Google: An Application of Linear Algebra (The mathematics of a great success)

Peter Butkovic

Hyun's Map of the Web

- Google (${ }^{\sim}$ googol $=10^{100}$)
- Google (${ }^{\text {googol }}=10^{100}$)
- Founders of Google: Larry Page and Sergey Brin
- Google (${ }^{\sim}$ googol $=10^{100}$)
- Founders of Google: Larry Page and Sergey Brin
- 1995: Research students at Stanford
- Google (${ }^{\sim}$ googol $=10^{100}$)
- Founders of Google: Larry Page and Sergey Brin
- 1995: Research students at Stanford
- 1996: Started a student project on search engines
- Google (googol $=10^{100}$)
- Founders of Google: Larry Page and Sergey Brin
- 1995: Research students at Stanford
- 1996: Started a student project on search engines
- 1998: Google incorporates as a company (initial investment: \$1.1million) and files patent for PageRank
- 2000: Selling advertisements began
- 2000: Selling advertisements began
- 2001: Patent granted
- 2000: Selling advertisements began
- 2001: Patent granted
- 2004: Total capital reached \$23billion
- 2000: Selling advertisements began
- 2001: Patent granted
- 2004: Total capital reached \$23billion
- 2007: Google web search engine covers 53% of the market (Yahoo 20\%)
- 2000: Selling advertisements began
- 2001: Patent granted
- 2004: Total capital reached \$23billion
- 2007: Google web search engine covers 53% of the market (Yahoo 20\%)
- 2008: Google uses 450,000 servers in 25 locations around the world to index >8 billion websites

KEY IDEAS

- Each webpage is assigned a measure of importance ... PageRank

KEY IDEAS

- Each webpage is assigned a measure of importance ... PageRank
- A hyperlink is a "recommendation": A webpage is important if other webpages point to it (via hyperlinks)

KEY IDEAS

- Each webpage is assigned a measure of importance ... PageRank
- A hyperlink is a "recommendation": A webpage is important if other webpages point to it (via hyperlinks)
- The PageRank of the recommender matters (the higher the better)

KEY IDEAS

- Each webpage is assigned a measure of importance ... PageRank
- A hyperlink is a "recommendation": A webpage is important if other webpages point to it (via hyperlinks)
- The PageRank of the recommender matters (the higher the better)
- The generosity of the recommender matters (the higher the worse)

A.N.Langville and C.D.Meyer: Google's PageRank and Beyond (PUP 2006)

$$
\text { - } r\left(P_{1}\right)=\frac{1}{3} r\left(P_{3}\right)
$$

Node 2 - dangling
A.N.Langville and C.D.Meyer: Google's PageRank and Beyond (PUP 2006)

- $r\left(P_{1}\right)=\frac{1}{3} r\left(P_{3}\right)$
- $r\left(P_{2}\right)=$ $\frac{1}{2} r\left(P_{1}\right)+\frac{1}{3} r\left(P_{3}\right)$

Node 2 - dangling
A.N.Langville and C.D.Meyer: Google's PageRank and Beyond (PUP 2006)

- $r\left(P_{1}\right)=\frac{1}{3} r\left(P_{3}\right)$
- $r\left(P_{2}\right)=$ $\frac{1}{2} r\left(P_{1}\right)+\frac{1}{3} r\left(P_{3}\right)$
- $r\left(P_{3}\right)=\frac{1}{2} r\left(P_{1}\right)$

Node 2 - dangling
A.N.Langville and C.D.Meyer: Google's PageRank and Beyond (PUP 2006)

- $r\left(P_{1}\right)=\frac{1}{3} r\left(P_{3}\right)$
- $r\left(P_{2}\right)=$ $\frac{1}{2} r\left(P_{1}\right)+\frac{1}{3} r\left(P_{3}\right)$
- $r\left(P_{3}\right)=\frac{1}{2} r\left(P_{1}\right)$
- $r\left(P_{4}\right)=\frac{1}{2} r\left(P_{5}\right)+r\left(P_{6}\right)$

Node 2 - dangling
A.N.Langville and C.D.Meyer: Google's PageRank and Beyond (PUP 2006)

