On the Fitting height of a soluble group that is generated by a conjugacy class

Paul Flavell

The School of Mathematics and Statistics
The University of Birmingham
Birmingham B15 2TT
United Kingdom
e-mail: p.j.flavell@bham.ac.uk

Let G be a finite group and suppose that P is a soluble $\{2, 3\}'$-subgroup of G. The reader will lose only a little by assuming that P is a subgroup of prime order $p > 3$. Define

$\Sigma_G(P) = \{ A \leq G \mid A \text{ is soluble and } A = \langle P, P^a \rangle \text{ for some } a \in A \}.$

This set is partially ordered by inclusion and we let $\Sigma_G^*(P)$ denote the set of maximal members of $\Sigma_G(P)$.

This article grew out of the following discovery:

Theorem A. Let G be a finite group, let P be a soluble $\{2, 3\}'$-subgroup of G and choose $A \in \Sigma_G^*(P)$. Then

$$F(A)V$$

is nilpotent for every nilpotent subgroup V of G that is normalized by A.

1
The article of Bender [1] indicates the usefulness of such results in the study of finite groups. An immediate consequence is the following:

Corollary B. Assume the hypotheses of Theorem A and that G is soluble. Then

$$\pi(F(A)) \subseteq \pi(F(G)).$$

Thus at least when G is soluble, the members of $\Sigma^*_G(P)$ reflect the global properties of G. This is a little surprising since, in some senses, the members of $\Sigma^*_G(P)$ can be small compared to G. Indeed if P is cyclic then every member of $\Sigma^*_G(P)$ has cyclic abelianization.

It is tempting to conjecture that the conclusion of Corollary B can be replaced by the stronger assertion that

$$F(A) \leq F(G).$$

This is false. However, by considering the notion of Fitting height, it is possible to prove a result that is just as good.

The following consequence of Theorem A is the starting point.

Theorem C. Let G be a finite soluble group and let C be a conjugacy class of $\{2, 3\}$'-subgroups of G. If G is generated by C then there exist two members of C that generate a subgroup with the same Fitting height as G.

Moreover, the two members of C may be chosen to be conjugate in the subgroup that they generate.

This leads us to define:

$$\Sigma_G^f(P)$$

to be the set consisting of those members of $\Sigma_G(P)$ with maximal Fitting height. Moreover, if $G \neq 1$ is soluble we let

$$\psi(G) = \bigcap\{ K \trianglelefteq G \mid f(G/K) < f(G) \},$$

where $f(G)$ denotes the Fitting height of G. Then $\psi(G)$ is the unique smallest normal subgroup of G such that $f(G/\psi(G)) < f(G)$ and it is also the case that $1 \neq \psi(G) \leq F(G)$. If $G = 1$ then we let $\psi(G) = 1$. Using Theorem C we obtain:
Theorem D. Let P be a $\{2,3\}'$-subgroup of the finite soluble group G and choose $A \in \Sigma^f_G(P)$. Then
\[\psi(A) \leq F(G). \]

Combining this with the Baer-Suzuki Theorem we obtain:

Corollary E. Let C be a conjugacy class of $\{2,3\}'$-subgroups of the finite group G. Then C generates a soluble subgroup if and only if every four members of C generate a soluble subgroup.

Assume now the hypotheses of Theorem D. The conclusion of that theorem says that we can write down a subnormal nilpotent subgroup of G just by examining the subgroups that are generated by two conjugates of P. If $G = \langle P^G \rangle$ then we can go a little further:

Theorem F. Let P be a $\{2,3\}'$-subgroup of the finite soluble group G and suppose that $G = \langle P^G \rangle$. Then
\[\psi(G) = \left\langle \psi(A) \mid A \in \Sigma^f_G(P) \right\rangle. \]

In other words, we can write down a characteristic nilpotent subgroup of G in terms of subgroups that are ‘localized’ at P.

1 Preliminaries

Henceforth the word ‘group’ shall mean ‘finite group’.

Lemma 1.1. Let P be a soluble $\{2,3\}'$-subgroup of the group G, let V be a soluble normal subgroup of G, set $\overline{G} = G/V$ and suppose that $\overline{A} \in \Sigma_{\overline{P}}(\overline{P})$. Then \overline{A} has an inverse image which is a member of $\Sigma_G(P)$.

Proof. Choose $a \in G$ with $\overline{a} \in \langle \overline{P}, \overline{P}^a \rangle = \overline{A}$ and $\langle P, Pa \rangle$ minimal. Then $\langle P, Pa \rangle \in \Sigma_G(P)$. □

For a group G we let $F(G)$ be the Fitting subgroup of G, that is, the largest normal nilpotent subgroup of G. For a prime q we let $O_q(G)$ be the largest normal q-subgroup of G.

If G is soluble we let $f(G)$ denote the Fitting height of G. This is the smallest integer n such that G possesses a series

$$1 = F_0 \trianglelefteq F_1 \trianglelefteq \cdots \trianglelefteq F_n = G$$

with F_{i+1}/F_i nilpotent for all i. If $G \neq 1$ then $f(G/F(G)) = f(G) - 1$.

The following two results are elementary.

Lemma 1.2. Let $H \leq G$ with G soluble and $f(H) = f(G)$. Then

$$\psi(H) \leq \psi(G) \leq F(G).$$

Lemma 1.3. Let G be soluble, let $N \trianglelefteq G$, set $\overline{G} = G/N$ and suppose that $\overline{G} \neq 1$. Then the following are equivalent:

(i) $\psi(\overline{G}) \neq 1$.

