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1. Introduction

We consider systems of two max-plus linear inequalities

a11 ⊗ x1 ⊕ · · · ⊕ a1n ⊗ xn � b11 ⊗ x1 ⊕ · · · ⊕ b1n ⊗ xn,

a21 ⊗ x1 ⊕ · · · ⊕ a2n ⊗ xn � b21 ⊗ x1 ⊕ · · · ⊕ b2n ⊗ xn.
(1)

Here ⊗ := +,⊕ := max, and aij, bij, xj ∈ R ∪ {−∞} for i = 1, 2 and j = 1, . . . , n.
General systems of max-linear inequalities (equivalently, equalities) were tackled by Butkovič and

Hegedüs [3]whoestablishedaneliminationmethod forfindingbasic solutionsof suchsystems, starting

with basic solutions of just one equation or inequality and adding all other constraints one by one. This
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algorithm served as a proof that solution sets to max-linear systems have finite bases, and it did not

seem to be efficient enough for practical implementation. But at present, Allamegeon et al. [1] have

come up with a novel approach to the scheme of Butkovič and Hegedüs [3], in which every step of

adding new constraint is dramatically improved by using a max-plus analogue of double description

method. Based on a certain criterion of minimality [2,5,6,8], they derive a combinatorial criterion in

terms of hypergraphs which allows to efficiently test whether a generator is extremal.

The ideaof thepresentpaper is thatwhen thenumberof inequalities is small, thebasic solutions can

bewritten out explicitly. However as shown byWagneur et al. [11], even in the case of two inequalities

(1) the number of generators is large and the problem to establish a systematic classification and to

resolve the extremality by writing out explicit conditions is nontrivial. This goal is achieved in the

present paper as follows.

Firstly, we represent the set of all solutions as the union of cones generated by certain Kleene

stars (Section 2). The same approach is used by Truffet [9], where such decomposition is obtained for

solutions to general systems of max-plus linear inequalities. We remark that this is closely related to

the Develin–Sturmfels Cellular Decomposition approach in tropical convexity [4,8]. De la Puente [7]

uses the same kind of decomposition for precise analysis of tropical linear mappings on the plane.

Secondly, in the main part of our paper we select basic solutions by means of the above mentioned

criterionofminimality [2,5,6] (Section3). This criterion is called call themultiorder principle following

[8]. We achieve an explicit description of basic solutions and a procedure which finds all of them in no

more than O(n3) operations.

2. Gathering the generators

2.1. General background in max algebra and particular Kleene stars

Weworkwith theanalogueof linear algebradevelopedover themax-plus semiringRmax,+ which is

the set of real numbers with adjoined minus infinity R = R ∪ {−∞} equipped with the operations

of “addition” a ⊕ b := max(a, b) and “multiplication” a ⊗ b := a + b. Zero 0 and unity 1 of

this semiring are equal, respectively, to−∞ and 0. The operations of the semiring are extended to the

nonnegativematrices and vectors in the sameway as in conventional linear algebra. That is ifA = (aij),

B = (bij) and C = (cij) are matrices of compatible sizes with entries from R, we write C = A ⊕ B if

cij = aij ⊕ bij for all i, j and C = A ⊗ B if cij = ⊕
k aik ⊗ bkj = maxk(aik ⊗ bkj) for all i, j. The notation

⊗ will be often omitted.

The main geometrical object of this max-plus linear algebra is a subset K ⊆ R
n
closed under

the operations of componentwise maximization ⊕ and “multiplication” ⊗ by scalars (which means

addition in the conventional sense). Such subsets are called max-plus cones or just cones if there is no

mix up with the ordinary convexity.

A vector x ∈ R
n
is a (max-linear) combination of y1, . . . , y

m ∈ S if there exist scalars α1, . . . , αm ∈
R such that x = ⊕m

i=1 αiy
i. A max-plus cone K ⊆ R

n
is generated by y1, . . . , ym ∈ S if each x ∈ S is a

max-linear combination of y1, . . . , ym. When vectors arise as columns (resp. rows) of matrices, it will

be convenient to represent them as max-linear combinations of the column unit vectors

ei = (

i−1︷ ︸︸ ︷
0 . . . 0 1 0 . . . 0)′, (2)

respectively, the row unit vectors e′i , which are their transpose.

The following series is called the Kleene star of A:

A∗ = I ⊕ A ⊕ A2 . . . , (3)

where I is the max-plus unity matrix, which has all diagonal entries 1 and all off-diagonal entries 0.

When A∗ has finite entries (in other words, converges) it is easily shown that A ⊗ x � x is equivalent

to A∗ ⊗ x = x. We also have the following
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Proposition 1. Let A ∈ R
n×n

be such that A∗ has finite entries. Then {x | A ⊗ x � x} is generated by the

columns of A∗.

The following two particular observations will be most important. In the formulation we use the

row unit vectors e′i . We denote by Ai·, resp. A·i, the ith row, resp. the ith column, of A.