- $r\left(P_{1}\right)=\frac{1}{3} r\left(P_{3}\right)$
- $r\left(P_{2}\right)=$ $\frac{1}{2} r\left(P_{1}\right)+\frac{1}{3} r\left(P_{3}\right)$
- $r\left(P_{3}\right)=\frac{1}{2} r\left(P_{1}\right)$
- $r\left(P_{4}\right)=\frac{1}{2} r\left(P_{5}\right)+r\left(P_{6}\right)$
- $r\left(P_{5}\right)=$ $\frac{1}{3} r\left(P_{3}\right)+\frac{1}{2} r\left(P_{4}\right)$

Node 2 - dangling
A.N.Langville and C.D.Meyer: Google's PageRank and Beyond (PUP 2006)

- $r\left(P_{1}\right)=\frac{1}{3} r\left(P_{3}\right)$
- $r\left(P_{2}\right)=$ $\frac{1}{2} r\left(P_{1}\right)+\frac{1}{3} r\left(P_{3}\right)$
- $r\left(P_{3}\right)=\frac{1}{2} r\left(P_{1}\right)$
- $r\left(P_{4}\right)=\frac{1}{2} r\left(P_{5}\right)+r\left(P_{6}\right)$
- $r\left(P_{5}\right)=$ $\frac{1}{3} r\left(P_{3}\right)+\frac{1}{2} r\left(P_{4}\right)$
- $r\left(P_{6}\right)=$ $\frac{1}{2} r\left(P_{4}\right)+\frac{1}{2} r\left(P_{5}\right)$

Node 2 - dangling

- $r_{0}=\left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$
- $r_{0}=\left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$
- $r_{0} \longrightarrow r_{1}$
- $r_{0}=\left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$
- $r_{0} \longrightarrow r_{1}$
- $r_{1} \longrightarrow r_{2}$
- $r_{0}=\left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$
- $r_{0} \longrightarrow r_{1}$
- $r_{1} \longrightarrow r_{2}$
- ...
- $r_{0}=\left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$
- $r_{0} \longrightarrow r_{1}$
- $r_{1} \longrightarrow r_{2}$
- ...
- $r_{k} \longrightarrow r_{k+1}$
- $r_{0}=\left(\frac{1}{n}, \frac{1}{n}, \ldots\right)$
- $r_{0} \longrightarrow r_{1}$
- $r_{1} \longrightarrow r_{2}$
- ...
- $r_{k} \longrightarrow r_{k+1}$
- ...

- $r_{0}=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$

$$
\begin{aligned}
& \text { - } r_{0}=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right) \\
& \text { - } r_{1}\left(P_{1}\right)=\frac{1}{3} r_{0}\left(P_{3}\right)=\frac{1}{18}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } r_{0}=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right) \\
& \text { - } r_{1}\left(P_{1}\right)=\frac{1}{3} r_{0}\left(P_{3}\right)=\frac{1}{18}
\end{aligned}
$$

- $r_{1}\left(P_{2}\right)=$ $\frac{1}{2} r_{0}\left(P_{1}\right)+\frac{1}{3} r_{0}\left(P_{3}\right)=\frac{5}{36}$

- $r_{0}=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$
- $r_{1}\left(P_{1}\right)=\frac{1}{3} r_{0}\left(P_{3}\right)=\frac{1}{18}$
- $r_{1}\left(P_{2}\right)=$ $\frac{1}{2} r_{0}\left(P_{1}\right)+\frac{1}{3} r_{0}\left(P_{3}\right)=\frac{5}{36}$
- $r_{1}\left(P_{3}\right)=\frac{1}{2} r_{0}\left(P_{1}\right)=\frac{1}{12}$

$$
\begin{aligned}
& \text { - } r_{0}=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right) \\
& \text { - } r_{1}\left(P_{1}\right)=\frac{1}{3} r_{0}\left(P_{3}\right)=\frac{1}{18} \\
& \text { - } r_{1}\left(P_{2}\right)= \\
& \frac{1}{2} r_{0}\left(P_{1}\right)+\frac{1}{3} r_{0}\left(P_{3}\right)=\frac{5}{36} \\
& \text { - } r_{1}\left(P_{3}\right)=\frac{1}{2} r_{0}\left(P_{1}\right)=\frac{1}{12} \\
& \text { - } r_{1}\left(P_{4}\right)= \\
& \frac{1}{2} r_{0}\left(P_{5}\right)+r_{0}\left(P_{6}\right)=\frac{1}{4}
\end{aligned}
$$