(ii) $f(\overline{G}) = f(G)$.

(iii) $\psi(\overline{G}) = \psi(G)$.

4
2 Modules for soluble groups

Lemma 2.1. Let \(G \) be a group, let \(V \neq 1 \) be an irreducible \(G \)-module over an algebraically closed field and let \(K \trianglelefteq G \) be such that \(G/K \) is cyclic. If \(V \) is homogeneous as a \(K \)-module then it is irreducible as a \(K \)-module.

Proof. This follows from [2, Theorems 11.20, p.278 and 11.46, p.303]. \(\square \)

Lemma 2.2. Let \(Q \) be an extraspecial \(q \)-group of exponent \(q \) and order \(q^{1+2t} \). Suppose that \(A \) is a noncyclic abelian normal subgroup of \(Q \) with order \(q^{1+k} \). Then the following hold:

(a) \(Z(Q) \leq A \) and \(A \) possesses exactly \(q^k \) hyperplanes \(A_1, \ldots, A_{q^k} \) that do not contain \(Z(Q) \). These hyperplanes are permuted transitively by \(Q \).

(b) Let \(V \) be a faithful homogeneous \(Q \)-module over a field of characteristic prime to \(q \). For each \(i \) set \(V_i = C_V(A_i) \) and set \(\Omega = \{V_1, \ldots, V_{q^k}\} \). Then \(\Omega \) is permuted transitively by \(Q \),

\[V = V_1 \oplus \cdots \oplus V_{q^k} \quad \text{and} \quad C_A(V_i) = A_i \text{ for all } i. \]

(c) Let the \(q \)-group \(P \) act as a group of automorphisms of \(Q \). Then \(Q \) possesses a \(P \)-invariant abelian normal subgroup with order \(q^{1+t} \).

Proof. Let \(\overline{Q} = Q/Z(Q) \). Since \(Q \) is extraspecial we have \(Z(Q) = Q' = \Phi(Q) \cong \mathbb{Z}_q \) so \(\overline{Q} \) may be regarded as a \(GF(q) \)-vectorspace and the map \((,): \overline{Q} \times \overline{Q} \longrightarrow Z(Q) \) defined by

\[(Z(Q)x, Z(Q)y) = [x, y] \]

is a nondegenerate symplectic form on \(\overline{Q} \).

(a). The first assertion is true since \(Z(Q) = Q' \cong \mathbb{Z}_q \) and \(1 \neq A \trianglelefteq Q \). The second assertion follows from a counting argument and the fact that \(A \) is elementary abelian. Let \(B = A_1 \). The group \(\overline{Q} \) acts by conjugation on the set of hyperplanes of \(A \). Since \(Z(Q) \cap B = 1 \) it follows that

\[N_{\overline{Q}}(B) = \overline{B}^\perp, \]
so B has $|Q : B^\perp|$ conjugates. Now $\text{codim } B^\perp = \dim B$ so $|Q : B^\perp| = |B|$. As $Z(Q) \cap B = 1$ we have $|B| = q^k$. Consequently, B has q^k conjugates. This proves (a).

(b). The first assertion follows from (a). We may suppose that Q acts irreducibly on V. In particular, $C_V(Z(Q)) = 0$. Let $U \leq V$ be an irreducible A-module. Since A is elementary abelian it follows that $C_A(U)$ is a hyperplane of A. As $C_V(Z(Q)) = 0$ we have $C_A(U) = A_i$ for some i. Then $\langle \Omega \rangle \neq 0$ and then the irreducibility of Q on V forces $V = \langle \Omega \rangle$.

If $i \neq j$ then $V_i \cap V_j \leq C_V(A) = 0$. Let $i < q^k$ be such that $V_1 + \cdots + V_i = V_i \oplus \cdots \oplus V_i$. Now A is abelian so it normalizes each V_j and as $V_{i+1} = C_V(A_{i+1})$ we have

$$V_{i+1} \cap (V_1 \oplus \cdots \oplus V_i) = (V_{i+1} \cap V_i) \oplus \cdots \oplus (V_{i+1} \cap V_i) = 0.$$ We deduce that $V = V_1 \oplus \cdots \oplus V_{q^k}$. The final assertion in (b) follows from $C_V(Z(Q)) = 0$.

(c). Since $Z(Q) \cong \mathbb{Z}_q$ we have $[Z(Q), P] = 1$ so P acts as a group of isometries on Q. Let U be a maximal P-invariant isotropic subspace of Q. Suppose that $U < U^\perp$. Then P acts on the nontrivial $GF(q)$-vectorspace U^\perp / U. Since P is a q-group, it fixes a nonzero vector $v + U \in U^\perp / U$. Then $U \oplus \langle v \rangle$ is a P-invariant isotropic subspace, contrary to the maximal choice of U. Thus $U = U^\perp$ and then $\dim U = t$. The inverse image of U in Q has the desired properties.

\[\square \]

Lemma 2.3. Let G be a soluble non-nilpotent primitive linear group over an algebraically closed field. Then there exists $Q \trianglelefteq G$ such that Q is an extraspecial q-group and G acts nontrivially and irreducibly on $Q/\Phi(Q)$. Moreover, if $q \neq 2$ then Q has exponent q.

