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Abstract. We propose a general theory of parametric two-sided tropical linear systems
based on the connections with zero-sum deterministic mean-payoff games. It is shown
how this general theory specializes to particular tropical linear systems with parameter,
arising from 1) the two-sided tropical eigenproblem Ax = λ+Bx and 2) the tropical linear
programming. This involves 1) the problem of finding the spectrum of Ax = λ + Bx

solved in pseudopolynomial time by the spectral function approach, and 2) bisection
and Newton iteration methods for minimizing tropical linear functionals over tropical
convex sets defined as solution sets of two-sided systems Ax ⊕ c ≤ Bx ⊕ d. Particular
new results include a) explicit formula for the unique eigenvalue of symmetric two-sided
igenproblem, b) generalized bound for bisection method for the fractional tropical linear
programming, c) comparison between bisecton and Newton methods solving tropical
linear programming problem.

1. Introduction

1.1. Tropical mathematics, tropical two-sided systems and mean-payoff games.

Tropical algebra is defined over the tropical (max-plus) semiring, which is the set (R ∪
{−∞}) = R∪{−∞} equipped with tropical addition a⊕b := max(a, b) and multiplication

a ⊗ b = a + b. The element −∞ plays the role of zero, and 0 becomes the unity. This

tropical arithmetics is extended to matrices and vectors in the usual way: (A ⊕ B)ij =

max(Aij, Bij) and (A⊗B)ij = maxk(Aik+Bkj) giving rise to tropical subspaces and other

geometric structures of (R∪{−∞})d. Functional analysis over tropical semiring is known

as idempotent analysis [KM97].

Tropical mathematics, which emerged in the 60’s in the works of R.A. Cuninghame-

Green and N.N. Vorobyev [CG62, Vor67], has seen rapid development over last two

decades, see e.g. collections of papers [MS92, Gun98, LM05, LS09]. In the 80’s and

90’s, the Russian group [KM97, MS92, LM94] and the French group [CDQV85, BCOQ92,

GP97] independently observed that certain problems in discrete optimization, optimal
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control, Hamilton-Jacobi-Bellman PDE and quasiclassical asymptotics in quantum me-

chanics are linear in terms of tropical operations. This tropical linearity gave rise to a new

systematic approach to such problems. Moreover, it was observed that one can exploit

the following limit passage from the ordinary linearity. Take R ∪ {−∞} and equip it

with a ⊗ b = a + b like in the tropical case, and a ⊕h b = h log(ea/h + eb/h) where h is

a positive parameter. This new semiring is isomorphic to nonnegative numbers with the

usual operations. However as h tends to zero it “becomes” the tropical semiring. In some

cases this Maslov dequantization can be used directly. If this is not the case, then

the tropical/idempotent correspondence principle, as formulated by Litvinov and

Maslov [LM94], says that “There exists a heuristic correspondence between interesting,

important and useful constructions and results over the field of real or complex numbers

and similar constructions and results over idempotent semirings”.

Tropical convexity started with the tropical Hahn-Banach theorem proved by Zim-

mermann [Zim77], which was generalized to idempotent functional spaces by Litvinov

et al. [LMS01] and Cohen et al. [CGQS05]. However, the whole tropical area gained

new impetus after Develin and Sturmfels represented tropical polyhedra as cellular com-

plexes [DS04]. This opened the new era in tropical convexity meaning precise analysis

of tropical polyhedra and their combinatorics. There are also contributions coming from

abstract convex analysis by Mart́ınez-Legaz, Rubinov and Singer [MLRS02], Nitica

and Singer [NS08], Briec, Horvath and Rubinov [BH04], with motivations in global opti-

mization theory.

Tropical convexity is intimately related to the tropical matrix algebra which is

analogous to nonnegative matrix theory, since the role of zero is played by −∞. The link

to tropical two-sided systems like Ax = By, Ax ≤ Bx is especially strong, via the Hahn-

Banach theorem. Such systems have been of special importance for R.A. Cuninghame-

Green and P. Butkovič who developed new algorithms for 1) finding a solution of two-sided

systems [CGB03, BZ06] and 2) describing the whole set of solutions of two-sided systems

[BH84]. Other related contributions of this group include studies of strong regularity,

linear independence and rank in tropical algebra, see [But03] and [But10] for detailed

account.

The equations in tropical two-sided systems can be interpreted as rendez-vous con-

straints in scheduling. Motivations of this nature arose for instance in the work of

Burns [Bur91] applied to the checking of asynchronous digital circuits. Systems of the

form Ax ≤ Bx have also been studied in relation to scheduling problems with both AND

and OR precedence constraints by Möhring et al. [MSS04].
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As shown by Akian et al. [AGG09a], solving some tropical two-sided system is equiv-

alent to solving some zero-sum deterministic repeated mean-payoff game. Shapley

operator for this game is a min-max function (involving min, max and + arithmetics),

see e.g. Zwick and Paterson [ZP96]. Such functions were also studied by Gunawardena,

Olsder [Gun94, Ols91] and Cochet-Terrasson et al. [CTGG99] with above mentioned mo-

tivations from scheduling and design of asynchronous circuits. In the tropical convexity

they appear as nonlinear projections onto tropical cones studied by Cuninghame-Green

and Cohen et al. [CG79, CGQS05], and also as compositions of such projections in the

tropical cyclic projections method of Gaubert and Sergeev [GS08, GS10, Ser09]. It is

known that solving mean-payoff games is in NP∩coNP: this is due to Zwick and Pater-

son [ZP96] and was foreseen by Gurvich, Karzanov and Khachiyan [GKK88]. The same

NP∩coNP result is true of the (equivalent) problem for tropical two-sided systems, which

was obtained independently by Bezem, Nieuwenhuis and Rodŕıguez-Carbonell [BNgC08]

who introduced the novel concept of max atoms.

1.2. New applications: the domain of tropical polyhedra. The goal of static analy-

sis of computer programs is automatical determination of invariants, i.e., properties which

are valid for all executions. Such properties represent, e.g., the impossibility of forbidden

memory access.All possible states of the program are captured by the collecting semantics

of the program. The Rice theorem implies that checking given conditions by means of the

collecting semantics of a program is undecidable.

The approach of abstract interpretation was invented by Cousot and Cousot [CC77],

see also [CC92]. The main idea is to create a computable abstract semantics, which over-

approximates the set of all possible environments of the program. In the case of numerical

invariants, the abstract semantics is based on certain numerical domains of a well-defined

geometric nature. Domains include abstract elements and abstract primitives. The latter

are operations with abstract elements, and they must over-approximate all possible results

of certain operations with program variables. By means of these primitives various over-

approximations of the collecting semantics of the program can be defined.

One of the key developments in static analysis by abstract interpretation is the domain

of convex polyhedra by Cousot and Halbwachs [CH78]. The abstract elements are closed

convex polyhedra, which represent invariants in the form of affine inequalities. It is very

precise, but the operations include transitions between internal and external representa-

tions, which are exponential in dimension in the worst case.