- $r_{0}=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$
- $r_{1}\left(P_{1}\right)=\frac{1}{3} r_{0}\left(P_{3}\right)=\frac{1}{18}$
- $r_{1}\left(P_{2}\right)=$ $\frac{1}{2} r_{0}\left(P_{1}\right)+\frac{1}{3} r_{0}\left(P_{3}\right)=\frac{5}{36}$
- $r_{1}\left(P_{3}\right)=\frac{1}{2} r_{0}\left(P_{1}\right)=\frac{1}{12}$
- $r_{1}\left(P_{4}\right)=$ $\frac{1}{2} r_{0}\left(P_{5}\right)+r_{0}\left(P_{6}\right)=\frac{1}{4}$
- $r_{1}\left(P_{5}\right)=$ $\frac{1}{3} r_{0}\left(P_{3}\right)+\frac{1}{2} r_{0}\left(P_{4}\right)=\frac{5}{36}$

- $r_{0}=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$
- $r_{1}\left(P_{1}\right)=\frac{1}{3} r_{0}\left(P_{3}\right)=\frac{1}{18}$
- $r_{1}\left(P_{2}\right)=$ $\frac{1}{2} r_{0}\left(P_{1}\right)+\frac{1}{3} r_{0}\left(P_{3}\right)=\frac{5}{36}$
- $r_{1}\left(P_{3}\right)=\frac{1}{2} r_{0}\left(P_{1}\right)=\frac{1}{12}$
- $r_{1}\left(P_{4}\right)=$ $\frac{1}{2} r_{0}\left(P_{5}\right)+r_{0}\left(P_{6}\right)=\frac{1}{4}$
- $r_{1}\left(P_{5}\right)=$ $\frac{1}{3} r_{0}\left(P_{3}\right)+\frac{1}{2} r_{0}\left(P_{4}\right)=\frac{5}{36}$
- $r_{1}\left(P_{6}\right)=$ $\frac{1}{2} r_{0}\left(P_{4}\right)+\frac{1}{2} r_{0}\left(P_{5}\right)=\frac{1}{6}$

	r_{0}	r_{1}
P_{1}	$1 / 6$	$1 / 18$
P_{2}	$1 / 6$	$5 / 36$
P_{3}	$1 / 6$	$1 / 12$
P_{4}	$1 / 6$	$1 / 4$
P_{5}	$1 / 6$	$5 / 36$
P_{6}	$1 / 6$	$1 / 6$

	r_{0}	r_{1}	rank
P_{1}	$1 / 6$	$1 / 18$	6
P_{2}	$1 / 6$	$5 / 36$	$3-4$
P_{3}	$1 / 6$	$1 / 12$	5
P_{4}	$1 / 6$	$1 / 4$	1
P_{5}	$1 / 6$	$5 / 36$	$3-4$
P_{6}	$1 / 6$	$1 / 6$	2

	r_{0}	r_{1}	rank	r_{2}
P_{1}	$1 / 6$	$1 / 18$	6	$1 / 36$
P_{2}	$1 / 6$	$5 / 36$	$3-4$	$1 / 18$
P_{3}	$1 / 6$	$1 / 12$	5	$1 / 36$
P_{4}	$1 / 6$	$1 / 4$	1	$17 / 72$
P_{5}	$1 / 6$	$5 / 36$	$3-4$	$11 / 72$
P_{6}	$1 / 6$	$1 / 6$	2	$14 / 72$

	r_{0}	r_{1}	rank	r_{2}	rank
P_{1}	$1 / 6$	$1 / 18$	6	$1 / 36$	$5-6$
P_{2}	$1 / 6$	$5 / 36$	$3-4$	$1 / 18$	4
P_{3}	$1 / 6$	$1 / 12$	5	$1 / 36$	$5-6$
P_{4}	$1 / 6$	$1 / 4$	1	$17 / 72$	1
P_{5}	$1 / 6$	$5 / 36$	$3-4$	$11 / 72$	3
P_{6}	$1 / 6$	$1 / 6$	2	$14 / 72$	2

	r_{0}	r_{1}	rank	r_{2}	rank
P_{1}	$1 / 6$	$1 / 18$	6	$1 / 36$	$5-6$
P_{2}	$1 / 6$	$5 / 36$	$3-4$	$1 / 18$	4
P_{3}	$1 / 6$	$1 / 12$	5	$1 / 36$	$5-6$
P_{4}	$1 / 6$	$1 / 4$	1	$17 / 72$	1
P_{5}	$1 / 6$	$5 / 36$	$3-4$	$11 / 72$	3
P_{6}	$1 / 6$	$1 / 6$	2	$14 / 72$	2