Proposition 2. Given k ∈ {1, . . . , n}, let A ∈ R
n×n

have rows

Ai· =
{
e′k ⊕ ⊕

l 
=k akle
′
l, if i=k,

e′i, otherwise,
(4)

for i = 1, . . . , n. Then the set {x | A ⊗ x � x} is generated by the columns of A.

Proof. In this case A∗ = A, after which Proposition 1 is applied. �

Proposition 3. Given k,m ∈ {1, . . . , n} such that k 
= m, let A ∈ R
n×n

have rows

Ai· =
⎧⎪⎪⎨
⎪⎪⎩
e′k ⊕ ⊕

l∈L1
akle

′
l, if i = k,

e′m ⊕ ⊕
l∈L2

amle
′
l, if i = m,

e′i, otherwise,

(5)

where L1 = {l 
= k | akl 
= 0}, L2 = {l 
= m | aml 
= 0}.
• If akmamk � 1 then {x | A ⊗ x � x} is generated by the columns of A∗.
• If akmamk > 1 then {x | A ⊗ x � x} is generated by ei for i /∈ L1 ∪ L2 ∪ {k} ∪ {m}.
Proof. In the first case A∗ is finite and we apply Proposition 1. For the second case observe that on

the one hand, if xi 
= 0 for some i ∈ L1 ∪ L2 ∪ {k} ∪ {m} then xk 
= 0 and xm 
= 0 which makes

A⊗ x � x impossible. On the other hand, any x such that xi = 0 for all i ∈ L1 ∪ L2 ∪{k}∪ {m} satisfies
A ⊗ x � x. �

2.2. Extracting generating sets from Kleene stars

Nowwewrite out a generating set for the solution set of (1), whichwe represent as a union of spans

of certain Kleene stars. In the spirit of [11], wewill have to introduce several index sets and distinguish

between several special cases.

We denote J1 := {i | a1i � b1i, b1i 
= 0}, J2 := {i | a2i � b2i, b2i 
= 0}, I1 := {i | a1i > b1i}
and I2 := {i | a2i > b2i}. We also denote I1 := {1, . . . , n}\I1, I2 := {1, . . . , n}\I2, K1 = {i | a1i =
b1i = 0} and K2 = {i | a2i = b2i = 0}. Observe that I1 = J1 ∪ K1 and I2 = J2 ∪ K1, and that

I1 ∪ J1 ∪ K1 = I2 ∪ J2 ∪ K2 = {1, . . . , n}. Using the cancellation law

ax ⊕ b � cx ⊕ d ⇔
{
b � cx ⊕ d, if a � c,

ax ⊕ b � d, if a > c,
(6)

system (1) can be rewritten as⊕
i∈I1

a1ixi �
⊕
i∈J1

b1ixi,

⊕
i∈I2

a2ixi �
⊕
i∈J2

b2ixi.
(7)
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The solution set to (7) is the union of Skl defined by

Skl = {x | ⊕
i∈I1

a1ixi � b1kxk,
⊕
i∈I2

a2ixi � b2lxl}, (8)

for k ∈ J1 and l ∈ J2. Further we represent Skl defined by (8) in the form

Skl = {x | Akl ⊗ x � x}, (9)

where we have to describe Akl . There are two cases: k = l and k 
= l. We denote γ 1
ki := b

−1
1k a1i for

k ∈ J1 and γ 2
ki := b

−1
2k a2i for k ∈ J2.

If k = l, then the kth row of Akl is

e′k ⊕ ⊕
i∈I1∩I2

γ 1
kie

′
i ⊕

⊕
i∈I1∩I2

γ 2
kie

′
i ⊕

⊕
i∈I1∩I2

(γ 1
ki ⊕ γ 2

ki)e
′
i. (10)

and all other rows are row unit vectors.

If k 
= l then the kth and the lth rows of Akl are given by

e′k ⊕ ⊕
i∈I1

γ 1
kie

′
i, e′l ⊕

⊕
i∈I2

γ 2
li e

′
i, (11)

all other rows being row unit vectors.

Now we collect the generators of {x | Akl ⊗ x � x} considering several special cases:

(1) k = � ∈ J1 ∩ J2.

(2) k ∈ J1 ∩ I2, l ∈ J2 ∩ I1.

(3) k ∈ J1 ∩ I2, l ∈ J2 ∩ I1.

(4) k ∈ J1 ∩ I2, l ∈ J2 ∩ I1.

(5) k ∈ J1 ∩ I2, l ∈ J2 ∩ I1.

Case 1. The kth row of Akl is given by (10) and all other rows of Akl are unit vectors. By Proposition 2,

Skl is generated by the columns of Akl . These are:

ei, for i ∈ I1 ∩ I2,

γ 1
kiek ⊕ ei, for i ∈ I1 ∩ I2,

γ 2
li el ⊕ ei, for i ∈ I1 ∩ I2,

(γ 1
ki ⊕ γ 2

ki)ek ⊕ ei, for i ∈ I1 ∩ I2,

(12)

where k = l ∈ J1 ∩ J2.