Many other abstract domains are known in the literature: signs, intervals, zones, oc-

tagons, congruence relations and equalities, octahedra, to mention a few.
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The domain of tropical polyhedra was introduced and studied recently in Allamigeon

et al. [All09, AGG09b, AGK10a]. It is more precise than the domain of zones which it

subsumes. As shown in [AGG09b], the analysis of memory allocation routines like the

well-known memcpy function of C, naturally leads to disjunctive invariants. Disjunctions

reflect for instance the fact that the length of a string to be copied may not be preserved.

Such disjunctive invariants are tough for many other types of domains. The computational

complexity of this domain is again dominated by the complexity of transition between

internal and external descriptions. The main motivation is that the domain of tropical

polyhedra is suitable for scalable and automatic inferring certain disjunctive invariants

like min(len src, n) = min(len dst, n) of memcpy [All09], which are not recognizable by

other types of domains. It also follows that the computations with tropical polyhedra in

many respects are easier than those with the ordinary polyhedra.

The method of linear programming templates by Sankaranarayanan et al. [SCSM06] is

an important development of the polyhedral domain by Cousot and Halbwachs [CH78].

It implements the idea of over-approximation using polyhedra defined by a prescribed

number of affine inequalities, the linear parts of which are taken from a fixed “template”,

determined by the characteristics of the program to analyze. Hence, the development of

tropical linear programming initiated by Butkovič and Aminu [BA08], is crucial for the

tropical analogue of linear programming templates.

1.3. Parametric mean-payoff games. Dynamic operator of a mean-payoff game is a

min-max function f : (R ∪ {−∞})d → (R ∪ {−∞})d. Components of this function are

defined by fj(x) := mink(−Akj + maxl(Bkl + xl)). Certain problems of tropical linear

algebra lead to parametric tropical two-sided systems C(λ)x ≤ D(|lambda)x where all

entries of C and D are piecewise linear functions of λ. These include the tropical linear

programming [BA08, GKS10] mentioned above, as well as the two-sided tropical eigen-

problem Ax = λ+Bx studied by Cuninghame-Green and Butkovič [CGB08], Binding and

Volkmer [BV07a] and later Gaubert and Sergeev [GS10]. To such systems we can associate

min-max functions fλ(x) which depend on a parameter λ, as dynamic operators of certain

parametric mean-payoff games. In [GS10] Gaubert and Sergeev introduce a novel concept

of spectral function, which is subsequently used in [AGK10b, GKS10]. It shows how the

greatest eigenvalue r(fλ) of fλ(x) depends on λ. As observed in [GS10], in the case of

the two-sided tropical spectral problem r(fλ) equals the inverse minimal Chebyshev dis-

tance between Ax and λBx, thus yielding a good approximate solution of the problem.

The study of general parametric mean-payoff games and the corresponding tropical linear

problems relies on the properties of the spectral function (number of linear slopes, bounds
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on the zero-level set, extreme values, etc.) Gaubert et al. [AGK10b, GKS10] also observed

the role of strategies in the associated mean-payoff game as certificates of unboundedness

and optimality, analogous to the role of Lagrange multipliers. Moreover, the results of

Akian et al. [AGG09a] indicate that the above approaches can be extended to infinite

systems of parametric two-sided tropical (in)equalities, which would contribute to more

general theory of zero-sum mean-payoff games.

Min-max functions are in the class of functions to which the nonlinear Perron-Frobenius

theory developed by Nussbaum et al. [Nus86, AGLN06] can be applied. Such applications,

also in the context of tropical convexity, have been described in [GS08, GS10]. The

methods of nonlinear Perron-Frobenius theory can be applied on a wider scale of Shapley

operators of general stochastic zero-sum mean-payoff games, in the spirit of Kohlberg,

Neyman, Rosenberg and Sorin [NS03].

In the rest of the paper we give an overview of existing results on specific tropical para-

metric two-sided systems (i.e. parametric mean-payoff games) and associated min-max

functions. In Section 2 we describe the main principles of the theory of mean-payoff games

which we are going to use, as well as connections with the tropical two-sided systems, from

the viewpoint of tropical matrix theory. In Section 3 we propose a unified approach to the

theory of parametric tropical two-sided systems with piecewise-linear coefficients. This

approach is based on the notion of spectral function, for which the problems of recon-

struction and general tropical programming are formulated, and the pseudopolynomiality

of these problems is shown. Moreover, bisection and Newton algorithms for the general

tropical programming are explicitly described. In Section 4 we consider the generalized

tropical eigenproblem Ax = λ + Bx as a special case of parametric tropical two-sided

system. We recall the main results of [GS10] on reconstruction (Theorem 13), that it

is possible to reconstruct the whole spectral function and hence the whole spectrum in

pseudopolynomial time. This now follows from the general approach of Section 3. Fur-

ther we treat the special case of symmetric matrices obtaining an explicit formula for the

unique eigenvalue of (A,B), thus precising a result of [BV07a, But10], and evaluate the

spectral function in the case of one-matrix eigenproblem (B = I). Section 5 is devoted

to the tropical linear programming as formulated in [GKS10]. This is viewed from the

general perspective of Section 3, being a special case of the general tropical programming

problem described there. In particular it is shown how bisection method can be applied

to the “fractional” tropical programming formulation of Gaubert et al. [GKS10]. New

results include a new bound for bisection method which is a generalization of the bounds

obtained by Butkovič and Aminu [BA08], and comparison between bisection and Newton

algorithms.
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2. Mean-payoff games

2.1. Two-player mean-payoff games. Consider a two-player deterministic game, where

the players “Max” and “Min” make alternate moves of a pawn on a weighted bipartite

digraph G. The set of nodes of G is the disjoint union of nodes [m] := {1, . . . ,m} where

Max is active, and nodes [n] := {1, . . . , n} where Min is active. When the pawn is in node

k ∈ [m] of Max, he must choose an arc in G connecting node k to some node l ∈ [n] of

Min, and while moving the pawn along this arc, he receives payment bkl from Min, which

is the weight of the selected arc. When the pawn is in node j ∈ [n] of Min, she must

choose an arc in G connecting node j to some node i ∈ [m] of Max, and pays −aij to

Max, where −aij is the weight of the selected arc. We assume that bkl, aij ∈ R. Moreover,

certain moves may be prohibited, meaning that the corresponding arcs are not present in

G. Then, we set bkl = −∞ and aij = −∞. Thus, the whole game is equivalently defined

by two m× n matrices A = (aij) and B = (bkl) with entries in R ∪ {−∞}. We make the

following assumptions:

Assumption 1. For all k ∈ [m] there exists l ∈ [n] such that bkl 6= −∞.

Assumption 2. For all j ∈ [n] there exists i ∈ [m] such that aij 6= −∞.

This assures that both players have at least one move allowed in each node.

A general strategy of a player (Max or Min) is a function that for every finite preceding

history of a play ending at a node i selects a successor of i (i.e., move of the player). A

positional strategy for a player is a mapping that selects a unique successor of every node

i independently of the preceding history of the play.

