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Google (~googol = 10100)

Founders of Google: Larry Page and Sergey Brin

1995: Research students at Stanford

1996: Started a student project on search engines

1998: Google incorporates as a company (initial investment:
$1.1million) and �les patent for PageRank
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2000: Selling advertisements began

2001: Patent granted

2004: Total capital reached $23billion

2007: Google web search engine covers 53% of the market
(Yahoo 20%)

2008: Google uses 450,000 servers in 25 locations around the
world to index > 8 billion websites
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KEY IDEAS

Each webpage is assigned a measure of importance ...
PageRank

A hyperlink is a "recommendation": A webpage is important
if other webpages point to it (via hyperlinks)

The PageRank of the recommender matters (the higher the
better)

The generosity of the recommender matters (the higher the
worse)
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A.N.Langville and C.D.Meyer: Google�s PageRank and Beyond
(PUP 2006)

3

21

4

56

Node 2 - dangling

r (P1) = 1
3 r (P3)

r (P2) =
1
2 r (P1) +

1
3 r (P3)

r (P3) = 1
2 r (P1)

r (P4) = 1
2 r (P5) + r (P6)

r (P5) =
1
3 r (P3) +

1
2 r (P4)

r (P6) =
1
2 r (P4) +

1
2 r (P5)
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r0 =
� 1
n ,
1
n , ...

�

r0 �! r1
r1 �! r2
...

rk �! rk+1
...
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1
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1
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1
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r0 r1
P1 1/6 1/18
P2 1/6 5/36
P3 1/6 1/12
P4 1/6 1/4
P5 1/6 5/36
P6 1/6 1/6
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r0 r1 rank
P1 1/6 1/18 6
P2 1/6 5/36 3� 4
P3 1/6 1/12 5
P4 1/6 1/4 1
P5 1/6 5/36 3� 4
P6 1/6 1/6 2
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r0 r1 rank r2
P1 1/6 1/18 6 1/36
P2 1/6 5/36 3� 4 1/18
P3 1/6 1/12 5 1/36
P4 1/6 1/4 1 17/72
P5 1/6 5/36 3� 4 11/72
P6 1/6 1/6 2 14/72
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r0 r1 rank r2 rank
P1 1/6 1/18 6 1/36 5� 6
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3

21

4

56

Hyperlink matrix H :
P1 P2 P3 P4 P5 P6

P1 0 1
2

1
2 0 0 0

P2 0 0 0 0 0 0
P3 1

3
1
3 0 0 1

3 0
P4 0 0 0 0 1

2
1
2

P5 0 0 0 1
2 0 1

2
P6 0 0 0 1 0 0

Stochastic matrix : Every row
is � 0 and sums to 1.
H could be a stochastic matrix
if it was not for the rows
corresponding to the dangling
nodes
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�
1
6
,
1
6
,
1
6
,
1
6
,
1
6
,
1
6

�
| {z }

r0

�

0BBBBBB@

0 1
2

1
2 0 0 0

0 0 0 0 0 0
1
3

1
3 0 0 1

3 0
0 0 0 0 1

2
1
2

0 0 0 1
2 0 1

2
0 0 0 1 0 0

1CCCCCCA
=

�
1
18
,
5
36
,
1
12
,
1
4
,
5
36
,
1
6

�
| {z }

r1

r1 = r0 �H
Similarly:

r2 = r1 �H = (r0 �H) �H = r0 �H2

Peter Butkovic Google: An Application of Linear Algebra



�
1
6
,
1
6
,
1
6
,
1
6
,
1
6
,
1
6

�
| {z }

r0

�

0BBBBBB@

0 1
2

1
2 0 0 0

0 0 0 0 0 0
1
3

1
3 0 0 1

3 0
0 0 0 0 1

2
1
2

0 0 0 1
2 0 1

2
0 0 0 1 0 0

1CCCCCCA
=

�
1
18
,
5
36
,
1
12
,
1
4
,
5
36
,
1
6

�
| {z }

r1

r1 = r0 �H

Similarly:

r2 = r1 �H = (r0 �H) �H = r0 �H2

Peter Butkovic Google: An Application of Linear Algebra



�
1
6
,
1
6
,
1
6
,
1
6
,
1
6
,
1
6

�
| {z }

r0

�

0BBBBBB@

0 1
2

1
2 0 0 0

0 0 0 0 0 0
1
3

1
3 0 0 1

3 0
0 0 0 0 1

2
1
2

0 0 0 1
2 0 1

2
0 0 0 1 0 0

1CCCCCCA
=

�
1
18
,
5
36
,
1
12
,
1
4
,
5
36
,
1
6

�
| {z }

r1

r1 = r0 �H
Similarly:

r2 = r1 �H = (r0 �H) �H = r0 �H2

Peter Butkovic Google: An Application of Linear Algebra



r3 = r2 �H = ... = r0 �H3

In general:
rk = rk�1 �H = ... = r0 �Hk

... "Power Method"
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QUESTIONS

Will this power method converge? If not what conditions
must be satis�ed?

If it converges, will it do so to a vector meaningful for page
ranking?

Does the convergence depend on the starting vector?

Does the limit depend on the starting vector?

