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1. Introduction

We consider systems of two max-plus linear inequalities

ap X1 @ D ag @x; < by @x1 D -+ - D b1y @ xp,

1
a1 QX1 D - D ay @xp < by X1 D - D by @ xp. (1)

Here ® := +, ® := max, and a;;, bj, x; € RU {—oo}fori=1,2andj=1,...,n

General systems of max-linear inequalities (equivalently, equalities) were tackled by Butkovi¢ and
Hegediis [3] who established an elimination method for finding basic solutions of such systems, starting
with basic solutions of just one equation or inequality and adding all other constraints one by one. This
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algorithm served as a proof that solution sets to max-linear systems have finite bases, and it did not
seem to be efficient enough for practical implementation. But at present, Allamegeon et al. [1] have
come up with a novel approach to the scheme of Butkovi¢ and Hegediis [3], in which every step of
adding new constraint is dramatically improved by using a max-plus analogue of double description
method. Based on a certain criterion of minimality [2,5,6,8], they derive a combinatorial criterion in
terms of hypergraphs which allows to efficiently test whether a generator is extremal.

The idea of the present paper is that when the number of inequalities is small, the basic solutions can
be written out explicitly. However as shown by Wagneur et al. [11], even in the case of two inequalities
(1) the number of generators is large and the problem to establish a systematic classification and to
resolve the extremality by writing out explicit conditions is nontrivial. This goal is achieved in the
present paper as follows.

Firstly, we represent the set of all solutions as the union of cones generated by certain Kleene
stars (Section 2). The same approach is used by Truffet [9], where such decomposition is obtained for
solutions to general systems of max-plus linear inequalities. We remark that this is closely related to
the Develin-Sturmfels Cellular Decomposition approach in tropical convexity [4,8]. De la Puente [7]
uses the same kind of decomposition for precise analysis of tropical linear mappings on the plane.

Secondly, in the main part of our paper we select basic solutions by means of the above mentioned
criterion of minimality [2,5,6] (Section 3). This criterion is called call the multiorder principle following
[8]. We achieve an explicit description of basic solutions and a procedure which finds all of them in no
more than O(n) operations.

2. Gathering the generators
2.1. General background in max algebra and particular Kleene stars

We work with the analogue of linear algebra developed over the max-plus semiring Ryax, + whichis
the set of real numbers with adjoined minus infinity R = R U {—o00} equipped with the operations
of “addition” a & b := max(a, b) and “multiplication” a ® b := a + b. Zero 0 and unity 1 of
this semiring are equal, respectively, to —oo and 0. The operations of the semiring are extended to the
nonnegative matrices and vectors in the same way as in conventional linear algebra. Thatis if A = (a;;),
B = (bj) and C = (c;) are matrices of compatible sizes with entries from R, we write C = A @ B if
cij = a;; @ bjj foralli, jand C = A® Bif ¢j = Py, aik ® byj = maxy(ajx ® by;) for all i, j. The notation
® will be often omitted. -

The main geometrical object of this max-plus linear algebra is a subset K C R" closed under
the operations of componentwise maximization @ and “multiplication” ® by scalars (which means
addition in the conventional sense). Such subsets are called max-plus cones or just cones if there is no
mix up with the ordmary convexity.

Avectorx € R is a(max linear) combination ofyl, ...,y™ e Sifthere exist scalars aq, ..., oy €
R such thatx = @, aiy'. Amax plus cone K C R" is generated by y', ..., y™ € Sifeachx € Sisa
max-linear combmatlon of y!, ..., y™ When vectors arise as columns (resp. rows) of matrices, it will
be convenient to represent them as max-linear combinations of the column unit vectors

i—1
,—l-/\‘ ,
ei=1(0...010...0), (2)

respectively, the row unit vectors elf , which are their transpose.
The following series is called the Kleene star of A:

I ADA®. .., (3)

where [ is the max-plus unity matrix, which has all diagonal entries 1 and all off-diagonal entries 0.
When A* has finite entries (in other words, converges) it is easily shown that A ® x < x is equivalent
to A* ® x = x. We also have the following
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Proposition 1. LetA € R"™™" be such that A* has finite entries. Then {x | A ® x < x} is generated by the
columns of A*.

The following two particular observations will be most important. In the formulation we use the
row unit vectors e,f. We denote by A;., resp. A, the ith row, resp. the ith column, of A.