Case 2. Rows k and l of Akl are given by (11), all other rows being the unit vectors. As l ∈ I1 and k ∈ I2,

we obtain Akl
kl = γ 1

kl = 0 and Akl
lk = γ 2

lk = 0 and hence (Akl)∗ = Akl . Taking transpose of (11), we

obtain the columns of (Akl)∗ = Akl . By Proposition 3 part 1. they generate Skl:

ei, for i ∈ I1 ∩ I2,

γ 1
kiek ⊕ ei, for i ∈ I1 ∩ I2,

γ 2
li el ⊕ ei, for i ∈ I1 ∩ I2,

γ 1
kiek ⊕ γ 2

li el ⊕ ei, for i ∈ I1 ∩ I2,

(13)

where k ∈ J1 ∩ I2 and l ∈ J2 ∩ I1.
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Case 3. Rows k and l of Akl are given by (11). However, (Akl)∗ 
= Akl , since k ∈ I2 implies that Akl
lk =

γ 2
lk 
= 0. Note that (Akl)∗ is always finite, since Akl

kl = 0 implies that the digraph associated with

Akl does not contain any cycles with nonzero weight except for the loops (i, i). For i ∈ I1, we obtain

(Akl)∗li = γ 2
li ⊕ γ 2

lkγ
1
ki . More precisely, (Akl)∗li = γ 2

lkγ
1
ki for i ∈ I1 ∩ I2, and (A

kl)∗li = γ 2
li ⊕ γ 2

lkγ
1
ki for

i ∈ I1 ∩ I2. The lth row of (Akl)∗ is given by

e′l ⊕
⊕

i∈I2∩I1

γ 2
lkγ

1
kie

′
i ⊕

⊕
i∈I2∩I1

(γ 2
li ⊕ γ 2

lkγ
1
ki)e

′
i ⊕

⊕
i∈I1∩I2

γ 2
li e

′
i. (14)

The kth row of (Akl)∗ is the same as in (11) and all other rows are unit vectors. We obtain the columns

of (Akl)∗:

ei, for i ∈ I1 ∩ I2,

ei ⊕ γ 1
kiek ⊕ γ 2

lkγ
1
kiel, for i ∈ I2 ∩ I1,

ei ⊕ γ 1
kiek ⊕ (γ 2

li ⊕ γ 2
lkγ

1
ki)el, for i ∈ I1 ∩ I2,

ei ⊕ γ 2
li el, for i ∈ I1 ∩ I2,

(15)

where k ∈ J1 ∩ I2 and l ∈ J2 ∩ I1.

Case 4. Rows k and l are given by (11), and by analogy with Case 3 we obtain that the lth row of (Akl)∗
is the same as in (11), but the kth row is given by

e′k ⊕ ⊕
i∈I1∩I2

γ 1
klγ

2
li e

′
i ⊕

⊕
i∈I2∩I1

(γ 1
ki ⊕ γ 1

klγ
2
li )e

′
i ⊕

⊕
i∈I2∩I1

γ 1
kie

′
i. (16)

We obtain the columns of (Akl)∗:

ei, for i ∈ I1 ∩ I2,

ei ⊕ γ 2
li el ⊕ γ 1

klγ
2
li ek, for i ∈ I1 ∩ I2,

ei ⊕ γ 2
li el ⊕ (γ 1

ki ⊕ γ 1
klγ

2
li )ek, for i ∈ I1 ∩ I2,

ei ⊕ γ 1
kiek, for i ∈ I2 ∩ I1.

(17)

where k ∈ J1 ∩ I2 and l ∈ J2 ∩ I1.

Case 5. If γ 2
lkγ

1
kl � 1, then the lth row of (Akl)∗ is given by (14) and the kth row of (Akl)∗ is given by

(16). By Proposition 3 part 1 the columns of (Akl)∗ generate Skl . If γ 2
lkγ

1
kl > 1, then by Proposition 3

part 2, Skl is generated by ei for i ∈ I1 ∩ I2. If γ
2
lkγ

1
kl � 1, then (Akl)∗ is finite and its columns are:

ei, for i ∈ I1 ∩ I2,

el ⊕ γ 1
klek, ek ⊕ γ 2

lkel,

ei ⊕ γ 2
li el ⊕ γ 1

klγ
2
li ek, for i ∈ I1 ∩ I2,

ei ⊕ (γ 2
li ⊕ γ 2

lkγ
1
ki)el ⊕ (γ 1

ki ⊕ γ 1
klγ

2
li )ek, for i ∈ I1 ∩ I2,

ei ⊕ γ 1
kiek ⊕ γ 2

lkγ
1
kiel, for i ∈ I2 ∩ I1,

(18)

where k ∈ J1 ∩ I2 and l ∈ J2 ∩ I1.

In equations (12), (13), (15), (17), (18), we identified all the generators of the max-plus cone of

solutions to (1). In section 3 below we show how to identify the subset of independent genera-

tors.
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3. Identifying the basic solutions

3.1. Multiorder principle

A set S ⊆ R
n
is said to be independent if no vector in this set is generated by other vectors in this

set. If such independent set generates a cone K then it is called a basis of K . It can be shown [2,10] that

if a basis of K exists, then it consists of all extremals (normalized in some sense): a vector x ∈ K is an

extremal if x = y ⊕ z and y, z ∈ K imply y = x or z = x. This also means that the basis of any cone

is essentially unique: any two bases are obtained from each other by multiplying their elements by

scalars. Actually any finitely generated cone has a basis [2,4,10].

