Google: An Application of Linear Algebra (The mathematics of a great success)

Peter Butkovic

Hyun's Map of the Web

• Google ($^{\sim}$ googol = 10^{100})

- Google ($^{\sim}$ googol = 10^{100})
- Founders of Google: Larry Page and Sergey Brin

- Google ($^{\sim}$ googol = 10^{100})
- Founders of Google: Larry Page and Sergey Brin
- 1995: Research students at Stanford

- Google ($^{\sim}$ googol = 10^{100})
- Founders of Google: Larry Page and Sergey Brin
- 1995: Research students at Stanford
- 1996: Started a student project on search engines

- Google (~googol = 10¹⁰⁰)
- Founders of Google: Larry Page and Sergey Brin
- 1995: Research students at Stanford
- 1996: Started a student project on search engines
- 1998: Google incorporates as a company (initial investment: \$1.1million) and files patent for PageRank

• 2000: Selling advertisements began

- 2000: Selling advertisements began
- 2001: Patent granted

- 2000: Selling advertisements began
- 2001: Patent granted
- 2004: Total capital reached \$23billion

- 2000: Selling advertisements began
- 2001: Patent granted
- 2004: Total capital reached \$23billion
- 2007: Google web search engine covers 53% of the market (Yahoo 20%)

- 2000: Selling advertisements began
- 2001: Patent granted
- 2004: Total capital reached \$23billion
- 2007: Google web search engine covers 53% of the market (Yahoo 20%)
- 2008: Google uses 450,000 servers in 25 locations around the world to index > 8 billion websites

• Each webpage is assigned a measure of importance ... PageRank

- Each webpage is assigned a measure of importance ...
 PageRank
- A hyperlink is a "recommendation": A webpage is important if other webpages point to it (via hyperlinks)

- Each webpage is assigned a measure of importance ...
 PageRank
- A hyperlink is a "recommendation": A webpage is important if other webpages point to it (via hyperlinks)
- The PageRank of the recommender matters (the higher the better)

- Each webpage is assigned a measure of importance ...
 PageRank
- A hyperlink is a "recommendation": A webpage is important if other webpages point to it (via hyperlinks)
- The PageRank of the recommender matters (the higher the better)
- The generosity of the recommender matters (the higher the worse)

•
$$r(P_1) = \frac{1}{3}r(P_3)$$

•
$$r(P_1) = \frac{1}{3}r(P_3)$$

•
$$r(P_2) = \frac{1}{2}r(P_1) + \frac{1}{3}r(P_3)$$

•
$$r(P_1) = \frac{1}{3}r(P_3)$$

•
$$r(P_2) = \frac{1}{2}r(P_1) + \frac{1}{3}r(P_3)$$

•
$$r(P_3) = \frac{1}{2}r(P_1)$$

•
$$r(P_1) = \frac{1}{3}r(P_3)$$

•
$$r(P_2) = \frac{1}{2}r(P_1) + \frac{1}{3}r(P_3)$$

•
$$r(P_3) = \frac{1}{2}r(P_1)$$

•
$$r(P_4) = \frac{1}{2}r(P_5) + r(P_6)$$

•
$$r(P_1) = \frac{1}{3}r(P_3)$$

•
$$r(P_2) = \frac{1}{2}r(P_1) + \frac{1}{3}r(P_3)$$

•
$$r(P_3) = \frac{1}{2}r(P_1)$$

•
$$r(P_4) = \frac{1}{2}r(P_5) + r(P_6)$$

•
$$r(P_5) = \frac{1}{3}r(P_3) + \frac{1}{2}r(P_4)$$

•
$$r(P_1) = \frac{1}{3}r(P_3)$$

•
$$r(P_2) = \frac{1}{2}r(P_1) + \frac{1}{3}r(P_3)$$

•
$$r(P_3) = \frac{1}{2}r(P_1)$$

•
$$r(P_4) = \frac{1}{2}r(P_5) + r(P_6)$$

•
$$r(P_5) = \frac{1}{3}r(P_3) + \frac{1}{2}r(P_4)$$

•
$$r(P_6) = \frac{1}{2}r(P_4) + \frac{1}{2}r(P_5)$$

•
$$r_0 = \left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$$

- $r_0 = \left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$
- \bullet $r_0 \longrightarrow r_1$

- $r_0 = \left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$
- \bullet $r_0 \longrightarrow r_1$
- \bullet $r_1 \longrightarrow r_2$

- $r_0 = \left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$
- \bullet $r_0 \longrightarrow r_1$
- \bullet $r_1 \longrightarrow r_2$
- ...