A strategy of Max will be usually denoted by σ and a strategy of Min will be usually

denoted by τ . Thus a positional strategy of Max is a mapping σ : {1, . . . ,m} → {1, . . . , n},
and a positional strategy of Min is a mapping τ : {1, . . . , n} → {1, . . . ,m}.

When Max reveals his positional strategy σ, the play proceeds within the graph Gσ
where at each node i of Max all but one edge (i, σ(i)) are removed. When Min reveals

her positional strategy τ , the play proceeds within the graph Gτ where at each node j of

Min all but one edge (j, τ(j)) are removed.

When Max reveals his positional strategy σ and Min reveals her positional strategy τ ,

then the play proceeds within the graph Gσ,τ where each node has a unique outgoing edge

(i, σ(i)) or (j, τ(j)). Thus Gσ,τ is a sunflower graph, i.e., such that each node has a unique

path to a unique cycle.
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Suppose that a play begins at a node j of Min and proceeds p turns (from Min to Max

and back). Then the total payment of Min equals

(1) Φ
(p)

A]B
(j, τ, σ) =

p∑
t=1

−altkt−1 + bltkt , k0 = j, kt = σ(lt), lt = τ(kt−1),

where τ and σ are general (and thus the whole graph G may be required.

If both σ and τ are positional, then the limit

(2) ΦA]B(i, τ, σ) = lim
n→∞

Φ
(n)

A]B
(i, τ, σ)/n

exists and is equal to the mean weight (per turn) of the unique cycle of Gσ,τ accessible

from j.

When only one strategy is positional the limit in (2) can be replaced by lim inf or

lim sup which are within the interval between the smallest and the largest mean of the

cycles accessible from j in Gσ or in Gτ . (The case when neither of the strategies are

positional can be handled the same way but we do not require this general case.) The

version of (2) with lim sup, or respectively lim inf, will be denoted by Φsup
A]B

(i, τ, σ), or

respectively Φinf
A]B

(i, τ, σ).

2.2. One-player mean-payoff games and tropical linear mappings. We now con-

sider the case when one player has a positional strategy and the other wants to maximize

Φsup
A]B

(i, τ, σ) or to minimize Φinf
A]B

(i, τ, σ).

For simplicity, consider a game defined by just one matrix C ∈ (R ∪ {−∞})n×n such

that there is a finite entry in each row. There is just one player Max who wants to

maximize

Φsup
C (i, σ) = lim sup

p→∞
(Φ

(p)
C (i, σ))/p, where

Φ
(p)
C (i, σ) =

p∑
t=1

clt−1lt , l0 = i, lt = σ(lt−1),
(3)

where σ is the (non-positional) strategy of Max.

Dually we can consider a game defined by matrix D ∈ (R∪ {+∞})n×n such that there

is a finite entry in each row. There is just one player Min who wants to minimize

Φinf
D (i, τ) = lim inf

p→∞
(Φ

(p)
D (i, τ))/p, where

Φ
(p)
D (i, τ) =

p∑
t=1

dlt−1lt , l0 = i, lt = τ(lt−1),
(4)

where τ is the (non-positional) strategy of Min.
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Introducing the max-plus multiplication C ⊗ x and the min-plus multiplication D⊗′ y

(5) (C ⊗ x)i = max
j
cij + xj, (D ⊗′ y)i = min

j
dij + yj,

we note that the repeated actions of C and D on the zero vector 0, denoted shortly

Ck0 and Dk0, describe the most of what the players can achieve. It is known (see e.g.

[HOvdW05]) that C and D have cycle-time vectors meaning that the limits

(6) χmax(C) = lim
k→∞

(Ck0)/k, χmin(D) = lim
k→∞

(Dk0)/k

exist and can be written explicitly.

This explicit expression uses the concept of maximal (minimal) cycle mean. For C =

(cij) ∈ (R ∪ {−∞})n×n (D = (dij) ∈ (R ∪ {+∞})n×n), it is defined as

µmax(A) =
n

∨
p=1
∨

i1,...,ip

ci1i2 + · · ·+ cipi1
p

(max-plus) ,

µmin(D) =
n

∧
p=1
∧

i1,...,ip

di1i2 + · · ·+ dipi1
p

(min-plus) .

(7)

For C ∈ (R∪ {−∞})n×n define the associated digraph GC = {[n], E} so that (i, j) ∈ E
whenever cij is finite. Analogously for D ∈ (R∪{∞})n×n. We will say that i accesses j if

there exists a path from i to j, every edge of which has finite weight. Denote by µmax
i (C)

(µmin
i (D)) the maximal (minimal) circuit mean of the component of GC (or GD) to which

i belongs. These numbers are given by the same expressions as in (7), but with i1, . . . , ip

restricted to that component.

Using µmax
i (C) (µmin

i (D)), we can write explicit expressions for the cycle-time vector of

a max-plus linear map x 7→ Cx, or min-plus linear map x 7→ Dx:

χmax
i (C) = max{µmax

j (C), i accesses j} (max-plus),

χmin
i (D) = min{µmin

j (D), i accesses j} (min-plus).
(8)

See [CTCG+98] or [HOvdW05] for proof.

These explicit formulae for χmax
i (C) and χmin

i (D) lead to the following observation.

Proposition 1. Φmax
C (i, σ) ≤ χmax

i (C) for any i and σ. Dually Φmin
D (i, τ) ≥ χmin

i (D) for

any i and τ .

Proof. Φmax
C (i, σ) cannot be greater than the largest mean of a cycle accessible from i in

D(C), which equals χmax
i (C). Dually Φmin

D (i, τ) cannot be less than the smallest mean of

a cycle accessible from i in D(D), which equals χmin
i (D). �
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There is more to say here. Actually there exist positional strategies σ and τ which turn

the inequalities in Proposition 1 into equalities. They can be deduced from the existence

of invariant halflines, as it will be explained in the next subsection.

The setting in which both max-plus and min-plus matrix multiplications are considered

simultaneously has been called minimax algebra by Cuninghame-Green [CG79]. Then,

we need to allow the scalars to belong to the enlarged set. Note that in Rmax := R ∪
{−∞} ∪ {+∞}, (−∞) + (+∞) = −∞ if the max-plus convention is understood, and

(−∞) + (+∞) = +∞ if the min-plus convention is understood.

Max-plus and min-plus linear maps are mutually adjoint, or residuated. Recall that for

a max-plus linear map A from Rn

max to Rm

max, the residuated operator A] from Rm

max to

Rn

max is defined by

(9) (A]y)j :=
m

∧
i=1

(−aij + yi) ,

with the convention (−∞) + (+∞) = +∞. Note that this operator, also known as

Cuninghame-Green inverse, sends Rm
max to Rn

max whenever A does not have columns iden-

tically equal to −∞. The term “residuated” refers to the property

(10) Ax ≤ y ⇔ x ≤ A]y ,

where ≤ is the partial order on Rm
max or Rn

max. This residuated operator is crucial for

max-plus two-sided systems of inequalities, since

(11) Ax ≤ Bx⇔ x ≤ A]Bx .