The notion of extremal defined above is a max-plus analogue of the notion of extremal ray (or

extremal) of a convex cone. It is also a special case of the join irreducible element of a lattice.

The notion of extremal is most conveniently expressed by the following multiorder principle [1,2,

5,6,8] whichwe formulate here only for the finitely generated case. For any i = 1, . . . , nwe introduce

the relation

x �i y ⇔ xx
−1
i � yy

−1
i , xi 
= 0 and yi 
= 0. (19)

A vector y ∈ K minimal with respect to �i will be called i-minimal. Define the support of y ∈ R
n
by

supp(y) := {i | yi 
= 0}.
Proposition4 (MultiorderPrinciple). LetK ⊆ R

n
be generatedbyafinite set S ⊆ R

n
.Theny ∈ S belongs

to the basis of K (equivalently, is an extremal of K) if and only if it is i-minimal for some i ∈ {1, . . . , n}.
Proof. If y is not i-minimal for any i, then for each i ∈ supp(y) there exists zi ∈ K such that zi �i y.

Then it can be verified that

y = ⊕
i∈supp(y)

zi(zii)
−1yi. (20)

Conversely if y = ⊕
k αkz

k for some zk ∈ S, then for each i ∈ supp(y) there is k(i) such that yi =
αk(i)z

k(i)
i and as yj � αk(i)z

k(i)
j for all j, it follows that zk(i) �i y and y is not i-minimal for any i. �

3.2. Which generators are extremal

Next we classify all generators obtained in (12), (13), (15), (17) and (18) and give procedures for

checking whether they are extremal. The proof that these procedures are sound will be given in the

next subsection. We start with unit vectors (S1) and combinations of two unit vectors (S2·).

S1 = {ei|i ∈ I1 ∩ I2}.
S2A1 = {φik = γ 1

kiek ⊕ ei |k ∈ J1 ∩ I2, i ∈ I1 ∩ I2}.
S2A2 = {φik = γ 2

kiek ⊕ ei |k ∈ J2 ∩ I1, i ∈ I2 ∩ I1}.
S2B = {φik = (γ 1

ki ⊕ γ 2
ki)ek ⊕ ei |k ∈ J1 ∩ J2 , i ∈ I1 ∩ I2}.

S2C = {φlk = γ 1
klek ⊕ e�, φkl = γ 2

lkel ⊕ ek |k ∈ J1 ∩ I2l ∈ J2 ∩ I1, γ
1
klγ

2
lk � 1}.

All vectors in S1, S2A and S2B belong to the basis. Vectors in S2C belong to the basis whenever they exist.

For this, we determine the sets

W := {(k, l) | k ∈ J1 ∩ I2, l ∈ J2 ∩ I1, γ
1
klγ

2
lk � 1}

W := {(k, l) | k ∈ J1 ∩ I2, l ∈ J2 ∩ I1, γ
1
klγ

2
lk > 1} (21)
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Then, φkl, φlk ∈ S2C exist whenever (k, l) ∈ W . Note that if γ 1
klγ

2
lk = 1 then φkl and φlk are multiples

of each other so that one of them can be removed.

We now consider combinations of three unit vectors. Recall that

K1 = {i | a1i = b1i = 0} and K2 = {i | a2i = b2i = 0}, so that I1∪ J1∪K1 = I2∪ J2∪K2 = {1, . . . , n}.
S3A = {ψikl = γ 1

kiek ⊕ γ 2
li el ⊕ ei |k ∈ J1 ∩ I2 , l ∈ J2 ∩ I1 , i ∈ I1 ∩ I2}.

For all i ∈ I1 ∩ I2 determine the sets

L1(i) := {k ∈ J1 ∩ J2 | γ 1
ki < γ 2

ki},
L2(i) := {l ∈ J1 ∩ J2 | γ 2

li < γ 1
li }.

(22)

Then,ψikl ∈ S3A belongs to the basis whenever

k ∈ (J1 ∩ K2) ∪ L1(i), l ∈ (J2 ∩ K1) ∪ L2(i). (23)

S3B1 = {ψikl = γ 1
klγ

2
li ek ⊕ γ 2

li el ⊕ ei | k ∈ J1 ∩ I2 l ∈ J2 ∩ I1 , i ∈ I2 ∩ I1}.
S3B2 = {ψikl = γ 2

lkγ
1
kiel ⊕ γ 1

kiek ⊕ ei | k ∈ J1 ∩ I2 l ∈ J2 ∩ I1 , i ∈ I2 ∩ I1}.
For all i ∈ I2 ∩ I1, l ∈ J2 ∩ I1, determine the sets

M1(i, l) := {t ∈ J1 ∩ J2 | γ 1
tl γ

2
li < γ 2

ti }. (24)

For all i ∈ I1 ∩ I2, k ∈ J1 ∩ I2, determine the sets

M2(i, k) := {t ∈ J1 ∩ J2 | γ 2
tkγ

1
ki < γ 1

ti }. (25)

A vector in {ψikl ∈ S3B1} (resp. {ψikl ∈ S3B2}) belongs to the basis if and only if the following two

conditions are satisfied:

1. i ∈ I2 ∩ K1 or (i, l) ∈ W (resp. i ∈ I1 ∩ K2 or (k, i) ∈ W),

2. k ∈ M1(i, l) or k ∈ J1 ∩ K2 (resp. l ∈ M2(i, k) or l ∈ J2 ∩ K1).