If it converges, how long does it take?
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Page and Brin �rst had to deal with a number of problems:
Rank sink pages

3

21

4

56

r0 r1 ... r13
P1 1/6 1/18 ... 0
P2 1/6 5/36 ... 0
P3 1/6 1/12 ... 0
P4 1/6 1/4 ... 2/3
P5 1/6 5/36 ... 1/3
P6 1/6 1/6 ... 1/5

Nodes 4,5,6 are a link
farm.
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Another problem: Cycles

21

H =
�
0 1
1 0

�

(1, 0)
�
0 1
1 0

�
= (0, 1)

(0, 1)
�
0 1
1 0

�
= (1, 0)

Flip-�op ! no convergence
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Elements of the Markov chains theory:

If H is a stochastic matrix and x0 a stochastic vector then the
sequence

fx0, x1 = x0H, x2 = x1H, x3 = x2H, ...g

is called a Markov chain.

H is called the transition probability matrix.
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Theorem (Markov, 1906)

If H is a positive transition probability matrix of a Markov chain
then this chain converges to a unique positive vector (called
stationary vector) independently of the starting vector.

Peter Butkovic Google: An Application of Linear Algebra



Brin and Page: Adjustments to the basic model using the
concept of a random surfer.

Adjustment 1 (stochasticity): Zero rows in H (corresponding
to the dangling nodes) are replaced by�

1
n
,
1
n
, ...,

1
n

�
The new matrix is S .

Our example:

H ! S =

0BBBBBB@

0 1
2

1
2 0 0 0

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3 0 0 1

3 0
0 0 0 0 1

2
1
2

0 0 0 1
2 0 1

2
0 0 0 1 0 0

1CCCCCCA
S is stochastic! (But not yet positive)
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Adjustment 2 (primitivity): The random surfer (RS) from
time to time moves to a new webpage without using a
hyperlink (he "teleports") and then he resumes hyperlink
sur�ng again.

S ! G = αS + (1� α)E

where

E =

0B@
1
n � � � 1

n
...

. . .
...

1
n � � � 1

n

1CA
and α 2 (0, 1) controls the proportion of the time RS follows
the hyperlinks as opposed to teleportation
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G = αS + (1� α)E is called the Google matrix : it is
stochastic and positive!

Hence any Markov chain with G is guaranteed to converge to
a unique positive vector, independently of the starting vector.

Actually used α � .85
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Our example for α = 0.9 :

G = 0.9S + 0.1E = 1
60

0BBBBBB@

1 28 28 1 1 1
10 10 10 10 10 10
19 19 1 1 19 1
1 1 1 1 28 28
1 1 1 28 1 28
1 1 1 55 1 1

1CCCCCCA
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Google�s PageRank vector is the stationary vector of G which
is

(.03721, .05396, .04151, .3751, .206, .2802)

Random surfer spends 3.721% of their time on P1, etc...

The importance ranking therefore is: P4,P6,P5,P2,P3,P1.
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Will this iterative process converge? YES

If it converges, will it do so to a vector meaningful for page
ranking? YES

Does the convergence depend on the starting vector? NO

Does the limit depend on the starting vector? NO

If it converges, how long does it take?

Peter Butkovic Google: An Application of Linear Algebra



Will this iterative process converge? YES

If it converges, will it do so to a vector meaningful for page
ranking? YES

Does the convergence depend on the starting vector? NO

Does the limit depend on the starting vector? NO

If it converges, how long does it take?

Peter Butkovic Google: An Application of Linear Algebra



Will this iterative process converge? YES

If it converges, will it do so to a vector meaningful for page
ranking? YES

Does the convergence depend on the starting vector? NO

Does the limit depend on the starting vector? NO

If it converges, how long does it take?

Peter Butkovic Google: An Application of Linear Algebra



Will this iterative process converge? YES

If it converges, will it do so to a vector meaningful for page
ranking? YES

Does the convergence depend on the starting vector? NO

Does the limit depend on the starting vector? NO

If it converges, how long does it take?

Peter Butkovic Google: An Application of Linear Algebra



Will this iterative process converge? YES

If it converges, will it do so to a vector meaningful for page
ranking? YES

Does the convergence depend on the starting vector? NO

Does the limit depend on the starting vector? NO

If it converges, how long does it take?

Peter Butkovic Google: An Application of Linear Algebra



rk � G = rk+1

If rk ! r then r � G = r
In general: x �M = λx

λ ... eigenvalue of M

x ... eigenvector of M (if x 6= 0) corresponding to the
eigenvalue λ

The stationary point of any Markov chain with transition
matrix G is an eigenvector of G corresponding to the
eigenvalue 1
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Perron-Frobenius theory of Linear Algebra solves the
eigenvector-eigenvalue problem for non-negative matrices.

Theorem (Perron, 1912)

If G is a positive, stochastic matrix then λ = 1 is an eigenvalue of
G and G has a unique positive eigenvector (up to multiples).
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If G is a Google matrix - the power method needs roughly 50
iterations

In each iteration � n arithmetic operations

Total: � 50n operations (recall n > 8 billion)
CONCLUSION: The power method with Google matrix is very
fast!
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THANK YOU
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Next session in this room at 12.00:

"Careers, degrees and mathematics"
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