Proof. Let $\overline{G} = G/F(G)$ and choose a prime r such that $O_r(\overline{G}) \neq 1$, let K be the inverse image of $O_r(\overline{G})$ in G and choose $R \in \text{Syl}_r(K)$. Then $K = R O_r(F(G))$ and since $R \not\subseteq O_r(G)$ we have $[O_r(F(G)), R] \neq 1$. Choose a prime $q \neq r$ such that $[O_q(G), R] \neq 1$ and set $S = [O_q(G), R]$. Note that $S = [S, R]$. The Frattini Argument implies that

$$G = N_G(R) O_r(F(G))$$

and it follows that $S \trianglelefteq G$.

6
Let Q be a subgroup of S that is minimal subject to $Q \trianglelefteq G$ and $[Q, R] \neq 1$. The hypotheses imply that every abelian normal subgroup of G is cyclic and contained in $Z(G)$. In particular, Q is nonabelian. Suppose that $T < Q$ with $T \trianglelefteq G$. The minimality of Q implies that R acts trivially on T and as $S = [S, R]$ it follows that S acts trivially on T, whence $T \leq Z(S)$. We deduce that

$$1 \neq Q' \leq \Phi(Q) \leq Z(Q) \leq Z(S) \leq Z(G).$$

(1)

Since S is nilpotent we have $[Q, S] \leq Q$ whence

$$[Q, S] \leq Z(S) \leq Z(G)$$

also.

We claim that $Q' = [Q, S] \cong \mathbb{Z}_q$. Let $x \in Q$ and $y \in S$. Since $[Q, S] \leq Z(S)$ we have $[x, y]^g = [x^g, y]$. But $x^g \in \Phi(Q) \leq Z(S)$ whence $[x, y]^g = 1$. Since $Z(S)$ is cyclic and since $Q' \neq 1$ the claim follows.

Now $[C_Q(R), S] \leq [Q, S] \leq C_Q(R)$ so $C_Q(R) \trianglelefteq S$. As $S = [S, R]$ it follows that $C_Q(R) \leq Z(S)$. Since $Q = C_Q(R)[Q, R]$ we have $Q = Z(Q)[Q, R]$ and then $Q' = [Q, R]'$. By the previous paragraph we have $Q' = [Q, S]'$ and in particular $[Q, R] \leq S$. Recall that $G = N_G(R)O_r(F(G))$ and that $Q \leq S = [O_q(G), R]$. It follows that $[Q, R] \leq G$ and as $1 \neq [Q, R] = [Q, R, R]'$, the minimal choice of Q yields

$$Q = [Q, R].$$

Let $Q^* = Q/Q'$ and consider the action of G on Q^*. Now $Q^* = [Q^*, R]$ and since Q^* is abelian we have $C_{Q^*}(R) = 1$ by [3, Theorem 5.2.3, p.177]. Suppose that T^* is a proper G-invariant subgroup of Q^*. Let T be the inverse image of T^* in G. The minimal choice of Q implies that $[T, R] = 1$ whence $T^* \leq C_{Q^*}(R) = 1$. This implies that Q^* is elementary abelian and then that the action of G on Q^* is irreducible. This action is nontrivial since $Q^* = [Q^*, R]$. From (1) we have $1 \neq Q' \leq \Phi(Q) \leq Z(Q) < Q$ whence $Q' = \Phi(Q) = Z(Q)$. We have seen that $Q' \cong \mathbb{Z}_q$ so Q is extraspecial. If $q \neq 2$ then by [3, Theorem 5.3.10, p.184] and the minimal choice of Q we have $Q = \Omega_1(Q)$ and then the fact that $Q' \leq Z(Q)$ implies that Q has exponent q. □
Theorem 2.4. Let G be a soluble group, suppose that P is a $\{2, 3\}'$-subgroup of G such that $G = \langle P^G \rangle$, suppose that $V \neq 0$ is a G-module that does not involve the trivial G-module and let $p = \min \pi(P)$. Then

$$\dim C_V(P) \leq \frac{2}{p} \dim V.$$

Proof. Assume false and consider a counterexample in which $|G| + |P|$ is minimized and then $\dim V$ is minimized. We may suppose that F, the underlying field for V, is algebraically closed and that G acts irreducibly on V. We have

$$\dim C_V(P) > \frac{2}{p} \dim V.$$

Step 1 Let $\Omega = \{V_1, \ldots, V_n\}$ be a P-invariant collection of subspaces of V, all of the same dimension, such that

$$V = V_1 \oplus \cdots \oplus V_n.$$

Let $m = |\text{Fix}_\Omega(P)|$. Then

$$n < pm.$$

Proof. Let $\Omega_1, \ldots, \Omega_k$ be the orbits of P on Ω. Then

$$\dim C_V(P) = \sum_{i=1}^{k} \dim C_{\langle \Omega_i \rangle}(P) \leq \sum_{i=1}^{k} \frac{1}{|\Omega_i|} \dim \langle \Omega_i \rangle.$$

We may suppose that $\Omega_1, \ldots, \Omega_m$ are the orbits of size 1, so the other orbits all have size at least p. Then

$$\dim C_V(P) \leq m \dim V_1 + \frac{1}{p} \sum_{i=m+1}^{k} \dim \langle \Omega_i \rangle \leq m \dim V_1 + \frac{1}{p} (\dim V - m \dim V_1).$$

Now $\dim C_V(P) > \frac{2}{p} \dim V$ whence

$$\frac{1}{p} \dim V \leq m \left(1 - \frac{1}{p} \right) \dim V_1.$$

Since $\dim V = n \dim V_1$, the result follows. □
Step 2 G is primitive on V. In particular, every normal subgroup of G is homogeneous on V and $Z(G)$ is the unique maximal abelian normal subgroup of G.