Proposition 2. Givenk € {1,...,n},letA € R"™" have rows

/ / . .
_ | & © DPixk aney, ifi=k,
r e}, otherwise,

fori=1,...,n Thentheset{x | AQ® x < x} is generated by the columns of A.

Proof. In this case A* = A, after which Proposition 1 is applied. [J

Proposition 3. Givenk, m € {1, ..., n}suchthatk # m,letA € R™" have rows

e;< @ @lELl akle;7 lfl - ks
A = ey, © Bier, amiey, ifi=m, (5)
e}, otherwise,

wherely = {l Zk | ay # 0}, L, = {l # m | ap # 0}.

® Ifaymamr < 1then {x | A® x < x} is generated by the columns of A*.
® [fagmami > 1then {x | A® x < x} is generated by e; fori ¢ Ly UL, U {k} U {m}.

Proof. In the first case A* is finite and we apply Proposition 1. For the second case observe that on
the one hand, if x; # 0 for somei € L; U L, U {k} U {m} then x; # 0 and x, # 0 which makes
A®x < ximpossible. On the other hand, any x such thatx; = 0 foralli € Ly UL, U {k} U {m} satisfies
ARQx <x. O

2.2. Extracting generating sets from Kleene stars

Now we write out a generating set for the solution set of (1), which we represent as a union of spans
of certain Kleene stars. In the spirit of [11], we will have to introduce several index sets and distinguish
between several special cases.

We denote J1 := {i | a1; < by, b1j # 0L o := {i | api < bai, by # O}, Iy := {i | a1; > by}
and I := {i | ag; > by;j}. We alsodenote Iy := {1,...,n}]\I;, I, :={1,...,n}\b, Ky = {i | ay;j =
byj = 0}and K, = {i | ap; = by; = 0}. Observe that I; = J; UK; and I, = J, U Ky, and that
LUJ1 UKy =L UJ, UKy = {1, ..., n}. Using the cancellation law

b<cx®dd, ifa<c,
b < d 6
xBhs x® <:>[ax6]9b<d, ifa > c, (6)
system (1) can be rewritten as
P arixi < P brixi,
i€l i) (7)

P azixi < P baixi.

i€l iG_]z
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The solution set to (7) is the union of S¥! defined by

S = (x| P arxi < buxk, @ azixi < baxi), (8)

iel ieh
for k € J; and | € J,. Further we represent sk defined by (8) in the form
S = x| A" @x <xl, (9)

where we have to describe A¥. There are two cases: k = I and k # I. We denote ykll- = b]_klan for
k € J; and y,ﬁ = bijaﬁ fork € J>.
If k = I, then the kth row of A is
6® D riei® D vie® D u®vdel (10)
i€l 072 iGT] NIy ielhNk

and all other rows are row unit vectors.
If k 7 [ then the kth and the Ith rows of A are given by

e & Drael. e Drie (1)

iel i€l

all other rows being row unit vectors.
Now we collect the generators of {x | A¥ ® x < x} considering several special cases:

Mk=LeNk.

(2) k el 072,1612 071.
B)kejinNh,le) ﬂi].
(4) k el ﬂfz,lejzﬂh.
B)Yke/inNh,leNh.

Case 1. The kth row of A¥ is given by (10) and all other rows of A are unit vectors. By Proposition 2,
Sk is generated by the columns of A¥. These are:

e, fori € 1 NIy,
Yier @ e, fori € ) NIy,
viei®e, fori ey Ny, (12)
(i ® vDex ® ei, fori ey Ny,
wherek =1¢€J1 NJ.

Case 2. Rows k and I of AX are given by (11), all other rows being the unit vectors. As [ € I; and k € I,

we obtain Al = ) = 0and Al = 2 = 0 and hence (A¥)* = A¥. Taking transpose of (11), we

obtain the columns of (Ak’ ) = AKL By Proposition 3 part 1. they generate Skt
ej, fori e I1 NIy,
ykliek @e, foriel; NIy, (13)
)/,izel @ej, fori el; NIy,

Vkl,-ek @ Vl?ez @ e, fori ey NI,

wherek € NIy andI € J; NI;.