- $r_0 = \left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$
- \bullet $r_0 \longrightarrow r_1$
- \bullet $r_1 \longrightarrow r_2$
- ...
- \bullet $r_k \longrightarrow r_{k+1}$

- $r_0 = \left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$
- \bullet $r_0 \longrightarrow r_1$
- \bullet $r_1 \longrightarrow r_2$
- ...
- \bullet $r_k \longrightarrow r_{k+1}$
- ...

• $r_0 = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})$

•
$$r_0 = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})$$

•
$$r_1(P_1) = \frac{1}{3}r_0(P_3) = \frac{1}{18}$$

•
$$r_0 = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})$$

•
$$r_1(P_1) = \frac{1}{3}r_0(P_3) = \frac{1}{18}$$

•
$$r_1(P_2) = \frac{1}{2}r_0(P_1) + \frac{1}{3}r_0(P_3) = \frac{5}{36}$$

•
$$r_0 = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})$$

•
$$r_1(P_1) = \frac{1}{3}r_0(P_3) = \frac{1}{18}$$

•
$$r_1(P_2) = \frac{1}{2}r_0(P_1) + \frac{1}{3}r_0(P_3) = \frac{5}{36}$$

• $r_1(P_3) = \frac{1}{2}r_0(P_1) = \frac{1}{12}$

•
$$r_0 = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})$$

•
$$r_1(P_1) = \frac{1}{3}r_0(P_3) = \frac{1}{18}$$

•
$$r_1(P_2) = \frac{1}{2}r_0(P_1) + \frac{1}{3}r_0(P_3) = \frac{5}{36}$$

•
$$r_1(P_3) = \frac{1}{2}r_0(P_1) = \frac{1}{12}$$

•
$$r_1(P_4) = \frac{1}{2}r_0(P_5) + r_0(P_6) = \frac{1}{4}$$

•
$$r_0 = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})$$

•
$$r_1(P_1) = \frac{1}{3}r_0(P_3) = \frac{1}{18}$$

•
$$r_1(P_2) = \frac{1}{2}r_0(P_1) + \frac{1}{3}r_0(P_3) = \frac{5}{36}$$

•
$$r_1(P_3) = \frac{1}{2}r_0(P_1) = \frac{1}{12}$$

•
$$r_1(P_4) = \frac{1}{2}r_0(P_5) + r_0(P_6) = \frac{1}{4}$$

•
$$r_1(P_5) = \frac{1}{3}r_0(P_3) + \frac{1}{2}r_0(P_4) = \frac{5}{36}$$

•
$$r_0 = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})$$

•
$$r_1(P_1) = \frac{1}{3}r_0(P_3) = \frac{1}{18}$$

•
$$r_1(P_2) = \frac{1}{2}r_0(P_1) + \frac{1}{3}r_0(P_3) = \frac{5}{36}$$

•
$$r_1(P_3) = \frac{1}{2}r_0(P_1) = \frac{1}{12}$$

•
$$r_1(P_4) = \frac{1}{2}r_0(P_5) + r_0(P_6) = \frac{1}{4}$$

•
$$r_1(P_5) = \frac{1}{3}r_0(P_3) + \frac{1}{2}r_0(P_4) = \frac{5}{36}$$

•
$$r_1(P_6) = \frac{1}{2}r_0(P_4) + \frac{1}{2}r_0(P_5) = \frac{1}{6}$$

	r_0	r_1
$\overline{P_1}$	1/6	1/18
P_2	1/6	5/36
P_3	1/6	1/12
P_4	1/6	1/4
P_5	1/6	5/36
P_6	1/6	1/6

	r ₀	r_1	rank
$\overline{P_1}$	1/6	1/18	6
P_2	1/6	5/36	3 - 4
P_3	1/6	1/12	5
P_4	1/6	1/4	1
P_5	1/6	5/36	3 - 4
P_6	1/6	1/6	2