The notation A]Bx is understood as composition of two operators: Bx performs max-plus

product of matrix B and vector x, and A](Bx) performs min-plus product of A] and Bx.

Further this composition will be written just as A]B.

2.3. Min-max functions and invariant halflines. The dynamic operator of a two-

player game described in Subsection 2.1 is precisely A]B which appears in (11):

(12) (A]Bx)j = min
k∈[m]

(−akj + max
l∈[n]

(bkl + xl)) .

This is known as a min-max function [CTGG99]. Min-max functions are isotone (x ≤
y ⇒ A]Bx ≤ A]By) and additively homogeneous (A]B(λ+ x) = λ+A]Bx). Hence, they

are nonexpansive in the sup-norm. Moreover, they are piecewise affine (Rn can be covered

by a finite number of polyhedra on which A]B is affine). We are again interested in the

cycle-time vector:

(13) χ(f) = lim
k→∞

(fk0)/k .
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The existence of χ(A]B) follows from a theorem of Kohlberg.

Theorem 2 (Kohlberg [Koh80]). Let f : Rn 7→ Rn be a nonexpansive and piecewise affine

map. Then, there exist v ∈ Rn and χ ∈ Rn such that

(14) f(v + tχ) = v + (t+ 1)χ , ∀t ≥ T ,

where T is a large enough real number.

The map t 7→ v + tχ is known as an invariant half-line. Using the nonexpansiveness of

A]B, one deduces that the limit (13) exists, is the same for all x ∈ Rn and is equal to the

growth rate χ of any invariant halfline. All above said also applies to purely max-plus or

purely min-plus functions described in Subsect. 2.2.

In the case of min-max functions (as well as purely max-plus or min-plus maps) there

are constructive ways of proving the existence of invariant halflines, which rely on effi-

cient algorithms for their computation. like the policy iteration of Cochet-Terrasson et

al. [CTGG99], improved by Dhingra and Gaubert [DG06]. Below we deduce the exis-

tence of value, originally due to Ehrenfeucht and Mycielski [EM79], from the existence of

invariant halflines.

Theorem 3. For the two-player (zero-sum, deterministic) mean-payoff game with players

Max and Min, where costs are given by matrices A,B ∈ (R ∪ {−∞})m×n, there exists a

pair of positional strategies σ∗ and τ ∗ such that

1. Φsup
A]B

(i, τ ∗, σ) ≤ χi(A
]B) for all (not necessarily positional) strategies σ;

2. Φinf
A]B

(i, τ, σ∗) ≥ χi(A
]B) for all (not necessarily positional) strategies τ .

Proof. First notice that σ∗ and τ ∗ can be defined from v, namely one takes the indices

where max and min are attained in minl−ali + (maxk blk + vk).

Fix τ ∗ and let σ vary. We obtain a one-player game described in Subsect. 2.2, with

player Max solo. Then χ, v is also an invariant halfline of the pure max-plus linear function

A]τ∗B:

(15) (A]τ∗Bx)i = max
j

(−aτ∗(i)i + bτ∗(i)j + xj).

This can be also expressed by max-plus matrix Cτ∗ whose entries are

(16) (Cτ∗)ij = −aτ∗(i)i + bτ∗(i)j.

Dually, fix σ∗ and let τ vary. We obtain a one-player game described in Subsect. 2.2,

with player Min solo. Then χ, v is also an invariant halfline of the pure min-plus linear
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function A]Bσ∗ :

(17) (A]Bσ∗x)i = min
k

(−aki + bkσ∗(k) + xσ∗(k)).

This can be also expressed by min-plus matrix Dσ∗ whose entries are

(18) (Dσ∗)ik = min
l : k=σ∗(l)

(−ali + blk).

Each strategy σ of Max in the two-player game corresponds to a strategy π in the one-

player game defined by Cτ∗ , defined by π(i) = στ ∗(i). Then Φ
(n)
Cτ∗

(i, π) = Φ
(n)

A]B
(i, σ, τ ∗),

hence also Φsup
Cτ∗

(i, π) = Φsup
A]B

(i, σ, τ ∗). Applying Proposition 1 to Cτ∗ and π we obtain

that Φsup
A]B

(i, σ, τ ∗) ≤ χi(A
]B).

Each strategy τ of Min in the two-player game corresponds to a strategy π in the one-

player game defined by Dσ∗ defined by π(i) = σ∗τ(i). Then Φ
(n)
Dσ∗

(i, π) ≤ Φ
(n)

A]B
(i, σ∗, τ),

hence also Φinf
Dσ∗

(i, π) ≤ Φinf
A]B

(i, σ∗, τ). Applying Proposition 1 to Dσ∗ and π we obtain

that Φinf
A]B

(i, σ∗, τ) ≥ χi(A
]B).

The claims are proved. �

It follows that χi(A
]B) is determined uniquely by

(19) χi(A
]B) = Φ(i, τ ∗, σ∗) = min

τ
max
σ

Φ(i, τ, σ) = max
σ

min
τ

Φ(i, τ, σ),

We will also need the game beginning at a node i of Max. Formally, dynamic operator

of such a game is different: BA] : Rm 7→ Rm defined by

(20) (BA]x)i = min
l∈[n]

(bil + max
k∈[m]

(−akl + xk)) .

Further notations related to this game:

Φ
(n)

BA]
(j, τ, σ) =

n∑
t=1

blt−1kt − altkt , l0 = i, kt = σ(t)(lt−1), lt = τ (t)(kt),

ΦBA](j, τ, σ) = lim
n→∞

Φ
(n)

BA]
(j, τ, σ)/n

(21)

Evidently BA] is also a min-max function and all above said including Theorems 2

and 3 applies to this situation too. Next we establish the relation between χ(A]B) and

χ(BA]).

Proposition 4. Let σ∗ and τ ∗ be optimal strategies of Max and Min for the game starting

at a node of Min. Then these strategies are also optimal for the game starting at a node

of Max. Further let i ∈ [m], j ∈ [n] and i = τ ∗(j) or j = σ∗(i). Then χi(BA
]) = χj(A

]B).
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Proof. Let i = τ ∗(j).

Fix the strategy τ ∗ of Min and let the other strategy σ vary. Then ΦBA](i, τ
∗, σ) =

ΦA]B(j, τ ∗, σ) for any σ. Applying Theorem 3 we obtain ΦBA](i, τ
∗, σ) ≤ χj(A

]B).

Fix the strategy σ∗ of Max and let the other strategy τ vary. Notice that ΦBA](i, τ, σ
∗) =

ΦA]B(j, τ̃ , σ∗) for any τ , where the (nonpositional) strategy τ̃ first takes i = τ ∗(j) and

then proceeds according to τ . Applying Theorem 3 we obtain ΦBA](i, τ, σ
∗) ≥ χj(A

]B).

Hence χj(A
]B) is the value of the game which starts at the node i of Max. This value

also equals χi(BA
]).