Proof. Assume false. Then there exists a collection $\Omega = \{V_1, \ldots, V_n\}$ of subspaces of V that are permuted transitively by G such that

$$V = V_1 \oplus \cdots \oplus V_n \text{ and } n \geq 2.$$

Choose such a collection with n minimal. Let

$$K = \ker (G \to S_\Omega) \text{ and } \overline{G} = G/K.$$

Then \overline{G} is a faithful primitive permutation group on Ω. Let \overline{L} be a minimal normal subgroup of \overline{G}. Since \overline{G} is soluble and primitive on Ω it follows that \overline{L} is an elementary abelian l-group for some prime l, that \overline{L} is regular on Ω and that

$$\overline{G} = \text{Stab}_{\overline{G}}(U) \overline{L} \text{ and } \text{Stab}_{\overline{G}}(U) \cap \overline{L} = 1 \text{ for all } U \in \Omega.$$

Step 1 implies that $\text{Fix}_\Omega(P) \neq \emptyset$. We claim that $C_{\overline{L}}(\overline{P})$ acts regularly on $\text{Fix}_\Omega(P)$. Let $U, W \in \text{Fix}_\Omega(P)$. There exists $g \in \overline{L}$ such that $Wg = U$. Then $\overline{P}, \overline{P}^g \leq \text{Stab}_{\overline{G}}(U)$ so

$$[g, \overline{P}] \leq \text{Stab}_{\overline{G}}(U) \cap \overline{L} = 1$$

and hence $g \in C_{\overline{L}}(\overline{P})$. Since \overline{L} is regular on Ω we have proved the claim.

Now $|\Omega| = |L|$ and $|\text{Fix}_\Omega(P)| = |C_{\overline{L}}(\overline{P})|$ so Step 1 implies that

$$|L : C_{\overline{L}}(\overline{P})| < p.$$

Using the fact that every nonidentity element of \overline{P} has order at least p, it follows that $\overline{L} = C_{\overline{L}}(\overline{P})$ and then that \overline{P} acts trivially on Ω. Since $\overline{G} = \langle \overline{P}^g \rangle$ and since \overline{G} acts transitively on Ω, we have obtained a contradiction. Thus every normal subgroup of G acts homogeneously on V.

The final two assertions follow from the first. □

Now G is irreducible on V so $C_V(G) = 0$ whence $P < G$. Since $G = \langle P^G \rangle$, it follows that G is not nilpotent. Step 2 and Lemma 2.3 imply that there exists a prime q and $Q \leq G$ such that Q is an extraspecial q-group and that G acts irreducibly and nontrivially on $Q/\Phi(Q)$. Also, $C_V(Q) = 0$ so $q \neq \text{char}(F)$.
Step 3 $P/C_P(Q)$ is a q-group.

Proof. Assume false. Then there exists a prime $p_0 \neq q$ and a cyclic p_0-group $P_0 \leq P$ such that $[Q, P_0] \neq 1$. Set $G_0 = P_0[Q, P_0]$. Since $p_0 \neq q$ we have $[Q, P_0] = [Q, P_0, P_0]$ whence $G_0 = \langle P_0^{G_0} \rangle$. Now Q acts homogeneously and faithfully on V and as $[Q, P_0] \leq Q$ it follows from Maschke’s Theorem that V does not involve the trivial $[Q, P_0]$-module. In particular, V does not involve the trivial G_0-module and then the minimality of $|G| + |P|$ forces $G = G_0, P = P_0, p = p_0$ and $Q = [Q, P]$. Then $G = PQ$ and $C_P(Q) \leq G$.

Since $C_V(P) \neq 0$ and since G is irreducible on V we have $C_P(Q) = 1$. Also, Lemma 2.1 implies that Q acts irreducibly on V.

By [3, Theorem 5.5.5, p.208] there exists an integer t such that

$$|Q| = q^{1+2t} \quad \text{and} \quad \dim V = q^t.$$

We have $|P| = p^n$ for some integer $n \geq 1$. Since P is a $\{2,3\}'$-group we have $p > 3$ so the first paragraph of the proof of [3, Lemma 11.2.5, p.368] implies that

$$p^n \text{ divides } q^t + 1.$$

The argument now splits into two cases depending on whether F has characteristic p or not.

Case $p = \text{char}(F)$. The Hall-Higman Theorem [3, Theorem 11.2.1, p.364] implies that the Jordan canonical form for a generator of P consists of $(q^t + 1)/p^n$ Jordan blocks. Recalling that $\dim V = q^t$ we have

$$\dim C_V(P) = \frac{\dim V + 1}{p^n} \leq \frac{2}{p} \dim V,$$

a contradiction.

Case $p \neq \text{char}(F)$. Let χ be the character of G afforded by V. Using the Coprime Hall-Higman Theorem [4, Satz V.17.13, p.574] together with the fact that $p^n | q^t + 1$ we have

$$\chi_P = \frac{q^t + 1}{p^n} \rho - \mu$$

10
where \(\rho \) is the regular character of \(P \) and \(\mu \) is a linear character of \(P \). Then

\[
\dim C_V(P) \leq \frac{\dim V + 1}{p^n} \leq \frac{2}{p} \dim V.
\]

This contradiction completes the proof of Step 3.

Recall that \(G \) acts nontrivially and irreducibly on \(Q/\Phi(Q) \) and that \(p = \min \pi(P) \). Since \(G = \langle P^G \rangle \) and \(P \) is a \(\{2, 3\}' \)-group it follows from the previous step that

\[q > 3 \quad \text{and that} \quad p \leq q. \]

Then Lemma 2.3 implies that \(Q \) has exponent \(q \).