1762 S. Sergeev, E. Wagneur / Linear Algebra and its Applications 435 (2011) 1758-1768

Case 3. Rows k and [ of AK! are given by (11). However, (AK)* * A since k € I, implies that A;‘k’ =
y,i # 0. Note that (A¥)* is always finite, since A'ﬁ = 0 implies that the digraph associated with
A does not contain any cycles with nonzero weight except for the loops (i, i). For i € I, we obtain

(Akl)l’; = y? @ vy, More precisely, (A"’);; = ypylfori € I NI, and (A"’);‘; = y? @ vjpy for
i € I; N I,. The Ith row of (AK))* is given by

a® D vivie® D i dvividei ® D wiel. (14)
icl,Nl i€hNh iel; NIy

The kth row of (A’d)* is the same as in (11) and all other rows are unit vectors. We obtain the columns
of (A)*:
ej, fori € 1 NIy,
ei @ ver ® viver, fori € Nk,
ei @ yiex ® (v @ vivigler, fori € h Ny,
e; d y,,-zel, foriel; NIy,

wherek € N and! € J, NI;.

Case 4. Rows k and I are given by (11), and by analogy with Case 3 we obtain that the Ith row of (AK)*

is the same as in (11), but the kth row is given by

1,2 1,012 1
a® D raviei® D Vi ®varide® D vaei- (16)
iehﬂb ielNh ieizﬂh

We obtain the columns of (AK)*:

e;, fori € 1 NIy,

e )/1,-261 @ y,f,y,izek, fori € I; NIy,

ei @ vie ® (v ® vavidew forie h N,
ei ® yex, fori e NIy,

wherek € Jy N and 1 € J, N 4.

Case 5. If y,%ykll < 1, then the Ith row of (A¥)* is given by (14) and the kth row of (AK)* is given by

(16). By Proposition 3 part 1 the columns of (A¥)* generate SX. If y2y) > 1, then by Proposition 3
Ik Ykl

part 2, S¥ is generated by e; for i € Iy N I, If 2} < 1, then (A")* is finite and its columns are:

ej, fori e I{ N1y,
e @ yjer. e D yjer,
ei @ yier ® yavirer fori €Iy N, (18)
e ® (v © Vivier © (v ® vivii ek, fori € i NIy,
e @ yiex @ yivle, forie NIy,
wherek € [y NI and!l € , N1;.
In equations (12), (13), (15), (17), (18), we identified all the generators of the max-plus cone of

solutions to (1). In section 3 below we show how to identify the subset of independent genera-
tors.
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3. Identifying the basic solutions

3.1. Multiorder principle

AsetS C R" is said to be independent if no vector in this set is generated by other vectors in this
set. If such independent set generates a cone K then it is called a basis of K. It can be shown [2,10] that
if a basis of K exists, then it consists of all extremals (normalized in some sense): a vector x € K is an
extremal if x = y @ zandy, z € K imply y = x or z = x. This also means that the basis of any cone
is essentially unique: any two bases are obtained from each other by multiplying their elements by
scalars. Actually any finitely generated cone has a basis [2,4,10].

The notion of extremal defined above is a max-plus analogue of the notion of extremal ray (or
extremal) of a convex cone. It is also a special case of the join irreducible element of a lattice.

The notion of extremal is most conveniently expressed by the following multiorder principle [1,2,
5,6,8] which we formulate here only for the finitely generated case. Foranyi = 1, ..., n we introduce
the relation

x<iye <y, x#0andy; #0. (19)

A vector y € K minimal with respect to <; will be called i-minimal. Define the support of y € R" by

supp(y) := {i | yi # 0}.

Proposition 4 (Multiorder Principle). LetK C R" be generated by a finitesetS C R". Then y € Sbelongs
to the basis of K (equivalently, is an extremal of K) if and only if it is i-minimal for somei € {1, ..., n}.

Proof. If y is not i-minimal for any i, then for each i € supp(y) there exists z' € K such that z' <; y.
Then it can be verified that

y= P 7@ 'y (20)
i€supp(y)

k

Conversely if y = @y aZ¥ for some z€ € S, then for each i € supp(y) there is k(i) such that y; =
k(i)

gz and asy; > ock(,-)z]’»{(i) for all j, it follows that 2O <; y and y is not i-minimal for any i. [
3.2. Which generators are extremal

Next we classify all generators obtained in (12), (13), (15), (17) and (18) and give procedures for
checking whether they are extremal. The proof that these procedures are sound will be given in the
next subsection. We start with unit vectors (S1) and combinations of two unit vectors (S>.).