The case j = σ∗(i) is treated analogously. �

2.4. Mean-payoff games and two-sided systems of inequalities. The starting point

already appeared above as (11): Ax ≤ Bx⇔ x ≤ A]Bx. Moreover, positional strategies

σ : [m] 7→ [n] and τ : [n] 7→ [m] correspond to affine mappings Bσ and Aτ defined by

(22) (Aτ )ij =

aij if i = τ(j),

−∞ otherwise,
(Bσ)ij =

bij if j = σ(i),

−∞ otherwise.

The existence of value in mean-payoff games (Theorem 3in the form of (19)) can be

expressed in max(min)-plus algebra as follows:

(23) min
τ∈T

χ(A]τB) = χ(A]B) = max
σ∈S

χ(A]Bσ) .

where T (resp. S) is the set of positional strategies of Min (resp. Max). This form of (19)

was obtained by Gaubert and Gunawardena [GG98].

The following observation due to Akian et al. [AGG09a] relates the solutions ofAx ≤ Bx

and the nonnegative coordinates of χ(A]B). These coordinates correspond to winning

states of the game: if the game starts in these states, then Max can ensure nonnegative

profit with any positional strategy of Min.

Theorem 5 ([AGG09a, Th. 3.2]). Let A,B ∈ (R ∪ {−∞})m×n. Then, χi(A
]B) ≥ 0 if

and only if there exists x ∈ (R ∪ {−∞})n such that Ax ≤ Bx and xi 6= −∞.

Proof. The “if” part: If there exists x with xi 6= −∞ such that Ax ≤ Bx, then we take

any finite y ∈ Rn such that y ≥ x. We have x ≤ A]Bx ≤ A]By. Applying A]B to

this inequality k times, we obtain x ≤ (A]B)ky for all k. Using limit expression (13), we

obtain χi(A
]B) ≥ limk→∞ xi/k = 0.

The “only if” part: Let v be an invariant halfline of A]B:

(24) min
k

(−aki + max
l

(bkl + vl + tχl)) = vi + (t+ 1)χi , t ≥ T ,∀i ∈ [n] ,
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and let I := {i : χi ≥ 0}. For all i ∈ I, in all max-linear brackets that contribute to the

minimization, there must be at least one l ∈ I such that bkl is finite, otherwise the l.h.s.

of (24) would fall below vi at sufficiently large t. Also in any such bracket Max will choose

l ∈ I for all sufficiently large t. This shows that for i ∈ I and large enough t in (24), we

can replace v by the reduced vector ṽ such that ṽi = vi for i ∈ I and ṽi = −∞ for i /∈ I.

Taking x := ṽ + tχ for large enough t, we get A]Bx ≥ x and hence Ax ≤ Bx. �

Theorem 5 shows that to decide whether Ax ≤ Bx can be satisfied by a vector x such

that xi 6= −∞, we can exploit a mean-payoff oracle. This oracle will decide whether

i is a winning node of the associated mean-payoff game and give a winning strategy of

Max. This oracle can be implemented either by using the value iteration method, which

is pseudo-polynomial [ZP96], by the approach of Puri (solving an associated discounted

game for a discount factor close enough to 1 by policy iteration [Pur95]), by using the

policy iteration algorithm for mean payoff games of [CTGG99, GG98, DG06], or the one

of [BV07b].

A weaker version of Theorem 5 uses the spectral radius r(A]B) meaning just the greatest

eigenvalue of A]B. The spectral radius of additively homogeneous and isotone function

f : (R ∪ {−∞})n → (R ∪ {−∞})n satisfies the following identities from the nonlinear

Perron-Frobenius theory [Nus86]:

r(f) = inf{λ : ∃x ∈ Rn f(x) ≤ λ+ x}

r(f) = max{λ : ∃x ∈ (R ∪ {−∞})n f(x) ≥ λ+ x}.
(25)

Using the first of these identities and the definition of χ(13) we obtain that r(f) = χ(f) :=

maxi χi(f) for any +-homogeneous and isotone f . Using the second identity we obtain a

weaker version of Theorem 5.

Proposition 6. Let A,B ∈ (R∪{−∞})m×n. Then r(A]B) ≥ 0 if and only if there exists

nontrivial x ∈ (R ∪ {−∞})n such that Ax ≤ Bx.

3. The method of spectral function

3.1. Elementary properties and reconstruction. We are now interested in the case

when A,B ∈ (R ∪ {−∞})m×n depend on one parameter λ. Namely, let an entry of A or

B be an (L,M) piecewise linear function, by which we mean a function f(λ) consisting

of a finite number of linear pieces α + λk, where |α| ≤ M and |k| ≤ L. We also assume

that the slopes k are integer. We will also consider the monomial case where each entry

of A and B is of the form α + λk with the same restrictions on α and k.
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Applying the principle A(λ)x ≤ B(λ)x ⇔ x ≤ A](λ)B(λ)x we obtain parametric

min-max function A](λ)B(λ) which is dynamic operator of a mean-payoff game with

parametric costs. The value of this game starting in a node j of Min will be given by the

spectral function

(26) φj(λ) := χj(A
](λ)B(λ))

The pointwise maximum of φj(λ) yields the principal spectral function

(27) φ(λ) := r(A](λ)B(λ))

Fixing positional strategy σ : {1, . . . ,m} → {1, . . . , n} of Max or τ : {1, . . . , n} →
{1, . . . ,m} of Min gives rise to the partial spectral functions

φσj (λ) := χj(A
](λ)Bσ(λ)), φτj (λ) := χj(A

]
τ (λ)B(λ)),

φσ(λ) := r(A](λ)Bσ(λ)), φτ (λ) := χ(A]τ (λ)B(λ))
(28)

Collecting the results of Theorem 3, Theorem 5 and Proposition 6 yields the following.

Theorem 7. System A(λ)x ≤ B(λ)x is solvable if and only if φ(λ) ≥ 0. Moreover it has

solution with xj finite if and only if φj(λ) ≥ 0.

Theorem 8. The spectral functions can be represented in terms of partial spectral func-

tions as follows:

φj(λ) = max
σ

φσj (λ) = min
τ
φτj (λ), φ(λ) = max

σ
φσ(λ) = min

τ
φτ (λ).(29)

We note that partial spectral functions at a given point can be found explicitly by

means of Karp’s algorithm (8). The same formulae combined with Theorem 8 yield the

following observations.

Proposition 9. Let the entries of A(λ), B(λ) ∈ (R ∪ {−∞})m×n be (L,M) piecewise-

linear functions with integer slopes. Then all spectral functions are (L, 2M) piecewise-

linear functions, whose slopes are of the form k/p where 1 ≤ p ≤ min(m,n) and |k| ≤ pL.

Proof. Any coordinate of χ of a min-max function or of a purely max-plus(min-plus) map

is the mean weight of a certain cycle, see (7) and (8). This shows that any spectral

function is of the form α+λ(k/p) at any given λ, where |α| ≤ 2M (using that cycle mean

does not exceed max), and |k| ≤ pL (using the given bound L on the slopes of linear

functions). The integer p is half of the length of a certain cycle in the bipartite graph G
of the game, hence it is bounded by min(m,n). �

Proposition 10. If the entries of A(λ) and B(λ) are monomial in λ, then φτj (λ) and

φτ (λ) are convex, and partial spectral functions φσj (λ) are concave.
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Proof. Follows from (7) and (8). �

Note that spectral functions φj(λ) and also partial spectral functions φσ(λ) are neither

concave nor convex in general.