S3C1 = {ψikl = (γ 1
ki ⊕ γ 1

klγ
2
li )ek ⊕ γ 2

li el ⊕ ei| > k ∈ J1 ∩ I2 , l ∈ J2 ∩ I1 , i ∈ I2 ∩ I1}.
S3C2 = {ψikl = (γ 2

li ⊕ γ 2
lkγ

1
ki)el ⊕ γ 1

kiek ⊕ ei | k ∈ J1 ∩ I2 , l ∈ J2 ∩ I1 , i ∈ I2 ∩ I1}.

For all i ∈ I1 ∩ I2, l ∈ J2 ∩ I1, k ∈ J1 ∩ I2, determine the sets

N1(i, l) : = {t ∈ J1 ∩ J2 | γ 1
ti ⊕ γ 1

tl γ
2
li < γ 1

ti ⊕ γ 2
ti }

= {t ∈ L1(i) | γ 1
tl γ

2
li < γ 2

ti },
N2(i, k) : = {t ∈ J1 ∩ J2 | γ 2

ti ⊕ γ 2
tkγ

1
ki < γ 1

ti ⊕ γ 2
ti } = {t ∈ L2(i) | γ 2

tkγ
1
ki < γ 1

ti }.
(26)

Then, ψikl ∈ S3C1 (resp. ψikl ∈ S3C2) belongs to the basis if and only if k ∈ (J1 ∩ K2) ∪ N1(i, l) (resp.
l ∈ (J2 ∩ K1 ∪ N2(i, k)).

We also have the following sets, denoting Z = {(k, l))| k ∈ J1 ∩ I2, l ∈ J2 ∩ I1, γ
1
klγ

2
lk � 1}:

S3D1 = {ψikl = γ 1
klγ

2
li ek ⊕ γ 2

li el ⊕ ei|i ∈ I2 ∩ I1, (k, l) ∈ Z }.
S3D2 = {ψikl = γ 2

lkγ
1
kiel ⊕ γ 1

kiek ⊕ ei|i ∈ I2 ∩ I1, (k, l) ∈ Z }.
S3E = {ψikl = (γ 2

li ⊕ γ 2
lkγ

1
ki)el ⊕ (γ 1

ki ⊕ γ 1
klγ

2
li )ek ⊕ ei|i ∈ I1 ∩ I2, (k, l) ∈ Z }.

Provided that (k, l) ∈ W , vector ψikl ∈ S3D1 (resp. ψikl ∈ S3D2) belongs to the basis if and only if

i ∈ K1 ∩ I2 or (i, l) ∈ W (resp. i ∈ I1 ∩ K2 or (k, i) ∈ W), andψikl ∈ S3E always belongs to the basis.
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3.3. Explanation of the procedures stated above

We explain belowwhy the procedures of the previous subsection indeed yield the basis. Recall that

S1 denotes the set of all generators ei for i ∈ I1 ∩ I2, S2 the set of all 2-generators φik (and φkl), and S3
the set of all 3-generatorsψikl .

S1, S2: The supports of all generators in S1 ∪ S2 are different, except for the pairs of generators in S2C ,

which exist if and only if γ 1
klγ

2
lk � 1, and aremultiples of each other if and only if γ 1

klγ
2
lk = 1. Removing

one vector from every such proportional pair in S2C yields an independent set. Evidently, vectors in

S1 ∪ S2 cannot be generated with help of vectors in S3, and this settles the cases of S1, S2.
For the rest of the cases, first note that the supports of all generators in S3 are different and hence

the set S3 is independent. therefore, dependence may only occur when the vectors in S3 are linear

combinations of the vectors in S1 and S2. We now detail all the cases.

S3A: A vector ψikl ∈ S3A may be a combination of vectors in S1 and S2B, as the supports of some

generators in these sets are contained in the support of a vector in S3A. By the minimality principle, a

vector ψikl is extremal if and only if it is i-, k- or l-minimal. But ψikl can be neither k- nor l-minimal

since for all k, l ∈ I1 ∩ I2 the only minimal generators are ek and el . The i-minimality ofψikl ∈ S3A can

be prevented only by φki ∈ S2B or φli ∈ S2B. Condition (23) describes the situation when this does not

happen.

S3B: A vectorψikl ∈ S3B can be a max combination of vectors in S1, S2A and S2C due to the inclusion of

supports. Again, ψikl can be neither k- nor l-minimal, since it can be represented as a combination of

ei and a vector from S2A1 (resp. S2A2) in the case of S3B1 (resp. S3B2):

γ 1
klγ

2
li ek ⊕ γ 2

li el ⊕ ei = γ 2
li (γ

1
klek ⊕ el)⊕ ei.