S1 ={ejlie 1 NI}

Soar = ¢ = vgex D ei [k € Jy N, i € I; NI}

Somr = {pi = vgex Deilk € LN ie LN

S ={pix= Vg ®vdexdeilke)i N, i€l Nh}.

Sac = {¢w = vgex D e, du = viper D ex lk € i Nl e LN I, vy < 1)

All vectors in S1, So4 and Sy belong to the basis. Vectors in So¢ belong to the basis whenever they exist.
For this, we determine the sets

(kD) |keiNk, leLNh, yyvp <1)

13 (21)
(k, l) | k €]1 012, I G_]z ﬂll, YiVik = 1}

W :={
W=
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Then, ¢y, pi € Soc exist whenever (k, [) € W. Note that if yk]lyli = 1 then ¢y and ¢y are multiples
of each other so that one of them can be removed.

We now consider combinations of three unit vectors. Recall that
Ky = {i | a1j = by; = 0} andK; = {i | azi = by = 0},sothatl1 UJhHUKy = LU UK, = {1, ey n}.

Ssn = {Vim = yie® yiea @eilke 1N, €N, iehNh)

For alli € I; N I, determine the sets

LiG) == {keh Nk | yi < v

. 2 1 (22)
L :={leinj| Yi <Vi }.
Then, ¥ € S3a belongs to the basis whenever
ke (J1 NKy) UL (i), L € (J, NKy) U Ly (i). (23)
Ssg1 = (Vi = vaviek D yie DeilkeiNh 1 €], NI, iehL N}
Ss2 = (Vi = Vipvee ® vaek Deilk e iNL 1€, NI, i€ LN}
Foralli € I, N1y,1 € J NI;, determine the sets
MiG D) :={t €1 N | vgvi < Vit (24)
Foralli € I NI, k € J; N I, determine the sets
Ma(i, k) i={t € i N2 | vy < Vi }- (25)

A vector in {i; € S3p1} (resp. {Vin € S3pa}) belongs to the basis if and only if the following two
conditions are satisfied:

1L.iehNKjor(i,l) € W(resp.i € I} N Ky or (k, i) € W),
2. ke M(i,)ork € ]y NKy (resp.l € My(i, k) orl € J, N Ky).

Ssc1 = (Vi = vl @ vlyde® yiedel >keiNly, | €ehNh,iehNh}
Ssc2 = Vi = (¥ B vipvhea ®viec®eilkeiNhL, le hbNI, i€hNh}

Forallie L NI, 1 € [, N1,k € J; NI, determine the sets

NG D ={t e Nl lvi @ vivi < vi ®74)
={teLil) | vavi < vi) (26)
Na(i k)= {t e hNR |7 ® viva <va ®va) =1t € L) | vivia < vi)-
Then, Vi € S3c1 (resp. Y € S3c2) belongs to the basis if and only if k € (J; N Kz) U Ny (i, I) (resp.

le (]2 NKy U Nz(i, k))
We also have the following sets, denoting Z = {(k,))| k e y NIy, l € [, N L4, y,},y,% <1}

Ssp1 = {Vin = vdviek D yjea delice bN Iy, (k1) €Z}.

Ssp2 = {Vin = Vipviee ® veex Delie LN I, (k1) € Z}.
Sk = (Wi = (v Dyivhea® (vl @ vivde@elie h N, (k1) eZ}).

Provided that (k,[) € W, vector ¥ri; € S3p1 (resp. Y € S3pz) belongs to the basis if and only if
ieKyNhyor(i,l) € W(resp.i € 1 NK; or (k,i) € W), and ¥ € S3g always belongs to the basis.
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3.3. Explanation of the procedures stated above

We explain below why the procedures of the previous subsection indeed yield the basis. Recall that
S1 denotes the set of all generators e; fori € I1 M I, S, the set of all 2-generators ¢ (and ¢y;), and S3
the set of all 3-generators Vjy;.

S1, So: The supports of all generators in S; U S, are different, except for the pairs of generators in Syc,
which exist if and only ify,}, y,ﬁ < 1,and are multiples of each other if and only if ykll y”% = 1.Removing
one vector from every such proportional pair in Sy¢ yields an independent set. Evidently, vectors in
S1 U S, cannot be generated with help of vectors in S3, and this settles the cases of 1, S,.