Also the assumption of monomiality can be relaxed. For instance, if the entries of B(λ)

are max-polynomials and the entries of A(λ) are min-polynomials, then φτj (λ) and φτ are

still convex, and if the entries of B(λ) are min-polynomials and the entries of A(λ) are

max-polynomials, then φσj (λ) are still concave. The properties of convexity and concavity

mean that the partial functions consist of smaller number of linear pieces and can be

reconstructed more quickly, like the characteristic max-polynomials of matrices [But10],

Subsect. 5.3.3.

Proposition 11. Let the entries of A(λ), B(λ) ∈ (R ∪ {−∞})m×n be (L,M) piecewise-

linear functions with integer slopes. Then the spectral functions are linear at λ ≥ 4M(min(m,n))2

and λ ≤ −4M(min(m,n))2.

Proof. By Proposition 9 the spectral functions are piecewise linear and the linear pieces

are of the form a+ (k/p)λ where in particular p ≤ min(m,n) and |a| ≤ 2M . Considering

the intersection point of one such piece a1 + (k1/p1)λ with another piece a2 + (k2/p2)λ we

deduce from

| k1

p1

− k2

p2

|≥ 1

(min(m,n))2
, |a1 − a2| ≤ 4M,

that |λ| ≤ 4M(min(m,n)2). This means that at λ ≥ 4M(min(m,n))2 and λ ≤ −4M(min(m,n))2

any spectral function is linear. �

To determine the linear slopes at |λ| ≥ 4M(min(m,n))2 we can take, for each coefficient,

only the slopes at ±∞ and set the offsets to 0. Then we “play” the mean-payoff game at

λ = ±1.

Proposition 12. Let the entries of A,B ∈ (R ∪ {−∞})m×n be (L,M) piecewise-linear

functions with integer slopes and integer offsets of the linear pieces. Then the interval be-

tween breaking points of spectral functions is not less than 1/(min(m,n))4. Hence spectral

functions consist of no more than 8M(min(m,n))6 pieces.

Proof. When the offsets are integer, the difference between two breaking points is not less

than the difference between their inverse denominators. The denominators of breaking

points do not exceed (min(m,n))2 (see Proposition 9), and hence the difference between

their inverses is not less than 1/(min(m,n))4. �

There exist pseudopolynomial algorithms computing values of mean-payoff games. For

instance Zwick and Paterson [ZP96] propose a value iteration algorithm with O(mn4M)
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complexity. Using this we now formulate the main result of this subsection, about the

pseudopolynomial reconstruction of spectral functions.

Theorem 13. Let the entries of A,B ∈ (R ∪ {−∞})m×n be (L,M) piecewise-linear

functions with integer slopes and integer offsets of the linear pieces, and let C(m,n,M) be

the complexity of a mean-payoff oracle that computes value of m×n mean-payoff game such

that all costs are integers bounded by M . Then all linear pieces that constitute the graph

of φi(λ) can be identified in O(M min(m,n)6×C(m,n,M min(m,n)2 +4LM min(m,n)4))

operations.

Proof. It follows from Proposition 12 that we can reconstruct the graph of spectral func-

tion in O(M min(m,n)6) calls of a mean-payoff oracle. The costs in the mean-payoff

games that the oracle works with, are of the form a+kλ where |a| ≤M , |k| ≤ L and λ ia

fixed rational number whose denominator D does not exceed min(m,n)2, and the absolute

value of numerator does not exceed 4M min(m,n)2D. Thus a + kλ is a rational number

whose numerator does not exceed MD+ 4LM min(m,n)2D. All costs in the mean-payoff

game are rational numbers with equal denominators D. The properties of the game will

not change if we multiply all costs by D, and the complexity of mean-payoff oracle will

not exceed C(m,n,MD + 4LM min(m,n)2D). This shows the claim. �

The technique of spectral function has been applied in [GS10] to the generalized eigen-

problem Ax = λ + Bx yielding a method for identifying the whole spectrum of (A,B)

in pseudopolynomial time. It can also be applied to the case when A(λ) and B(λ) are

max-polynomial matrices.

3.2. General tropical programming. Assume as above that the entries of A(λ) and

B(λ) are (L,M) piecewise linear functions with integer slopes. When φ(λ) is nondecreas-

ing we can pose the following problem.

Problem 1 (General Tropical Programming). Given A(λ), B(λ) ∈ (R∪ {−∞})m×n with

nondecreasing φi(λ), find the minimal λ at which the system A(λ)x ≤ B(λ)x has a solution

with xi 6= −∞.

The spectral functions are nondecreasing in particular when all entries in A are non-

increasing functions, and all entries in B are nondecreasing functions. For this note in

particular that A](λ)B(λ)x is nondecreasing with λ, and that both χ(f) and r(f) are

isotone with respect to f .

In terms of spectral functions, solving Problem 1 is equivalent to finding the least value

of λ such that φi(λ) ≥ 0. As φi(λ) is a continuous and monotone function and has
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piecewise-linear structure, Problem 1 can be solved by a variation of bisection method,

which we now formulate in more details.

Algorithm 1 (Bisection method). Start. Set U(0) := 4M min(m,n)2 and L(0) :=

−4M min(m,n)2.

Check φi(L(0)) ≤ 0. If not, then compute φi(L(0)) and the slope at −∞. Return its

intersection with zero level, if it exists. If not, the problem is unbounded.

Check φi(U(0)) ≥ 0. If not, then compute φi(U(0)) and the slope at +∞. Return its

intersection with zero level, if it exists. If not, the problem is infeasible.

Iteration k. At each iteration, compute µ = (U(k) + L(k))/2. If φi(µ) ≥ 0 then set

U(k + 1) = µ and L(k + 1) = L(k). Otherwise set U(k + 1) = U(k) and L(k + 1) = µ.

Stop. After each iteration verify whether U(k + 1) − L(k + 1) < 1/(min(m,n))4. If

true then return λ = (φi(U(k+ 1))L(k+ 1) + φi(L(k+ 1))U(k+ 1))/L(k+ 1) +U(k+ 1).

We can show that the bisection algorithm is pseudoplolynomial using the same argu-

ments as in Theorem 13

Theorem 14. Let the entries of A,B ∈ (R∪{−∞})m×n be (L,M) piecewise-linear func-

tions with integer slopes and integer offsets of the linear pieces, and let C̃(m,n,M) be the

complexity of a mean-payoff oracle that verifies that the value of m×n mean-payoff game,

such that all costs are integers bounded by M , is nonnegative. Then the main phase of the

bisection method requires no more than O(log(M min(m,n)6)C̃(m,n,M2(min(m,n))6 +

4LM2(min(m,n))8) operations.