Hyperlink matrix H :

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
P_{1}	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0
P_{2}	0	0	0	0	0	0
P_{3}	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0
P_{4}	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$
P_{5}	0	0	0	$\frac{1}{2}$	0	$\frac{1}{2}$
P_{6}	0	0	0	1	0	0

Stochastic matrix: Every row is ≥ 0 and sums to 1 .
H could be a stochastic matrix if it was not for the rows corresponding to the dangling nodes

$$
\begin{aligned}
-\underbrace{\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)}_{r_{0}} & \cdot\left(\begin{array}{cccccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{1}{3} & 0 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \\
& =\underbrace{\left(\frac{1}{18}, \frac{5}{36}, \frac{1}{12}, \frac{1}{4}, \frac{5}{36}, \frac{1}{6}\right)}_{n_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \underbrace{\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)}_{0} \cdot\left(\begin{array}{llllll}
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \\
& =\underbrace{\left(\frac{1}{18}, \frac{5}{36}, \frac{1}{12}, \frac{1}{4}, \frac{5}{36}, \frac{1}{6}\right)}_{1}
\end{aligned}
$$

$$
r_{1}=r_{0} \cdot H
$$

$$
\begin{aligned}
& \underbrace{\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)}_{r_{0}} \cdot
\end{aligned} \cdot\left(\begin{array}{cccccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

$$
r_{1}=r_{0} \cdot H
$$

- Similarly:

$$
r_{2}=r_{1} \cdot H=\left(r_{0} \cdot H\right) \cdot H=r_{0} \cdot H^{2}
$$

-

$$
r_{3}=r_{2} \cdot H=\ldots=r_{0} \cdot H^{3}
$$

-

$$
r_{3}=r_{2} \cdot H=\ldots=r_{0} \cdot H^{3}
$$

- In general:

$$
r_{k}=r_{k-1} \cdot H=\ldots=r_{0} \cdot H^{k}
$$

-

$$
r_{3}=r_{2} \cdot H=\ldots=r_{0} \cdot H^{3}
$$

- In general:

$$
r_{k}=r_{k-1} \cdot H=\ldots=r_{0} \cdot H^{k}
$$

- ... "Power Method"

QUESTIONS

- Will this power method converge? If not what conditions must be satisfied?

QUESTIONS

- Will this power method converge? If not what conditions must be satisfied?
- If it converges, will it do so to a vector meaningful for page ranking?

QUESTIONS

- Will this power method converge? If not what conditions must be satisfied?
- If it converges, will it do so to a vector meaningful for page ranking?
- Does the convergence depend on the starting vector?

QUESTIONS

- Will this power method converge? If not what conditions must be satisfied?
- If it converges, will it do so to a vector meaningful for page ranking?
- Does the convergence depend on the starting vector?
- Does the limit depend on the starting vector?

QUESTIONS

- Will this power method converge? If not what conditions must be satisfied?
- If it converges, will it do so to a vector meaningful for page ranking?
- Does the convergence depend on the starting vector?
- Does the limit depend on the starting vector?
- If it converges, how long does it take?

Page and Brin first had to deal with a number of problems:
Rank sink pages

	r_{0}	r_{1}	\ldots	r_{13}
P_{1}	$1 / 6$	$1 / 18$	\ldots	0
P_{2}	$1 / 6$	$5 / 36$	\ldots	0
P_{3}	$1 / 6$	$1 / 12$	\ldots	0
P_{4}	$1 / 6$	$1 / 4$	\ldots	$2 / 3$
P_{5}	$1 / 6$	$5 / 36$	\ldots	$1 / 3$
P_{6}	$1 / 6$	$1 / 6$	\ldots	$1 / 5$

Page and Brin first had to deal with a number of problems:
Rank sink pages

	r_{0}	r_{1}	\ldots	r_{13}
P_{1}	$1 / 6$	$1 / 18$	\ldots	0
P_{2}	$1 / 6$	$5 / 36$	\ldots	0
P_{3}	$1 / 6$	$1 / 12$	\ldots	0
P_{4}	$1 / 6$	$1 / 4$	\ldots	$2 / 3$
P_{5}	$1 / 6$	$5 / 36$	\ldots	$1 / 3$
P_{6}	$1 / 6$	$1 / 6$	\ldots	$1 / 5$