γ 2
lkγ

1
kiel ⊕ γ 1

kiek ⊕ ei = γ 1
ki(γ

2
lkel ⊕ ek)⊕ ei.

(27)

We describe the 2-generators which may preventψikl ∈ S3B1 (resp.ψikl ∈ S3B2) to be i-minimal.

1. φil, φli ∈ S2C (resp. φki, φik ∈ S2C ).

These 2-generators do not arise only in the following situations:
• if i ∈ K1 for S3B1 (resp. i ∈ K2 for S3B2), for in this case there is no vector in S2C whose support

is a subset of the support ofψikl ,• if the corresponding pairφil, φli ∈ S2C (resp.φki, φik ∈ S2C ) does not existmeaning (i, l) ∈ W

(resp. (k, i) ∈ W).

2. φik ∈ S2A2 (resp. φil ∈ S2A1).

These vectors do not arise only if k ∈ K2 (resp. l ∈ K1), since then k /∈ J2 (resp. l /∈ J1) unlike in the

case of S2A2 (resp. S2A1).

Otherwise, φik (resp. φil) are not �i inferior toψikl only if k ∈ M1(i, l) (resp. l ∈ M2(i, k)), see
(24) and (25).

S3C : A vector ψikl ∈ S3C can be a max combination of vectors in S1, S2A and S2B. Again, ψikl can be

neither k- nor l- minimal. Indeed,

ψikl = γ 1
kiek ⊕ ei ⊕ γ 2

li (γ
1
klek ⊕ el), S3C1

ψikl = γ 2
li el ⊕ ei ⊕ γ 1

ki(γ
2
lkel ⊕ ek), S3C2

(28)

where the vectors in brackets belong to S2A1 and S2A2 respectively. The first vector cannot be k-minimal

since k ∈ I1 ∩ I2, and it cannot be l-minimal as it loses to γ 2
klek ⊕ el ∈ S2A1. The second vector cannot

be l-minimal since l ∈ I1∩ I2, and it cannot be k-minimal as it loses to γ 2
lkel ⊕ek ∈ S2A2. The remaining

possibility of being i-minimal may be destroyed by vectors from S2B, and this does not happen if and

only if the given conditions are satisfied.



1766 S. Sergeev, E. Wagneur / Linear Algebra and its Applications 435 (2011) 1758–1768

S3D, S3E: A vector ψikl ∈ S3D cannot be a max combination of other vectors of S2 than those in S2C . It

is not a max combination of vectors in S2C only if i is not suitable for existence of vectors in S2C . This

happens if i ∈ K1 ∩ I2 or (i, l) ∈ W for the caseψikl ∈ S3D1, and i ∈ I1 ∩ K2 or (k, i) ∈ W for the case

ψikl ∈ S3D2. Finally, the vectors in S3E cannot be combinations of vectors in S2, since only vectors in

S2C have relevant supports (and yet not enough). So the vectors in S3E are in the basis whenever they

exist.

Wenote that the complexityof theaboveprocedures isO(n3),which isdue to thecomputationof the

setsM1(i, l) (24),M2(i, k) (25), N1(i, l) and N2(i, k) (26), and checking conditions for all combinations

of three unit vectors (i.e., for all choices of i, k, l). The complexity of the algorithm by Allamegeon et

al. [1] is O(nα(n) × n4) in the case of two inequalities, adapting [1, Proposition 4.3]. Here nα(n) is
the time needed to check the extremality of one generator when adding the second inequality, α(n)
being the inverse of Ackermann constant (related to hypergraphs). Further it can be deduced from

[11, Proposition 2.4] or the results in [1,3] that the number of generators for the set defined by one

inequality is nomore than n2. Hence themultiple n4, which is a bound on the squaredmaximal number

of generators for the set defined by one inequality.

4. Examples

We conclude the paper with two examples. The second example is taken from [11], Example 4.2.

4.1. A simple example

To illustrate the sets of generators constructed in the paper on a simple example, we consider the

following system of two inequalities with four variables:

4 ⊗ x3 ⊕ 2 ⊗ x4 � x1 ⊕ 2 ⊗ x2,

3 ⊗ x1 ⊕ x3 � x2.
(29)

We have I1 = {3, 4}, J1 = I1 = {1, 2}, I2 = {1, 3}, J2 = {2}, I2 = {2, 4}, K1 = ∅, K2 = {4}. We

compute

S1: just e2, since I1 ∩ I2 = {2};
S2A1: just γ

1
24e2 ⊕ e4 = e2 ⊕ e4, since J1 ∩ I2 = {2} and I1 ∩ I2 = {4};

S2A2: just γ
2
21e2 ⊕ e1 = 3e2 ⊕ e1, since J2 ∩ I1 = {2} and I2 ∩ I1 = {1};

S2B: (γ
1
23 ⊕ γ 2

23)e2 ⊕ e3 = 2e2 ⊕ e3, since J1 ∩ J2 = {2} and I1 ∩ I2 = {3};
S2C : empty, since J2 ∩ I1 is empty;