For the rest of the cases, first note that the supports of all generators in S3 are different and hence
the set S3 is independent. therefore, dependence may only occur when the vectors in S3 are linear
combinations of the vectors in S and S,. We now detail all the cases.

S3a: A vector Vi € S34 may be a combination of vectors in Sy and S,p, as the supports of some
generators in these sets are contained in the support of a vector in S34. By the minimality principle, a
vector i is extremal if and only if it is i-, k- or [-minimal. But v can be neither k- nor I-minimal
since for all k, | € I NI, the only minimal generators are ey and e;. The i-minimality of 1y € S34 can
be prevented only by ¢; € Sap or ¢y € Syp. Condition (23) describes the situation when this does not
happen.

S3p: A vector ¥ € S3p can be a max combination of vectors in Sy, Sz4 and Sy¢ due to the inclusion of
supports. Again, v, can be neither k- nor [-minimal, since it can be represented as a combination of
e; and a vector from S»a1 (resp. Sza2) in the case of S3gq (resp. S3p2):

Yavier ® vie ® e = yi(vaex ®e) @ e

(27)
Vievaer ® viex e = v (viver @ ex) D e;.

We describe the 2-generators which may prevent vji; € S3p1 (resp. ¥k € S3p2) to be i-minimal.

1. i, dii € Sac (resp. ¢y, Pix € Sac)-
These 2-generators do not arise only in the following situations:
e ifi € K for S3pq (resp.i € Ky for S3pp), for in this case there is no vector in Sy whose support
is a subset of the support of ik,
e if the corresponding pair ¢y, @i € Sac (resp. @i, di € Sac) does not exist meaning (i, ) € W
(resp. (k, i) € W).
2. ¢ix € Saaz (resp. @i € Srar).

These vectors do not arise only if k € K, (resp.[ € K7), since then k ¢ J» (resp.l ¢ J1) unlike in the
case of Syay (resp. Soa1).

Otherwise, ¢j (resp. ¢ ) are not <; inferior to ¥y only if k€ My (i, ) (resp.l € Ma(i, k)), see
(24) and (25).

S3c: A vector Y, € S3c can be a max combination of vectors in Sy, Spa and Syp. Again, j, can be
neither k- nor [- minimal. Indeed,

Vin = viier © e © v (Vaer D eD), Ssci

2 1,.2 (28)
Vit = viier © e @ y(virer ® ex), Sac2

where the vectors in brackets belong to Sp41 and S;42 respectively. The first vector cannot be k-minimal
since k € I NIy, and it cannot be I-minimal as it loses to ykzlek @ e; € Sya1. The second vector cannot
be I-minimal since | € I; NI, and it cannot be k-minimal as it loses to y,ﬁel @er € Syaz. The remaining
possibility of being i-minimal may be destroyed by vectors from S,5, and this does not happen if and
only if the given conditions are satisfied.
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S3p, S3g: A vector Y € Ssp cannot be a max combination of other vectors of S, than those in Syc. It
is not a max combination of vectors in Sy¢ only if i is not suitable for existence of vectors in Sy¢. This
happensifi € K; NI, or (i, ) € W for the case vy € Ssp1,andi € I} NK; or (k, i) € W for the case
Yiki € S3py. Finally, the vectors in S3g cannot be combinations of vectors in S,, since only vectors in
Soc have relevant supports (and yet not enough). So the vectors in S are in the basis whenever they
exist.

We note that the complexity of the above procedures is 0(n?), which is due to the computation of the
sets My (i, 1) (24), M2 (i, k) (25), N1 (i, ) and N, (i, k) (26), and checking conditions for all combinations
of three unit vectors (i.e., for all choices of i, k, I). The complexity of the algorithm by Allamegeon et
al. [1] is O(nee(n) x n*) in the case of two inequalities, adapting [1, Proposition 4.3]. Here na(n) is
the time needed to check the extremality of one generator when adding the second inequality, «(n)
being the inverse of Ackermann constant (related to hypergraphs). Further it can be deduced from
[11, Proposition 2.4] or the results in [1,3] that the number of generators for the set defined by one
inequality is no more than n?. Hence the multiple n*, which is a bound on the squared maximal number
of generators for the set defined by one inequality.