- Nodes 4,5,6 are a link farm.
- Another problem: Cycles

- Another problem: Cycles

- $H=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- Another problem: Cycles

- $H=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- $(1,0)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=(0,1)$
- Another problem: Cycles

- $H=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- $(1,0)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=(0,1)$
- $(0,1)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=(1,0)$
- Another problem: Cycles

- $H=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- $(1,0)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=(0,1)$
- $(0,1)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=(1,0)$
- Flip-flop \rightarrow no convergence

Elements of the Markov chains theory:

- If H is a stochastic matrix and x_{0} a stochastic vector then the sequence

$$
\left\{x_{0}, x_{1}=x_{0} H, x_{2}=x_{1} H, x_{3}=x_{2} H, \ldots\right\}
$$

is called a Markov chain.

Elements of the Markov chains theory:

- If H is a stochastic matrix and x_{0} a stochastic vector then the sequence

$$
\left\{x_{0}, x_{1}=x_{0} H, x_{2}=x_{1} H, x_{3}=x_{2} H, \ldots\right\}
$$

is called a Markov chain.

- H is called the transition probability matrix.

Theorem (Markov, 1906)

If H is a positive transition probability matrix of a Markov chain then this chain converges to a unique positive vector (called stationary vector) independently of the starting vector.

- Brin and Page: Adjustments to the basic model using the concept of a random surfer.
- Brin and Page: Adjustments to the basic model using the concept of a random surfer.
- Adjustment 1 (stochasticity): Zero rows in H (corresponding to the dangling nodes) are replaced by

$$
\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)
$$

The new matrix is S.

- Brin and Page: Adjustments to the basic model using the concept of a random surfer.
- Adjustment 1 (stochasticity): Zero rows in H (corresponding to the dangling nodes) are replaced by

$$
\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)
$$

The new matrix is S.

- Our example:

$$
H \rightarrow S=\left(\begin{array}{cccccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\frac{1}{3} & \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

- Brin and Page: Adjustments to the basic model using the concept of a random surfer.
- Adjustment 1 (stochasticity): Zero rows in H (corresponding to the dangling nodes) are replaced by

$$
\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)
$$

The new matrix is S.

- Our example:

$$
H \rightarrow S=\left(\begin{array}{cccccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\frac{1}{3} & \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

- S is stochastic! (But not yet positive)
- Adjustment 2 (primitivity): The random surfer (RS) from time to time moves to a new webpage without using a hyperlink (he "teleports") and then he resumes hyperlink surfing again.
- Adjustment 2 (primitivity): The random surfer (RS) from time to time moves to a new webpage without using a hyperlink (he "teleports") and then he resumes hyperlink surfing again.
-

$$
S \rightarrow G=\alpha S+(1-\alpha) E
$$

- Adjustment 2 (primitivity): The random surfer (RS) from time to time moves to a new webpage without using a hyperlink (he "teleports") and then he resumes hyperlink surfing again.
-

$$
S \rightarrow G=\alpha S+(1-\alpha) E
$$

- where

$$
E=\left(\begin{array}{ccc}
\frac{1}{n} & \cdots & \frac{1}{n} \\
\vdots & \ddots & \vdots \\
\frac{1}{n} & \cdots & \frac{1}{n}
\end{array}\right)
$$

- Adjustment 2 (primitivity): The random surfer (RS) from time to time moves to a new webpage without using a hyperlink (he "teleports") and then he resumes hyperlink surfing again.
-

$$
S \rightarrow G=\alpha S+(1-\alpha) E
$$

- where

$$
E=\left(\begin{array}{ccc}
\frac{1}{n} & \cdots & \frac{1}{n} \\
\vdots & \ddots & \vdots \\
\frac{1}{n} & \cdots & \frac{1}{n}
\end{array}\right)
$$