	<i>r</i> ₀	r_1	rank	<i>r</i> ₂
P_1	1/6	1/18	6	1/36
P_2	1/6	5/36	3 - 4	1/18
P_3	1/6	1/12	5	1/36
P_4	1/6	1/4	1	17/72
P_5	1/6	5/36	3 - 4	11/72
P_6	1/6	1/6	2	14/72

	r_0	r_1	rank	<i>r</i> ₂	rank
P_1	1/6	1/18	6	1/36	5 – 6
P_2	1/6	5/36	3 - 4	1/18	4
P_3	1/6	1/12	5	1/36	5 - 6
P_4	1/6	1/4	1	17/72	1
P_5	1/6	5/36	3 - 4	11/72	3
P_6	1/6	1/6	2	1/36 1/18 1/36 17/72 11/72 14/72	2

	r_0	r_1	rank	<i>r</i> ₂	rank
P_1	1/6	1/18	6	1/36	5 – 6
P_2	1/6	5/36	3 - 4	1/18	4
P_3	1/6	1/12	5	1/36	5 - 6
P_4	1/6	1/4	1	17/72	1
P_5	1/6	5/36	3 - 4	11/72	3
P_6	1/6	1/6	2	1/36 1/18 1/36 17/72 11/72 14/72	2

Hyperlink matrix H:

	P_1	P_2	P_3	P_4	P_5	P_6
P_1	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0
P_2	0	0	Ō	0	0	0
P_3	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0
P_4	Ö	Ö	0	0	$\frac{1}{2}$	$\frac{1}{2}$
P_5	0	0	0	$\frac{1}{2}$	Ō	$\frac{1}{2}$ $\frac{1}{2}$
P_6	0	0	0	$\bar{1}$	0	Ō

Stochastic matrix: Every row is ≥ 0 and sums to 1.

H could be a stochastic matrix if it was not for the rows corresponding to the dangling nodes

$$\underbrace{\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)}_{r_0} \cdot \underbrace{\left(\begin{array}{cccc} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ \frac{1}{3} & \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0\\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}\\ 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2}\\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right)}_{r_1}$$

$$= \underbrace{\left(\frac{1}{18}, \frac{5}{36}, \frac{1}{12}, \frac{1}{4}, \frac{5}{36}, \frac{1}{6}\right)}_{r_1}$$

$$\underbrace{\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)}_{r_0} \cdot \underbrace{\left(\begin{array}{cccc} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right)}_{r_1}$$

$$= \underbrace{\left(\frac{1}{18}, \frac{5}{36}, \frac{1}{12}, \frac{1}{4}, \frac{5}{36}, \frac{1}{6}\right)}_{r_1}$$

$$r_1 = r_0 \cdot H$$

$$\underbrace{\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)}_{r_0} \cdot \underbrace{\left(\begin{array}{cccc} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ \frac{1}{3} & \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0\\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}\\ 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2}\\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right)}_{r_1}$$

$$= \underbrace{\left(\frac{1}{18}, \frac{5}{36}, \frac{1}{12}, \frac{1}{4}, \frac{5}{36}, \frac{1}{6}\right)}_{r_1}$$

$$r_1 = r_0 \cdot H$$

Similarly:

$$r_2 = r_1 \cdot H = (r_0 \cdot H) \cdot H = r_0 \cdot H^2$$

$$r_3 = r_2 \cdot H = ... = r_0 \cdot H^3$$

$$r_3 = r_2 \cdot H = ... = r_0 \cdot H^3$$

• In general:

•

$$r_k = r_{k-1} \cdot H = \dots = r_0 \cdot H^k$$

$$r_3 = r_2 \cdot H = ... = r_0 \cdot H^3$$

• In general:

•

$$r_k = r_{k-1} \cdot H = \dots = r_0 \cdot H^k$$

• ... "Power Method"

• Will this power method converge? If not what conditions must be satisfied?

- Will this power method converge? If not what conditions must be satisfied?
- If it converges, will it do so to a vector meaningful for page ranking?

- Will this power method converge? If not what conditions must be satisfied?
- If it converges, will it do so to a vector meaningful for page ranking?
- Does the convergence depend on the starting vector?

- Will this power method converge? If not what conditions must be satisfied?
- If it converges, will it do so to a vector meaningful for page ranking?
- Does the convergence depend on the starting vector?
- Does the limit depend on the starting vector?

- Will this power method converge? If not what conditions must be satisfied?
- If it converges, will it do so to a vector meaningful for page ranking?
- Does the convergence depend on the starting vector?
- Does the limit depend on the starting vector?
- If it converges, how long does it take?