Step 4 Let \(A \) be an abelian normal subgroup of \(Q \) that is normalized by \(P \). Then \(A \) is centralized by \(P \).

Proof. Let \(|A| = q^{1+k} \) and note that \(A \) is elementary abelian. Since \(Z(Q) \leq Z(G) \) we have \([Z(Q), P] = 1\). If \(k = 0 \) then \(A = Z(Q) \), hence we may suppose that \(k \geq 1 \). We assume the notation of Lemma 2.2. Now \(P \) normalizes \(A \) so it permutes \(\Omega \). Let \(m = |\text{Fix}_\Omega(P)| \). Step 1 together with \(p \leq q \) implies that

\[q^k < qm. \]

Hence \(m > 1 \). Lemma 2.2(b) implies that if \(V_i \in \text{Fix}_\Omega(P) \) then \(P \) normalizes \(A_i \). Note that \(|A_i| = q^k \) for all \(i \).

Since \(m > 1 \) we may suppose that \(V_1, V_2 \in \text{Fix}_\Omega(P) \). If \(k = 1 \) then \(|A_1| = |A_2| = q \) and then Step 3 implies that \(P \) centralizes \(A_1 \) and \(A_2 \). But \(A = \langle A_1, A_2 \rangle \) so \(P \) centralizes \(A \). Hence we may assume that \(k \geq 2 \). Now \(q^k < qm \) so \(q < m \).

Now \(|A : A_1 \cap A_2| = q^2 \) and \(Z(Q) \cap A_1 \cap A_2 = 1 \) so it follows that \(A \) contains exactly \(q \) hyperplanes which contain \(A_1 \cap A_2 \) but not \(Z(Q) \). Since \(q < m \) we may suppose that \(V_3 \in \text{Fix}_\Omega(P) \) and that \(A_1 \cap A_2 \nsubseteq A_3 \). Then \(A_1 \cap A_2 \) and \(A_1 \cap A_3 \) are distinct hyperplanes of \(A_1 \) whence \(A = Z(Q)(A_1 \cap A_2)(A_1 \cap A_3) \).

Recall that \(P \) normalizes \(A_1 \) and \(A_2 \) so \(P \) normalizes \(Z(Q)(A_1 \cap A_2) \). This subgroup has index \(q \) in \(A \) and it is normal in \(Q \) since \(Q' = Z(Q) \). By induction, \(P \) centralizes \(Z(Q)(A_1 \cap A_2) \). Similarly \(P \) centralizes \(Z(Q)(A_1 \cap A_3) \) and we deduce that \(P \) centralizes \(A \).
We are now in a position to obtain a final contradiction. Let \(\overline{Q} = Q/Z(Q) \) and regard \(\overline{Q} \) as a \(GF(q)G \)-module. Since \(G \) acts irreducibly and nontrivially on \(\overline{Q} \) we have that \(\overline{Q} \) does not involve the trivial \(G \)-module. Since \(Z(Q) \) is in the kernel of the action of \(G \) on \(Q \), we may invoke the minimality of \(G \) to obtain

\[
\dim C_{\overline{Q}}(P) \leq \frac{2}{p} \dim \overline{Q}.
\]

Choose \(t \) such that \(|Q| = q^{1+2t} \), so that \(\dim \overline{Q} = 2t \). Using Step 3, Lemma 2.2(c) and Step 4 we see that

\[
\dim C_{\overline{Q}}(P) \geq \frac{1}{2} \dim \overline{Q}.
\]

But \(p \geq 5 \) so this contradicts the previous inequality and completes the proof of this theorem. \(\square \)

Remark By modifying the conclusion, it ought to be possible to remove the hypothesis that \(P \) is a \(\{2,3\}' \)-group.

Corollary 2.5. Assume the hypotheses of Theorem 2.3. Then

\[
\dim C_{\overline{Q}}(P) < \frac{1}{2} \dim V.
\]

Remark It is in fact Corollary 2.5 that we shall use rather than the stronger Theorem 2.4. If it is desired to prove only Corollary 2.5 then a simpler proof is possible. In particular, the appeal to Hall-Higman theory in Step 3 may be replaced by a more elementary argument. Indeed, in Step 3 we have

\[
G = PQ
\]

where \(Q \) is an extraspecial \(q \)-group, \(P \) is a cyclic \(p \)-group that acts faithfully and irreducibly on \(Q/\Phi(Q) \) and \(V \) is a faithful \(G \)-module on which \(Q \) acts irreducibly.

Let \(E \) be the enveloping algebra of \(Q \) on \(V \). By Weddurburn's Theorem [3, Theorem 3.6.3, p.86] we have \(E = \text{End}(V) \), so then \(\dim E = (\dim V)^2 \). Choose \(x \in P \) with prime order \(p \).
The linear transformations $y : V \rightarrow V$ with $[V, x] \leq \ker y$ and $\text{Im } y \leq C_V(x)$ constitute a subspace of $C_E(x)$ with dimension $(\dim C_V(x))^2$. Considering the scalar transformations, it follows that

$$\dim C_E(x) \geq (\dim C_V(x))^2 + 1.$$

Either by considering the action of $\langle x \rangle Q/\Phi(Q)$ on E or by the argument of [3, Lemma 11.2.4, p.367] we have

$$\dim C_E(x) = \frac{\dim E - 1}{p} + 1.$$

But $\dim E = (\dim V)^2$ and $p \geq 5$ so these inequalities yield

$$\dim C_V(x) < \frac{1}{2} \dim V.$$

Also, another proof of Corollary 2.5 is possible by using a result of Robinson [5, Corollary 1.2].
The proofs of Theorems A–E

The proof of Theorem A. Assume false and consider a counterexample with $|G| + |V|$ minimal. Then $G = AV$ and there exist distinct primes r and q such that V is an r-group and $O_q(A)$ does not centralize V. Since $[V, O_q(A)]$ is normalized by A, the minimality of V forces $V = [V, O_q(A)]$. Note that $G \notin \Sigma_G(P)$.