Proof. Following the proof of Theorem 13 we show that the complexity of one call to a

mean-payoff oracle does not exceed C̃(m,n,MD̃ + 4LM min(m,n)2D̃) where D̃ is the

greatest denominator of values λ which we may encounter. The denominators of λ are

bounded by 2log(M min(m,n)6) = M min(m,n)6. �

Further research. Note that the bound on Bisection is not necessarily worse than

that on the general reconstruction: if we use the above mentioned value iteration of Zwick

and Paterson [ZP96], then C(m,n,M) = mn4M and C̃(m,n,M) = mn3M . Hence The-

orem 13 yields M min(m,n)6(mn3LM min(m,n)4) = LM2mn3 min(m,n)10 while Theo-

rem 14 yields log(M min(m,n)6)mn2LM2 min(m,n)8: the factor after logarithm still looks

min(m,n)3 better than in the general reconstruction. Still it would be nice to improve the

bisection algorithm by introducing rounding to the points with bounded denominators.

Having in mind (29) we can also formulate Newton iterations. For this we need the

concepts of stategies which are left-(right-)optimal at λ: positional strategies of Max or

Min which are optimal also in some left (right) neighbourhood of λ.
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Algorithm 2 (Positive Newton iteration). Start.Set λ0 := 4M min(m,n)2

Check φi(λ0) ≥ 0. If not, then compute φi(λ0) and the slope at +∞. Return its

intersection with zero level, if it exists. If not, the problem is infeasible.

Iteration k. Find a left-optimal strategy σ ∈ S at λk−1 and compute λk = min{λ : φσj (λ) ≥
0}.

Stop. Verify λk = λk−1 or λk = −∞.

Algorithm 3 (Negative Newton iteration). Start.Set λ0 := −4M min(m,n)2.

Check φi(λ0) ≤ 0. If not, then compute φi(L(0)) and the slope at −∞. Return its

intersection with zero level, if it exists. If not, the problem is unbounded.

Iteration k. Find a (right-)optimal strategy τ ∈ T at λk−1 and compute λk =

min{λ : φτi (λ) ≥ 0}.
Stop. Verify φi(λk) = 0 or λk = +∞.

In the negative Newton iteration, the strategy can be just optimal (though the right-

optimality may be a better option).

Proposition 15. Algoritms 2 and 3, terminate in a finite number of steps, the number

of which does not exceed, respectively, the number of strategies of Max and Min.

Proof. At different iterations of Algorithm 2 we have different strategies, because λk =

min{λ : φσi (λ) ≥ 0} are different for all k. Similarly for Algorithm 3, with τ instead of

σ (where λk 6= λk−1 also follows as long as φi(λk−1) < 0). Thus the number of steps is

limited by the number of strategies, which is finite. �

Note that the implementation of Newton iterations crucially depends on the properties

of partial spectral functions. These algorithms become available in practice when partial

spectral functions are convex/concave, see Proposition 10.

The tropical linear programming described below in Section 5 is a special case of Prob-

lem 1. In this case both bisection method and Newton iterations can be effectively imple-

mented. In particular, the entries of A are constant and the entries of B(λ) are monomial,

so that the partial spectral functions do possess convexity/concavity properties.

4. Tropical two-sided eigenproblem

4.1. Two-sided eigenproblem as a mean-payoff game. The method of spectral func-

tion was applied in [GS10] to the tropical two-sided eigenproblem, where one seeks scalars

λ such that Ax = λ+ Bx where A,B ∈ (R ∪ {−∞})m×n can be satisfied by a nontrivial

x ∈ (R ∪ {−∞})n. Such λ and x are then called eigenvalue and eigenvector of (A,B).
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Figure 1. Mean-payoff game for Ax = λ+Bx

The problem Ax = λ+Bx can be expressed as C(λ)x ≤ D(λ)x where

(30) C(λ) =

(
A

λ+B

)
, D(λ) =

(
λ+B

A

)
A diagram of the corresponding mean-payoff game is shown in Figure 1

The min-max function is C](λ)D(λ) can be also expressed as

(31) gλ(x) = A]Ax ∧B]Bx ∧ A](λ+B)x ∧ (λ+B)]Ax.

It can be shown that the following reduced versions of gλ have the same spectral radius

(or χ):

fλ(x) = x ∧ A](λ+B)x ∧ (λ+B)]Ax,

hλ(x) = A](λ+B)x ∧ (λ+B)]Ax.
(32)

More precisely we have the following [GS10]:

(33) φ(λ) := r(fλ) = r(hλ) = −min
x
|Ax− (λ+Bx)|,

where || means the max norm (greatest absolute value of coordinates). Now we collect

the basic properties of φ(λ) which follow from the results of Subsect. 3.1 and (33).

Theorem 16 (Gaubert and Sergeev [GS10]). Let A,B ∈ (R ∪ {−∞})m×n and suppose

that |aij| ≤M and |bij| ≤M for all finite aij and bij. Then

1. φ(λ) ≤ 0, and the spectrum of (A,B) is precisely the zero-level set of φ(λ);

2. φ(λ) is (1, 2M) piecewise linear function. It can change slopes only at |λ| ≤
4M(min(2m,n))2, and it has no more than 4M(min(2m,n))6 slopes when A,B

have integer entries.

3. When A,B have integer entries, both φ(λ) and the spectrum of (A,B) can be

reconstructed in pseudopolynomial time.

See [GS10] for more specific results and treatment of special cases.
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4.2. Examples of spectral functions. We further describe a couple of special cases

when φ(λ) can be identified with the least 1-Lipschitz (|f(λ1) − f(λ2)| ≤ |λ1 − λ2|)
function having a given zero-level set Λ, which we denote by φΛ(λ).

First we present the following example constructed in [?] and the last section of [GS10].

A =

(
. . . ai bi ci . . .

. . . 2ai 2bi 2ci . . .

)
,

B =

(
. . . 0 0 0 . . .

. . . ai ci bi . . .

)
,

(34)

where ai ≤ ci < ai+1 for i = 1, . . . , t − 1 and bi := ai+ci
2

. For this example φ(λ) = φΛ

where Λ is a given sequence of finite intervals and points [a1, c1], . . . , [at, ct].

For example, consider

A =

(
1 1.5 2 2.2 2.3 2.4 3

2 3 4 4.4 4.6 4.8 6

)
,

B =

(
0 0 0 0 0 0 0

1 2 1.5 2.2 2.4 2.3 3

)(35)

The spectral function is shown on Figure 2 (left).

For a different example suppose that B equals the max-plus identity matrix I. Then

we have

(36) hµ = µ+ A]x ∧ −µ+ Ax,

and φ(µ) = r(hµ).

We will show that φ(µ) = φΛ(µ) where Λ is the spectrum of Ax = λx. Since Λ is the

zero-level set of φ(µ) which is 1-Lipschitz, we already have that φ(µ) ≥ φΛ(µ) So we have

to show the reverse inequality φ(µ) ≤ φΛ(µ). It is implied by the following result.