S3A: trivializes to S2B;

S3B1: empty, since J2 ∩ I1 is empty;

S3B2: just γ
2
21γ

1
14e2 ⊕ γ 1

14e1 ⊕ e4 = 5e2 ⊕ 2e1 ⊕ e4, since J1 ∩ I2 = {1}, J2 ∩ I1 = {2}, I2 ∩ I1 = {4};
S3C1: empty, since J2 ∩ I1 is empty;

S3C2: just (γ
2
23 ⊕ γ 2

21γ
1
13)e2 ⊕ γ 1

13e1 ⊕ e3, which is 7e2 ⊕ 4e1 ⊕ e3, since J1 ∩ I2 = {1}, J2 ∩ I1 = {2},
I2 ∩ I1 = {3};
S3D1, S3D2 and S3E: empty, since J2 ∩ I1 is empty.

In this example, the basis consists of four generators in S1, S2A1, S2A2 and S2B: e2, e2 ⊕ e4, 3e2 ⊕ e1
and 2e2 ⊕ e3. Indeed, the remaining two generators in S3 are redundant: (1) 5e2 ⊕ 2e1 ⊕ e4 (S3B2)

is a combination of e2 ⊕ e4 (S2A1) and 3e2 ⊕ e1 (S2A2), (2) 7e2 ⊕ 4e1 ⊕ e3 (S3C2) is a combination of

3e2 ⊕ e1 (S2A2) and 2e2 ⊕ e3 (S2B).

The redundancy can be also interpreted in terms of the procedures given in Subsection 3.2, see S3B2
and S3C2. In the case of S3B2 there are two conditions, and the first of them is satisfied: I1 ∩ K2 = {4}
and i = 4. However, the second condition fails since M2(i, k) is empty. In the case of S3C2, N2(i, k) is
empty.

In terms of the explanations in Subsection 3.3, which use the multiorder principle (Proposition 4),

the vector in S3B2 could be 4-minimal, but it is defeated by the vector from S2A1. The vector in S3C2
could be 3-minimal, but it is defeated by the vector from S2B.
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4.2. An example from [11]

To compare our results with the approach of [11], we consider [11], Example 4.2, which is a system

of two inequalities with seven variables:

x4 ⊕ 4 ⊗ x5 ⊕ 2 ⊗ x6 ⊕ 6 ⊗ x7 � x1 ⊕ 1 ⊗ x2 ⊕ 5 ⊗ x3,

5 ⊗ x2 ⊕ 6 ⊗ x3 ⊕ 2 ⊗ x7 � 3 ⊗ x1 ⊕ x4 ⊕ 2 ⊗ x5 ⊕ 4 ⊗ x6.
(30)

In this case I1 = {4, 5, 6, 7}, J1 = {1, 2, 3} = I1, I2 = {2, 3, 7}, J2 = {1, 4, 5, 6} = I2, K1 = K2 = ∅.
We compute the generators comparing them with those in the table of [11] page 365:

S1: just e1, since I1 ∩ I2 = {1}. This is x1 in the table of [11].

S2A1: Combining J1 ∩ I2 = {1} and I1 ∩ I2 = {4, 5, 6}we obtain e1 ⊕ e4, 4e1 ⊕ e5 and 2e1 ⊕ e6. Vector

e1 ⊕ e4 corresponds to x3, and the remaining two vectors are x5 and x10 in the table of [11].

S2A2: Combining J2 ∩ I1 = {1} and I2 ∩ I1 = {2, 3}we obtain 2e1 ⊕ e2 and 3e1 ⊕ e3. These correspond

to x4 and x7 in the table of [11].

S2B: just 6e1 ⊕ e7, combining J1 ∩ J2 = {1} with I1 ∩ I2 = {7}. This is x2 in the table of [11].

S2C . To compute these we need to combine J1 ∩ I2 = {2, 3} with J2 ∩ I1 = {4, 5, 6}. For each k = 2, 3
and l = 4, 5, 6we need to check whether γ 1

klγ
2
lk � 1, and each time this condition is satisfiedwe have

two vectors (or just one vector if γ 1
klγ

2
lk = 1). In our case the condition is satisfied only with k = 3 and

l = 6. This yields two vectors 2e6 ⊕ e3 and −3e3 ⊕ e6, which are x6 and x11 in the table of [11].

S3A: trivializes to S2B.

S3B1:We need to combine J1∩ I2 = {1}, J2∩ I1 = {4, 5, 6} and I2∩ I1 = {2, 3}. For i = 2, 3, l = 4, 5, 6
and k = 1, each time when γ 1

il γ
2
li > 1, we have to verify whether γ 1

klγ
2
li < γ 2

ki holds. Each time when

both conditions are satisfied, a new vector is added. Here it never happens.

S3B2: We need to combine J1 ∩ I2 = {2, 3}, J2 ∩ I1 = {1} and I2 ∩ I1 = {4, 5, 6}. For k = 2, 3,
i = 4, 5, 6 and l = 1, each time when γ 1

kiγ
2
ik > 1, we have to verify whether γ 2

lkγ
1
ki < γ 1

li holds. Each

time when both conditions are satisfied, a new vector is added. Here it happens with 1) l = 1, k = 3

and i = 4 leading to 3e1 ⊕ e3 ⊕ 5e4 which corresponds to x8 of [11], 2) l = 1, k = 3 and i = 5 leading

to 3e1 ⊕ e3 ⊕ 1e5, which corresponds to x9 of [11].