Page and Brin first had to deal with a number of problems: Rank sink pages

	1		
	<i>r</i> ₀	r_1	 r_{13}
$\overline{P_1}$	1/6	1/18	 0
P_2	1/6	5/36	 0
P_3	1/6	1/12	 0
P_4	1/6	1/4	 2/3
P_5	1/6	5/36	 1/3
P_6	1/6	1/6	 1/5

Page and Brin first had to deal with a number of problems: Rank sink pages

	1		
	<i>r</i> ₀	r_1	 r_{13}
P_1	1/6	1/18	 0
P_2	1/6	5/36	 0
P_3	1/6	1/12	 0
P_4	1/6	1/4	 2/3
P_5	1/6	5/36	 1/3
P_6	1/6	1/6	 1/5

• Nodes 4,5,6 are a *link* farm.

$$\bullet \ H = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

$$\bullet \ H = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

•
$$(1,0)\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (0,1)$$

$$\bullet \ H = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

•
$$(1,0)\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (0,1)$$

$$\bullet \ (0,1) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) = (1,0)$$

$$\bullet \ H = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

•
$$(1,0)\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (0,1)$$

•
$$(0,1)\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (1,0)$$

 \bullet Flip-flop \rightarrow no convergence

Elements of the Markov chains theory:

• If H is a stochastic matrix and x_0 a stochastic vector then the sequence

$$\{x_0, x_1 = x_0H, x_2 = x_1H, x_3 = x_2H, ...\}$$

is called a Markov chain.

Elements of the Markov chains theory:

 If H is a stochastic matrix and x₀ a stochastic vector then the sequence

$$\{x_0, x_1 = x_0 H, x_2 = x_1 H, x_3 = x_2 H, ...\}$$

is called a Markov chain.

• *H* is called the *transition probability matrix*.

Theorem (Markov, 1906)

If H is a **positive** transition probability matrix of a Markov chain then this chain converges to a unique positive vector (called stationary vector) independently of the starting vector. • Brin and Page: Adjustments to the basic model using the concept of a *random surfer*.

- Brin and Page: Adjustments to the basic model using the concept of a random surfer.
- **Adjustment 1** (*stochasticity*): Zero rows in *H* (corresponding to the dangling nodes) are replaced by

$$\left(\frac{1}{n},\frac{1}{n},...,\frac{1}{n}\right)$$

The new matrix is S.

- Brin and Page: Adjustments to the basic model using the concept of a random surfer.
- Adjustment 1 (stochasticity): Zero rows in H (corresponding to the dangling nodes) are replaced by

$$\left(\frac{1}{n},\frac{1}{n},...,\frac{1}{n}\right)$$

The new matrix is S.

• Our example:

$$H o S = \left(egin{array}{cccccc} 0 & rac{1}{2} & rac{1}{2} & 0 & 0 & 0 \\ rac{1}{16} & rac{1}{16} & rac{1}{16} & rac{1}{16} & rac{1}{16} & rac{1}{16} \\ rac{1}{3} & rac{1}{3} & 0 & 0 & rac{1}{3} & 0 \\ 0 & 0 & 0 & 0 & rac{1}{2} & rac{1}{2} \\ 0 & 0 & 0 & rac{1}{2} & 0 & rac{1}{2} \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}
ight)$$

- Brin and Page: Adjustments to the basic model using the concept of a *random surfer*.
- Adjustment 1 (stochasticity): Zero rows in H (corresponding to the dangling nodes) are replaced by

$$\left(\frac{1}{n},\frac{1}{n},...,\frac{1}{n}\right)$$

The new matrix is S.

• Our example:

$$H \to S = \left(\begin{array}{ccccc} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0\\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6}\\ \frac{1}{3} & \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0\\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}\\ 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2}\\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right)$$

• *S* is stochastic! (But not yet positive)

• Adjustment 2 (primitivity): The random surfer (RS) from time to time moves to a new webpage without using a hyperlink (he "teleports") and then he resumes hyperlink surfing again.

• Adjustment 2 (primitivity): The random surfer (RS) from time to time moves to a new webpage without using a hyperlink (he "teleports") and then he resumes hyperlink surfing again.

$$S \rightarrow G = \alpha S + (1 - \alpha) E$$

•

• Adjustment 2 (primitivity): The random surfer (RS) from time to time moves to a new webpage without using a hyperlink (he "teleports") and then he resumes hyperlink surfing again.

$$S \rightarrow G = \alpha S + (1 - \alpha) E$$

where

•

$$E = \left(\begin{array}{ccc} \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \ddots & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{array}\right)$$

• Adjustment 2 (primitivity): The random surfer (RS) from time to time moves to a new webpage without using a hyperlink (he "teleports") and then he resumes hyperlink surfing again.

$$S \rightarrow G = \alpha S + (1 - \alpha) E$$

where

$$E = \begin{pmatrix} \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \ddots & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}$$

• and $\alpha \in (0,1)$ controls the proportion of the time RS follows the *hyperlinks* as opposed to *teleportation*

• $G = \alpha S + (1 - \alpha) E$ is called the *Google matrix*: it is stochastic and positive!