4. Examples
We conclude the paper with two examples. The second example is taken from [11], Example 4.2.
4.1. A simple example

To illustrate the sets of generators constructed in the paper on a simple example, we consider the
following system of two inequalities with four variables:

4Qx3D2QRx < X1 D2R Xz, (29)
3® X1 D X3 g X2.

Wehavel; = {3,4},/1 =1, = {1,2},, = {1,3}, L = {2}, , = {2,4}, K1 = 0, K, = {4}. We

compute

Si:justey, since I; N1, = {2};

Soat: just yo,en @ e = ey @ eg, since Jy NI = {2} and I; NI, = {4};

Soap: just v e @ er = 3e; @ ey, since ), N1y = {2} and b, NIy = {1};

Sop: (y213 ) )/223)62 @ e3 =26 Pes,sincefJ; N ={2}and 1 N1, = {3};

Soc: empty, since J, N I; is empty;

S3a: trivializes to Syg;

S3p1: empty, since J, N [ is empty;

S3pa: just 2 visea @ ylher @ eq = Sex @ 2e; ey since); NI = {1}, NI = {2}, L, NI} = {4};

S3c1: empty, since J, N [ is empty;

Saca: just (55 @ v41V13)e2 D yiser @ es, whichis 7e; @ 4eq @ es, sinceJ; N = {1}, L N1 = {2},

LNl = {3};

S3p1, S3pz and S3g: empty, since J, N I is empty.

In this example, the basis consists of four generators in Sy, Sya1, S2a2 and Syp: €3, e2 @ ey, 3e; D eq
and 2e; @ es. Indeed, the remaining two generators in S3 are redundant: (1) 5e; & 2e1 @ e4 (S3p2)
is a combination of e; @ e4 (S241) and 3ex D e1 (S2a2), (2) 7ex B 4eq D es (S3cz2) is a combination of
3e; @ eq (Sa2) and 2e; @ e3 (Sap).

The redundancy can be also interpreted in terms of the procedures given in Subsection 3.2, see S3p
and S3c;. In the case of S3p, there are two conditions, and the first of them is satisfied: I; N K, = {4}
and i = 4. However, the second condition fails since M, (i, k) is empty. In the case of S3¢2, N (i, k) is
empty.

In terms of the explanations in Subsection 3.3, which use the multiorder principle (Proposition 4),
the vector in S3py could be 4-minimal, but it is defeated by the vector from S;41. The vector in S3¢)
could be 3-minimal, but it is defeated by the vector from S,p.
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4.2. An example from [11]

To compare our results with the approach of [11], we consider [11], Example 4.2, which is a system
of two inequalities with seven variables:

X PARQX D2Qx D6QX7 < X1 D1 QX &5 x3, (30)
5% B6Qx3D2Qx K3QX DXx1D2Qx D4 x6.

Inthiscasel; = {4,5,6,7},J1 = {1,2,3} =L, ={2,3,7, >, = {1,4,5,6}) = I,,K; = K, = 0.
We compute the generators comparing them with those in the table of [11] page 365:

Si:justeq, since I; NI = {1}. This is x; in the table of [11].

Sya1: Combining J; NI, = {1} and I; NI, = {4, 5, 6} we obtain e; @ ey, 4e1 @ es and 2e; P eg. Vector
e b e4 corresponds to X3, and the remaining two vectors are x5 and x1¢ in the table of [11].

Sya2: Combining J, N1; = {1}and L, NI; = {2, 3} we obtain 2e; @ e, and 3e; @ e3. These correspond
to x4 and x7 in the table of [11].

S)p: just 6e; @ e7, combining J; N Jo = {1} with I; NI, = {7}. This is x, in the table of [11].

Syc. To compute these we need to combine J; NI, = {2, 3} withJ, NI} = {4, 5, 6}. Foreachk = 2, 3
and [ = 4, 5, 6 we need to check whether y,}, y,ﬁ < 1, and each time this condition is satisfied we have
two vectors (or just one vector if yk]l y,,zc = 1).In our case the condition is satisfied only with k = 3 and
I = 6. This yields two vectors 2eg @ e3 and —3e3 @ eg, which are xg and x17 in the table of [11].

S34: trivializes to Syp.

S3p1: We need to combine J; NI, = {1},/,N]; = {4,5,6}and,NI; = {2,3}.Fori=2,3,1=4,5,6
and k = 1, each time when yi,l yh-z > 1, we have to verify whether ykll yh-z < ykzi holds. Each time when
both conditions are satisfied, a new vector is added. Here it never happens.