S3C1: Here we combine J1 ∩ I2 = {1} with J2 ∩ I1 = {4, 5, 6} and I1 ∩ I2 = {7}. Since γ 1
ki > γ 2

ki with

k = 1 and i = 7, no vector belongs to the basis in this case.

S3C2: We combine J1 ∩ I2 = {2, 3}, J2 ∩ I1 = {1} and I1 ∩ I2 = {7}. For each k = 2, 3, l = 1 and i = 7

we have to verify γ 2
li ⊕ γ 2

lkγ
1
ki < γ 2

li ⊕ γ 1
li . This happens for k = 3, l = 1 and i = 7 and yields the

vector 4e1 ⊕ 1e3 ⊕ e7, which corresponds to x12 of [11].

S3D1: We combine J1 ∩ I2 = {2, 3}, J2 ∩ I1 = {4, 5, 6}, I2 ∩ I1 = {2, 3}. For k = 2, 3 and l = 4, 5, 6,
the condition γ 1

lkγ
2
kl � 1 holds only for k = 3 and l = 6, so it remains to verify γ 1

il γ
2
li > 1 for i = 2

and l = 6. This condition holds and we obtain γ 1
36γ

2
62e3 ⊕ γ 2

62e6 ⊕ e2 which is proportional with

2e2 ⊕ e3 ⊕ 3e6. Note that the max-linear combination of e2, e3, e6 given for x13 in the table of [11] is

an error, since Ax13 
≤ Bx13.

S3D2:We combine J1 ∩ I2 = {2, 3}, J2 ∩ I1 = {4, 5, 6}, I2 ∩ I1 = {4, 5, 6}. For k = 2, 3 and l = 4, 5, 6,
the condition γ 1

lkγ
2
kl � 1 holds only for k = 3 and l = 6, so it remains to verify γ 1

kiγ
2
ik > 1 for i = 4, 5

and k = 3. This condition holds in both cases and yields γ 2
63γ

1
34e6 ⊕ γ 1

34e3 ⊕ e4 which is proportional

with 2e6 ⊕ e3 ⊕ 5e4, and γ
2
63γ

1
35e6 ⊕ γ 1

35e3 ⊕ e5 proportional with 2e6 ⊕ e3 ⊕ 1e5.

S3E: We combine J1 ∩ I2 = {2, 3}, J2 ∩ I1 = {4, 5, 6} and I1 ∩ I2 = {7}. As γ 1
klγ

2
lk < 1 only for k = 3

and l = 6, we have only one generator, namely 3e6 ⊕ 1e3 ⊕ e7.

Thus the basis consists of e1, 8 combinations of two unit vectors and 7 combinations of three unit

vectors.

The two-combinations are: e1 ⊕ e4, 4e1 ⊕ e5 and 2e1 ⊕ e6 (S2A1), 2e1 ⊕ e2 and 3e1 ⊕ e3 (S2A2),

6e1 ⊕ e7 (S2B), 2e6 ⊕ e3 and e3 ⊕ 3e6 (S2C ).

The three-combinations are: 3e1⊕e3⊕5e4, 3e1⊕e3⊕1e5 (S3B2), 4e1⊕1e3⊕e7 (S3C2), 2e2⊕e3⊕3e6
(S3D1), 2e6 ⊕ e3 ⊕ 5e4 and 2e6 ⊕ e3 ⊕ 1e5 (S3D2), 3e6 ⊕ 1e3 ⊕ e7 (S3E).
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We note that all vectors that we have found, are solutions of the system. Moreover, all three-

generators turn both inequalities into equalities, which in analogy with the convex analysis also sug-

gests that theymust be extremals (the two-generators correspond to the intersectionswith coordinate

planes). Actually vectors in S3B2 and S3C2 are different from x8, x9 and x12 from the table of [11] page

365, to which they correspond in terms of supports. For these, x8 = 4e1 ⊕ e3 ⊕ 4e4 is a combination

of 3e1 ⊕ e3 ⊕ 5e4 (from S3B2), 3e1 ⊕ e3 (from S2A2) and e1, x9 = 4e1 ⊕ 1e3 ⊕ e5 is a combination of

3e1 ⊕ e3 ⊕ 1e5 (from S3B2) and 3e1 ⊕ e3, and x12 = 5e1 ⊕ 1e3 ⊕ e7 is a combination of 4e1 ⊕ 1e3 ⊕ e7
(from S3C2) and e1. The remaining generator in the table of [11] is x13 = e2 ⊕2e3 ⊕1e6. This generator

is incorrect, since it violates the second inequality of (30), but in terms of support, it corresponds to

2e2 ⊕ e3 ⊕ 3e6 from S3D1. Also, there are three combinations which are not in the table of [11], from

S3D2 and S3E .
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