- $G = \alpha S + (1 \alpha) E$ is called the *Google matrix*: it is stochastic and positive!
- Hence any Markov chain with *G* is guaranteed to converge to a unique positive vector, independently of the starting vector.

- $G = \alpha S + (1 \alpha) E$ is called the *Google matrix*: it is stochastic and positive!
- Hence any Markov chain with *G* is guaranteed to converge to a unique positive vector, independently of the starting vector.
- Actually used $\alpha \approx .85$

• Our example for $\alpha = 0.9$:

• Our example for $\alpha = 0.9$:

Google's PageRank vector is the stationary vector of G which is

 $\left(.03721,.05396,.04151,.3751,.206,.2802\right)$

Google's PageRank vector is the stationary vector of G which is

$$(.03721, .05396, .04151, .3751, .206, .2802)$$

• Random surfer spends 3.721% of their time on P_1 , etc...

Google's PageRank vector is the stationary vector of G which is

$$(.03721, .05396, .04151, .3751, .206, .2802)$$

- Random surfer spends 3.721% of their time on P_1 , etc...
- The importance ranking therefore is: P_4 , P_6 , P_5 , P_2 , P_3 , P_1 .

• Will this iterative process converge? YES

- Will this iterative process converge? YES
- If it converges, will it do so to a vector meaningful for page ranking? YES

- Will this iterative process converge? YES
- If it converges, will it do so to a vector meaningful for page ranking? YES
- Does the convergence depend on the starting vector? NO

- Will this iterative process converge? YES
- If it converges, will it do so to a vector meaningful for page ranking? YES
- Does the convergence depend on the starting vector? NO
- Does the limit depend on the starting vector? NO

- Will this iterative process converge? YES
- If it converges, will it do so to a vector meaningful for page ranking? YES
- Does the convergence depend on the starting vector? NO
- Does the limit depend on the starting vector? NO
- If it converges, how long does it take?

$$\bullet \ r_k \cdot G = r_{k+1}$$

- $r_k \cdot G = r_{k+1}$
- If $r_k \to r$ then $r \cdot G = r$

- $r_k \cdot G = r_{k+1}$
- If $r_k \to r$ then $r \cdot G = r$
- In general: $x \cdot M = \lambda x$

- $r_k \cdot G = r_{k+1}$
- If $r_k \to r$ then $r \cdot G = r$
- In general: $x \cdot M = \lambda x$
- ullet λ ... eigenvalue of M

- $\bullet \ r_k \cdot G = r_{k+1}$
- If $r_k \to r$ then $r \cdot G = r$
- In general: $x \cdot M = \lambda x$
- λ ... eigenvalue of M
- x ... eigenvector of M (if $x \neq 0$) corresponding to the eigenvalue λ

- $\bullet \ r_k \cdot G = r_{k+1}$
- If $r_k \to r$ then $r \cdot G = r$
- In general: $x \cdot M = \lambda x$
- \bullet λ ... eigenvalue of M
- x ... eigenvector of M (if $x \neq 0$) corresponding to the eigenvalue λ
- The stationary point of any Markov chain with transition matrix G is an eigenvector of G corresponding to the eigenvalue 1

Perron-Frobenius theory of Linear Algebra solves the eigenvector-eigenvalue problem for non-negative matrices.

Theorem (Perron, 1912)

If G is a positive, stochastic matrix then $\lambda=1$ is an eigenvalue of G and G has a unique positive eigenvector (up to multiples).

• If G is a Google matrix - the power method needs roughly 50 iterations

- If G is a Google matrix the power method needs roughly 50 iterations
- In each iteration $\approx n$ arithmetic operations

- If G is a Google matrix the power method needs roughly 50 iterations
- In each iteration $\approx n$ arithmetic operations
- Total: $\approx 50n$ operations (recall n > 8 billion)

- If G is a Google matrix the power method needs roughly 50 iterations
- In each iteration $\approx n$ arithmetic operations
- Total: $\approx 50n$ operations (recall n > 8 billion)
- CONCLUSION: The power method with Google matrix is very fast!

THANK YOU

Next session in this room at 12.00: "Careers, degrees and mathematics"