- and $\alpha \in(0,1)$ controls the proportion of the time RS follows the hyperlinks as opposed to teleportation
- $G=\alpha S+(1-\alpha) E$ is called the Google matrix: it is stochastic and positive!
- $G=\alpha S+(1-\alpha) E$ is called the Google matrix: it is stochastic and positive!
- Hence any Markov chain with G is guaranteed to converge to a unique positive vector, independently of the starting vector.
- $G=\alpha S+(1-\alpha) E$ is called the Google matrix: it is stochastic and positive!
- Hence any Markov chain with G is guaranteed to converge to a unique positive vector, independently of the starting vector.
- Actually used $\alpha \approx .85$
- Our example for $\alpha=0.9$:
- Our example for $\alpha=0.9$:

$$
-G=0.9 S+0.1 E=\frac{1}{60}\left(\begin{array}{cccccc}
1 & 28 & 28 & 1 & 1 & 1 \\
10 & 10 & 10 & 10 & 10 & 10 \\
19 & 19 & 1 & 1 & 19 & 1 \\
1 & 1 & 1 & 1 & 28 & 28 \\
1 & 1 & 1 & 28 & 1 & 28 \\
1 & 1 & 1 & 55 & 1 & 1
\end{array}\right)
$$

- Google's PageRank vector is the stationary vector of G which is
(.03721, . $05396, .04151, .3751, .206, .2802$)
- Google's PageRank vector is the stationary vector of G which is

$$
(.03721, .05396, .04151, .3751, .206, .2802)
$$

- Random surfer spends 3.721% of their time on P_{1}, etc...
- Google's PageRank vector is the stationary vector of G which is

$$
(.03721, .05396, .04151, .3751, .206, .2802)
$$

- Random surfer spends 3.721% of their time on P_{1}, etc...
- The importance ranking therefore is: $P_{4}, P_{6}, P_{5}, P_{2}, P_{3}, P_{1}$.
- Will this iterative process converge? YES
- Will this iterative process converge? YES
- If it converges, will it do so to a vector meaningful for page ranking? YES
- Will this iterative process converge? YES
- If it converges, will it do so to a vector meaningful for page ranking? YES
- Does the convergence depend on the starting vector? NO
- Will this iterative process converge? YES
- If it converges, will it do so to a vector meaningful for page ranking? YES
- Does the convergence depend on the starting vector? NO
- Does the limit depend on the starting vector? NO
- Will this iterative process converge? YES
- If it converges, will it do so to a vector meaningful for page ranking? YES
- Does the convergence depend on the starting vector? NO
- Does the limit depend on the starting vector? NO
- If it converges, how long does it take?
- $r_{k} \cdot G=r_{k+1}$
- $r_{k} \cdot G=r_{k+1}$
- If $r_{k} \rightarrow r$ then $r \cdot G=r$
- $r_{k} \cdot G=r_{k+1}$
- If $r_{k} \rightarrow r$ then $r \cdot G=r$
- In general: $x \cdot M=\lambda x$
- $r_{k} \cdot G=r_{k+1}$
- If $r_{k} \rightarrow r$ then $r \cdot G=r$
- In general: $x \cdot M=\lambda x$
- λ... eigenvalue of M
- $r_{k} \cdot G=r_{k+1}$
- If $r_{k} \rightarrow r$ then $r \cdot G=r$
- In general: $x \cdot M=\lambda x$
- λ... eigenvalue of M
- $x \ldots$ eigenvector of M (if $x \neq 0$) corresponding to the eigenvalue λ
- $r_{k} \cdot G=r_{k+1}$
- If $r_{k} \rightarrow r$ then $r \cdot G=r$
- In general: $x \cdot M=\lambda x$
- $\lambda \ldots$ eigenvalue of M
- x... eigenvector of M (if $x \neq 0$) corresponding to the eigenvalue λ
- The stationary point of any Markov chain with transition matrix G is an eigenvector of G corresponding to the eigenvalue 1

Perron-Frobenius theory of Linear Algebra solves the eigenvector-eigenvalue problem for non-negative matrices.

Theorem (Perron, 1912)

If G is a positive, stochastic matrix then $\lambda=1$ is an eigenvalue of G and G has a unique positive eigenvector (up to multiples).

- If G is a Google matrix - the power method needs roughly 50 iterations
- If G is a Google matrix - the power method needs roughly 50 iterations
- In each iteration $\approx n$ arithmetic operations
- If G is a Google matrix - the power method needs roughly 50 iterations
- In each iteration $\approx n$ arithmetic operations
- Total: $\approx 50 n$ operations (recall $n>8$ billion)
- If G is a Google matrix - the power method needs roughly 50 iterations
- In each iteration $\approx n$ arithmetic operations
- Total: $\approx 50 n$ operations (recall $n>8$ billion)
- CONCLUSION: The power method with Google matrix is very fast!

THANK YOU

Next session in this room at 12.00: "Careers, degrees and mathematics"