Let $\overline{G} = G/\Phi(V)$. Then $\overline{G} = \overline{A} V$, V is elementary abelian, $V = [V, O_q(A)] \neq 1$ and then $C_T(O_q(A)) = 1$. Let $\overline{U} \leq \overline{V}$ be a minimal normal subgroup of \overline{G} and suppose that $\overline{U} < \overline{V}$. Let U be the inverse image of \overline{U} in G. The minimality of $|V|$ implies that $[O_q(A), U] = 1$ whence $\overline{U} \leq C_T(O_q(A)) = 1$, a contradiction. Thus V is a minimal normal subgroup of G. Since V is abelian, this implies that A is a maximal subgroup of G and that $A \cap V = 1$.

Clearly $A \in \Sigma_G(P)$. Suppose that $A \notin \Sigma^*_G(P)$. Then since A is a maximal subgroup of G we have $\overline{G} = \langle \overline{P}, \overline{P}^g \rangle$ for some $g \in G$. Then $G = \Phi(V)\langle P, P^g \rangle$ whence $V = \Phi(V)(V \cap \langle P, P^g \rangle)$ so $V \leq \langle P, P^g \rangle$ and then $G = \langle P, P^g \rangle \in \Sigma_G(P)$, a contradiction. We deduce that $A \in \Sigma^*_G(P)$ and then the minimality of $|G|$ forces $\Phi(V) = 1$. In particular, A is a complement to V.

Set $N = O_q(A)V \leq G$ and note that $O_q(A) \in \text{Syl}_q(N)$. Since $C_V(O_q(A)) = 1$ we have $V \cap N_G(O_q(A)) = 1$ and it follows that the complements to V in G are the normalizers of the Sylow q-subgroups of N. In particular, V acts transitively by conjugation on its set of complements.

Choose $a \in A$ such that $A = \langle P, P^a \rangle$. Let $v \in V$ and set $B = \langle P, P^{av} \rangle$. Since $G = AV$ we have $G = BV$. Now $G \notin \Sigma_G(P)$ and V is a minimal normal subgroup of G so it follows that B is a complement to V. By the previous paragraph there exists $u \in V$ such that $B^u = A$. Then

$$\langle P^u, P^{av} \rangle = A = \langle P, P^a \rangle.$$

Thus $u \in C_V(P)$ and $vu \in C_V(P^a)$. Since v was arbitrary, we deduce that $V = C_V(P)C_V(P^a)$.

14
Regarding V as a $GF(r)A$-module, this implies that
\[\dim C_V(P) \geq \frac{1}{2} \dim V. \]

But A acts irreducibly and nontrivially on V and $A = \langle P^A \rangle$, so Corollary 2.5 supplies a contradiction.

\[\square \]

The proof of Corollary B. This follows from Theorem A and the fact that $C_G(F(G)) \leq F(G)$.

\[\square \]

The proof of Theorem C. Choose $P \in \mathcal{C}$. It suffices to show that there exists $A \in \Sigma_G(P)$ with $f(A) = f(G)$. Assume this to be false and let G be a minimal counterexample. Choose $q \in \pi(F(G))$ and set
\[\overline{G} = G/O_q(G). \]

Using Lemma 1.1 we see that $f(\overline{G}) = f(G) - 1$. Then $F(G) = O_q(G)$ since otherwise G would embed into a direct product of two groups, both with Fitting height $f(G) - 1$.

The minimality of G implies that there exists $\overline{A} \in \Sigma_{\overline{G}}(\overline{P})$ such that $f(\overline{A}) = f(\overline{G})$. By Lemma 1.1 there exists $A \in \Sigma_G(P)$ such that A maps onto \overline{A}. Choose A^* such that
\[A \leq A^* \in \Sigma^*_G(P). \]

Now $f(G) - 1 = f(\overline{A}) \leq f(A) \leq f(A^*)$ so as G is a counterexample, we deduce that $f(\overline{A}) = f(A) = f(A^*)$. By Lemma 1.2 we have $\psi(A) \leq F(A^*)$ so Theorem A implies that $\psi(A)O_q(G)$ is nilpotent. Now $F(G) = O_q(G)$ and G is soluble so $C_G(O_q(G)) \leq O_q(G)$. We deduce that $\psi(A)$ is a q-group.

Since $f(\overline{A}) = f(A)$ it follows from Lemma 1.3 that $\psi(\overline{A})$ is a q-group.