S3pz: We need to combine Jy NI, = {2,3}, b NI; = {1}and, NI} = {4,5,6}. For k = 2, 3,
i=4,5,6and! = 1, each time when y,}iyii > 1, we have to verify whether y,ﬁykli < yl,] holds. Each
time when both conditions are satisfied, a new vector is added. Here it happens with 1)l = 1,k = 3
and i = 4 leading to 3e; P e3 P 5e4 which corresponds to xg of [11],2)] = 1,k = 3 and i = 5 leading
to 3e; @ e3 @ les, which corresponds to xg of [11].

S3c1: Here we combine J; N1, = {1} withJ, NI = {4, 5,6} and I; N I, = {7}. Since y,fi > ykzi with
k = 1and i = 7, no vector belongs to the basis in this case.

S3c2: We combine J; NI, = {2,3},J, NIy = {1}andl; NI, = {7}.Foreachk =2,3,I=1andi="7
we have to verify y,iz @ y,ﬁykli < yh-z @ y,}. This happens for k = 3,1 = 1 and i = 7 and yields the
vector 4e; @ les @ ez, which corresponds to x15 of [11].

S3p1: We combine J; NI, = (2,3}, , NI} ={4,5,6},LbNNI; = {2,3}.Fork = 2,3 and [ = 4, 5, 6,
the condition y,}(ykzl < 1 holds only for k = 3 and [ = 6, so it remains to verify yl-l] )/liz > 1fori=2
and | = 6. This condition holds and we obtain y35v5es ® y&es @ e which is proportional with
2e) P e3 @ 3es. Note that the max-linear combination of e, e3, eg given for x13 in the table of [11] is
an error, since Axy3 % Bxi3.

S3p2: We combine J; NI, = {2,3}, hbNl; = {4,5,6},,NIl; = {4,5,6}.Fork = 2,3and! = 4, 5, 6,
the condition yl,]c ykzl < 1 holds only for k = 3 and [ = 6, so it remains to verify 7/,5)4,2< > 1fori=4,5
and k = 3. This condition holds in both cases and yields y& y34€6 ® y54€3 @ eq which is proportional
with 2es @ e3 @ 5es, and Y y5ses ® yse3 @ es proportional with 2e @ e3 @ Tes.

S3g: We combine J; NI, = {2,3},, NI} = {4,5,6}and I NI, = {7}. As ykllyl,z< < 1onlyfork =3
and | = 6, we have only one generator, namely 3eg & les D e7.

Thus the basis consists of e;, 8 combinations of two unit vectors and 7 combinations of three unit
vectors.

The two-combinations are: e; D e4, 461 D es and 2eq1 D eg (S2a1), 261 B e and 3e1 D e3 (S242),
Gey @ e7 (S2p), 266 @ e3 and e3 ® 3es (Syc).

The three-combinations are: 3e; Pes P 5e4,3e1 Pes P les (S3py), 4e1 D lesPes (S3ca),2e2PesD3eq
(S3p1), 2e6 @ e3 @ Seq and 2eg b e3 @ les (S3p2), 3es D les @ e7 (S3k).
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We note that all vectors that we have found, are solutions of the system. Moreover, all three-
generators turn both inequalities into equalities, which in analogy with the convex analysis also sug-
gests that they must be extremals (the two-generators correspond to the intersections with coordinate
planes). Actually vectors in S3p; and S3¢, are different from xg, X9 and x1, from the table of [11] page
365, to which they correspond in terms of supports. For these, xg = 4e; @ e3 @ 4e, is a combination
of 3e; @ e3 D 5e4 (from S3py), 3e; D es (from Sy42) and eq, xg = 4e; @ lez @ es is a combination of
3e; P e3 P les (from S3pp) and 3eq D e3, and x12 = 5e1 D le3 P e7 is a combination of 4e1 @ lez B ey
(from S3¢3) and eq. The remaining generator in the table of [11] is x13 = e3 @ 2e3 @ 1eg. This generator
is incorrect, since it violates the second inequality of (30), but in terms of support, it corresponds to
2e) @ e3 @ 3eg from S3pq. Also, there are three combinations which are not in the table of [11], from
S3p2 and S3E.
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