_V(P^g)$ whence

$$\dim(V) \leq 2\dim(C_V(P)).$$

Recall that $C_V(R) = 1$, that $C_R(P) = 1$ and that R is abelian. The following lemma provides a contradiction and completes the proof of Theorem A.

Lemma 4. Suppose that V is an X-module over a field of characteristic q where X = RP, R is an abelian normal subgroup of X, (|P|, |R|) = 1, R = [R, P], $C_V(R) = 0$ and X is a q'-group. If t is the smallest prime dividing |P| then

$$\dim(V) \ge t \dim(C_V(P)).$$

Proof. We may assume that the field is algebraically closed and that X acts irreducibly and faithfully on V. Let V_1, \ldots, V_n be the homogeneous components of R, so that $V = V_1 \oplus \ldots \oplus V_n$ and P acts transitively on $\{V_1, \ldots, V_n\}$. If n = 1 then since R is abelian, it is cyclic and acts as scaler transformations on V. But then [R, P] = 1, a contradiction. Thus n > 1.

For each i > 1, choose $\alpha_i \in P$ such that $V_1 \alpha_i = V_i$ and define $\beta_i : V_1 \longrightarrow [V, P]$ by $v_1 \beta_i = v_1 \alpha_i - v_1$. Clearly dim Im $(\beta_i) = \dim(V_1)$ and it is readily verified that Im $(\beta_i) \cap (\operatorname{Im}(\beta_2) + \cdots + \operatorname{Im}(\beta_{i-1})) = 0$ for all $i \ge 3$. Consequently,

 $\dim\left(\left[V,P\right]\right) \ge (n-1)\dim\left(V_1\right).$

Now dim $(V) = \dim ([V, P]) + \dim (C_V(P))$ and dim $(V) = n \dim (V_1)$ whence

 $\dim(V) \ge n \dim(C_V(P)).$

Since P acts transitively on $\{V_1, \ldots, V_n\}$ we have that n divides |P| and as n > 1 we have $n \ge t$. Hence result \Box

Remark. Theorem A can be used to construct signalizer functors when studying variants of the problem considered in [1].

References

P. A. FLAVELL, A characterisation of *p*-soluble groups. Bull. London Math. Soc. 29, 177–183 (1997).
D. GORENSTEIN, Finite groups, 2nd edn. New York 1980.

Eingegangen am 15. 4. 1999

Anschrift des Autors:

Paul Flavell The School of Mathematics and Statistics The University of Birmingham Birmingham B15 2TT United Kingdom