Recall that $f(\overline{A}) = f(\overline{G})$ so Lemma 1.2 implies that $\psi(\overline{A}) \leq F(\overline{G})$. However, $\overline{G} = G/O_q(G)$ so $F(\overline{G})$ is a q'-group and then $\psi(\overline{A}) = 1$. This implies that $\overline{G} = 1$ and then that $G = O_q(G)$. Since $G = \langle P^{G} \rangle$, this forces $G = P$ and then P is a member of $\Sigma_G(P)$ with Fitting height $f(G)$. This contradiction completes the proof.

\[\square \]
The proof of Theorem D. Set $H = \langle P^G \rangle$ and note that $A \leq H$. Then $A \in \Sigma^f_H(P)$. If $H < G$ then by induction we have $\psi(A) \leq F(H)$. But $H \leq G$ so $F(H) \leq F(G)$. Hence we may suppose that $H = G$. Then by Theorem C we have $f(A) = f(G)$ and then Lemma 1.2 forces $\psi(A) \leq F(G)$. \qed

The proof of Corollary E. Choose $P \in \mathcal{C}$ and $A \in \Sigma^f_G(P)$. Let $g \in G$ and set $H = \langle A, A^g \rangle$. Then H is soluble since it is generated by four members of \mathcal{C}. By Theorem D we have $\langle \psi(A), \psi(A)^g \rangle \leq F(H)$. In particular, $\langle \psi(A), \psi(A)^g \rangle$ is nilpotent for all $g \in G$ so the Baer-Suzuki Theorem forces $\psi(A) \leq F(G)$. Now apply induction to $G/F(G)$. \qed
4 Generators for $\psi(G)$

Lemma 4.1. Let G be a soluble group. Suppose that $f(G) \geq 2$ and that $\psi(G)$ is a q-group. Set $\overline{G} = G/\psi(G)$ and let K be the inverse image of $O_q'(\psi(\overline{G}))$ in G. Then

$$\psi(G) = [\psi(G), K].$$

Proof. Let L be the inverse image of $\psi(\overline{G})$ in G and choose $Q \in \text{Syl}_q(L)$. Since $\psi(G)$ is a q-group and since $\psi(\overline{G})$ is nilpotent we have

$$L = KQ, \ K \trianglelefteq L \quad \text{and} \quad Q \trianglelefteq L. \quad (2)$$

Set

$$G^* = G/[\psi(G), K].$$

Now $K^*/\psi(G)^* \cong K/\psi(G)$, which is nilpotent. Since $\psi(G)^* \leq Z(K^*)$ we deduce that K^* is nilpotent. Then using (2) we see that L^* is nilpotent. We have

$$G^*/L^* \cong G/L \cong \overline{G}/\psi(\overline{G}).$$

Since $f(G) \geq 2$ we have $f(\overline{G}/\psi(\overline{G})) = f(G) - 2$. Now L^* is nilpotent so $f(G^*/L^*) \geq f(G^*) - 1$ whence $f(G) - 2 \geq f(G^*) - 1$ so $f(G) > f(G^*)$. But then $\psi(G) \leq [\psi(G), K]$. \qed

17
The proof of Theorem F. Assume false and let G be a minimal counterexample. Set

$$T = \left\langle \psi(A) \mid A \in \Sigma_f^G(P) \right\rangle.$$

Using Theorem D we have

$$T \leq \psi(G) \text{ but } T \neq \psi(G).$$

Step 1 Suppose that $V \neq 1$ is a normal subgroup of G such that $f(G/V) = f(G)$. Then

$$\psi(G) = T(\psi(G) \cap V) \text{ and } \psi(G) \cap V \nleq T.$$

Proof. Set $\overline{G} = G/V$. Since $f(\overline{G}) = f(G)$ we have $\psi(\overline{G}) = \overline{\psi(G)}$ by Lemma 1.3. The minimality of G implies that $\psi(\overline{G}) = \langle \psi(\overline{A}) \mid \overline{A} \in \Sigma^f_G(P) \rangle$. Let $\overline{A} \in \Sigma^f_G(P)$. Theorem C implies that $f(\overline{A}) = f(\overline{G})$ and Lemma 1.1 implies that \overline{A} has an inverse image $A \in \Sigma_G(P)$. Since $f(G) = f(\overline{G})$ it follows that $A \in \Sigma^f_G(P)$ and then Lemma 1.3 yields $\psi(\overline{A}) = \overline{\psi(A)}$. Consequently $\psi(G) \leq \langle \psi(A) \mid A \in \Sigma^f_G(P) \rangle V = TV$. Since $T \leq \psi(G)$ we have $\psi(G) = T(\psi(G) \cap V)$ and since $T \neq \psi(G)$ we have $\psi(G) \cap V \nleq T$.

Step 2 $\psi(G)$ is an elementary abelian q-group for some prime q.

Proof. Suppose that q and r are distinct prime divisors of $|\psi(G)|$. Then $\psi(G) \nleq O_q(\psi(G))$ so $f(G/O_q(\psi(G))) = f(G)$ and then Step 1 implies that $|\psi(G) : T|$ is a power of q. Similarly, $|\psi(G) : T|$ is a power of r whence $\psi(G) = T$, a contradiction. Thus $\psi(G)$ is a q-group for some prime q. Suppose that $\Phi(\psi(G)) \neq 1$. Since $\Phi(\psi(G)) \neq \psi(G)$ we may apply Step 1 to conclude that $\psi(G) = T\Phi(\psi(G))$. But then $\psi(G) = T$, a contradiction. We deduce that $\Phi(\psi(G)) = 1$ and then that $\psi(G)$ is elementary abelian.

18
Let \(\overline{G} = G/\psi(G) \) and \(\overline{K} = O_{\psi}(\psi(\overline{G})) \).

Let \(K \) be the inverse image of \(\overline{K} \) in \(G \). The minimality of \(G \) implies that

\[\overline{K} = \langle O_{\psi}(\psi(A)) \mid A \in \Sigma_{G}^{f}(P) \rangle. \]

By Lemma 1.1, each member of \(\Sigma_{G}^{f}(P) \) has an inverse image in \(\Sigma_{G}(P) \) so we let

\[\Sigma = \{ A \in \Sigma_{G}(P) \mid \overline{A} \in \Sigma_{G}(P) \} \]

and for each \(A \in \Sigma \) we let

\[\Pi(A) \]

denote the inverse image of \(O_{\psi}(\psi(\overline{A})) \) in \(A \). Then

\[K = \psi(G)\langle \Pi(A) \mid A \in \Sigma \rangle. \]

Step 3 \(\psi(G) = \langle [\psi(G), \Pi(A)] \mid A \in \Sigma \rangle. \)

Proof. We will apply Lemma 4.1. If \(f(G) < 2 \) then \(G \) is nilpotent so as \(G = \langle P^{G} \rangle \) we have \(G = P \) and then \(G \in \Sigma_{G}(P) \), a contradiction. Thus \(f(G) \geq 2 \) and Lemma 4.1 implies that

\[\psi(G) = [\psi(G), K]. \]

Now \(K = \psi(G)\langle \Pi(A) \mid A \in \Sigma \rangle \) and \(\psi(G) \) is abelian. Then

\[\psi(G) = \langle [\psi(G), \Pi(A)] \mid A \in \Sigma \rangle \]

because \(K \) centralizes the quotient of the left hand side by the right hand side. \(\square \)
In what follows, we fix $A \in \Sigma$ such that

$$[\psi(G), \Pi(A)] \not\leq T.$$

Such an A exists by Step 3 and the fact that $\psi(G) \not\leq T$. Set

$$H = A[\psi(G), \Pi(A)].$$

Choose B such that

$$A \leq B \in \Sigma^*_H(P).$$

Step 4 $[\psi(G), \Pi(A)] = [\psi(G), \Pi(A), \Pi(A)]$.

Proof. This is because $\Pi(A)/\psi(G) \cap \Pi(A)$ is a q'-group and $\psi(G)$ is abelian. \qed

Step 5 $f(\overline{A}) = f(G) - 1$, $B \in \Sigma^*_G(P)$ and $f(H) = f(G)$.

Proof. Since $\overline{A} \in \Sigma^*_G(P)$ and $\overline{G} = G/\psi(G) = \langle \overline{P} \overline{G} \rangle$, Theorem C implies that $f(\overline{A}) = f(G) - 1$. We claim that $f(B) = f(G)$. Assume false. Then

$$f(G) - 1 \geq f(B) \geq f(A) \geq f(\overline{A}) = f(G) - 1$$

whence

$$f(B) = f(A) = f(\overline{A}).$$

Lemma 1.3 implies that $\Pi(A) \leq \psi(A)(A \cap \psi(G))$ and then using Lemma 1.2 we have $\Pi(A) \leq F(B)$. Now $B \in \Sigma^*_H(P)$ so Theorem A implies that $\Pi(A)F(H)$ is nilpotent. But $[\psi(G), \Pi(A)] \leq F(H)$ so it follows from Step 4 that $[\psi(G), \Pi(A)] = 1$, contrary to the choice of A. We deduce that $f(B) = f(G)$ so $B \in \Sigma^*_G(P)$ and then also $f(H) = f(G)$. \qed
Step 6 $[\psi(G), \Pi(A)] \leq \psi(H)$.

Proof. Set $H^* = H/\psi(H)$. By Step 5 we have $f(H) = f(G)$ so $\psi(H) \leq \psi(G)$. In particular, \overline{A} is a homomorphic image of A^*. Then

$$f(G) - 1 = f(H^*) \geq f(A^*) \geq f(\overline{A}) = f(G) - 1$$

so $f(A^*) = f(\overline{A}) = f(H^*)$. Lemma 1.3 yields $\Pi(A^*) \leq \psi(A^*)(A \cap \psi(G))^*$ and then Lemma 1.2 forces $\Pi(A^*) \leq F(H^*)$. From Step 4 we have

$$[\psi(G), \Pi(A)]^* = [[\psi(G), \Pi(A)]^*, \Pi(A)^*].$$

Now $[\psi(G), \Pi(A)]^* \leq F(H^*)$ so as $\Pi(A)^* \leq F(H^*)$ and $F(H^*)$ is nilpotent it follows that $[\psi(G), \Pi(A)]^* = 1$. Hence $[\psi(G), \Pi(A)] \leq \psi(H)$.

We are now in a position to obtain a final contradiction. Since $A = \langle P^A \rangle$ and $H = A[\psi(G), \Pi(A)]$, it follows from Step 4 that $H = \langle P^H \rangle$. Also, $\Sigma^f_H(P) \subseteq \Sigma^f_G(P)$ since $f(H) = f(G)$. Now $[\psi(G), \Pi(A)] \not\subseteq T$ so Step 6 and the minimality of G force $G = H$. Since $f(B) = f(G)$ we have $\psi(B) \leq \psi(G)$. Moreover, $A \leq B$, $\psi(G)$ is elementary abelian and $G = A[\psi(G), \Pi(A)]$ so $1 \neq \psi(B) \leq G$. By Step 5 and the definition of T we have $\psi(B) \leq T$ so applying Step 1 with $V = \psi(B)$ it follows that $\psi(G) = \psi(B)$. This is a contradiction since $B \in \Sigma^f_G(P)$.