Proposition 17. Let

(37) µ+ A]x ∧ −µ+ Ax = r + x,

where supp(x) = M and let λ be the maximum cycle mean (i.e. the greatest eigenvalue)

of the principal submatrix AMM . Then r ≤ − | λ− µ |.

Proof. As only submatrix AMM has nontrivial impact in (37), we can assume w.l.o.g. that

M = {1, . . . , n}. We will consider two cases, in each of them we argue by contradiction.

Case 1: µ < λ. Suppose that the claim is false and r > µ− λ. Then (37) implies that

µ + A]x ≥ r + x > µ − λ + x, hence A]x > −λ + x and Ax < λ + x. But if λ is the
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Figure 2. The spectral function of (A,B) (35) (left) and (A, I) (38) (right)

maximum cycle mean of A, for any critical index i it must hold that (Ax)i = λ + xi, for

any x which satisfies Ax ≤ λ+ x. Hence r ≤ µ− λ.

Case 2: λ > µ. Suppose that the claim is false and r > λ− µ. Then (37) implies that

−µ + Ax ≥ r + x > λ− µ + x hence Ax > λ + x. But as λ is the greatest eigenvalue of

A, for each positive x there exists i such that (Ax)i ≤ λ + xi. The contradiction shows

that r ≤ λ− µ. �

For example consider [But10] Example 4.5.9:

(38) A =



0 3 −∞ −∞ −∞ −∞
1 1 −∞ −∞ −∞ −∞
−∞ −∞ 4 −∞ −∞ −∞
−∞ −∞ 0 3 1 −∞
−∞ −∞ −∞ −1 2 −∞
−∞ −∞ −∞ 1 −∞ 5


The spectral function of the corresponding eigenproblem is shown in Figure 2 (right).

4.3. Symmetric case. One obtains the following simple bound on the spectrum, as an

immediate application of min-max functions.

Theorem 18 (Gaubert and Sergeev[GS10]). Suppose A and B do not have −∞ columns.

The spectrum of Ax = λ+Bx lies within [−r(A]B), r(B]A)].

Proof. Notice that Ax = λBx is equivalent to Ax ≤ λ + Bx and Ax ≥ λ + Bx. By

Proposition 6, these imply that r(λ + A]B) ≥ 0 and r(−λ + B]A) ≥ 0. Using +-

homogeneity we get the claim. �
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There are other bounds described in [But10], Section 9.1, and [GS10] which do not

require mean-payoff game computations, but they are not so tight in practice. Note that

when −r(A]B) = r(B]A) the above bound gives an immediate criterion for existence of

generalized eigenvalues, as well as an explicit formula and mean-payoff game techniques

for the computation of the unique possible eigenvalue and its verification. To this end,

we now consider the case of symmetric A,B ∈ (R ∪ {−∞})n×n.

Lemma 19. Let A,B ∈ (R ∪ {−∞})n×n be symmetric and x ∈ Rn. Then A]Bx =

−AB](−x).

Proof. We verify using the symmetry of A and B that

min
k
−aki + (max

j
bkj + xj) = −max

k
aik − (max

j
bjk + xj) =

= −max
k
aik + min

j
−bjk − xj.

(39)

�

Using (13) and Lemma 19 we obtain that χj(B
]A) = −χj(BA]) and −χi(A]B) =

χi(AB
]) for each i, j ∈ [n]. Combining this with Proposition 4 we obtain the following.

Theorem 20. Let A,B ∈ (R ∪ {−∞})n×n be symmetric and σ∗, resp. τ ∗ be optimal

strategies of Max, resp. Min. If i = τ ∗(j) or j = σ∗(i) where i, j ∈ [n], then

(40) χj(B
]A) = −χj(BA]) = −χi(A]B) = χi(AB

])

Corollary 21. Let A,B ∈ (R∪{−∞})n×n be symmetric, then the components of χ(A]B)

are inverted entries of χ(B]A), and analogously for χ(AB]) and χ(BA]).

For a min-max function f , denote χ(f) := mini χi(f).

Theorem 22. Let A,B ∈ (R∪{−∞})n×n be symmetric. Then every eigenvalue of (A,B)

belongs to [χ(B]A), χ(B]A)]. When B]A (equivalently A]B) has finite eigenvector, r(B]A)

is the only possible eigenvalue of (A,B).

Proof. The first part of the claim follows from Theorem 18 and Corollary 21. Further,

to have a finite eigenvector is the same as to have an invariant halfline (χ, v) with all

components of χ equal to each other. Hence if the min-max function B]A has a finite

eigenvector, the spectral bounds reduce to one point r(B]A). �

We also present the following variation of second part of Theorem 22, which improves

an observation of Binding and Volkmer [BV07a], see also [But10] Theorem 9.1.6.
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Theorem 23. Let A,B ∈ (R∪{−∞})n×n and let x ∈ (R∪{−∞})n satisfy Ax = λ+Bx

so that Ax (and λ+Bx) is finite. Then λ = r(B]A) is the unique generalized eigenvalue

of (A,B).

Proof. We start with inequalities λ + A]Bx ≥ x and −λ + B]Ax ≥ x. Applying λ + B

and A to these inequalities we obtain for y = Ax = λ+Bx that

(41) λ+BA]y ≥ y, −λ+ AB]y ≥ y.

This shows that both χ(λ + BA]) ≥ 0 and χ(A(λ + B)]) ≥ 0. But this is only possible

when χ(λ+BA]) = 0 and χ(A(λ+B)]) = 0 in which case λ = r(B]A) = −r(A]B). �

Future research: Using this theorem it is possible to describe all eigenvalues of such

symmetric pairs A and B where both A and B are such that for any subset N1 ⊂ [n], for

each i ∈ N1 there exists j ∈ N1 with aij and bij are finite. If this condition holds, then

each eigenvector leads to a pair of symmetric (priincipal) submatrices of A and B from

which the corresponding eigenvalue can be computed. In p;articular, it follows that the

spectrum of such pairs (A,B) consists of isolated points.

If no assumptions on symmetric matrices are made, then the eigenproblem is of the

same complexity as in the general case, due to the following linear-algebraic arguments

(similar to [But10] Theorem 9.1.6).

Proposition 24. Let A,B ∈ (R∪{−∞})m×n. Suppose that Ax = λ+Bx has eigenvalues

such that Ax is finite. Then either both Ax = λ + Bx and ATy = µ + BTy have unique

eigenvalue µ = λ with Ax finite, or Ax = λ+Bx has several eigenvalues such that Ax is

finite and the transposed problem ATy = λ+BTy does not have eigenvalues at all.

Proof. Suppose that x1 and x2 satisfy Ax1 = λ1 +Bx1 and Ax2 = λ2 +Bx2. If we assume

that there exists y satisfying ATy = µ + BTy, then premultiplying by yT we obtain that

yTAx1 = λ1 + yTBx1 = µ + yTBx1, and yTAx2 = λ2 + yTBx2 = µ + yTBx2. As yTBx1

and yTBx2 are finite it follows that µ = λ1 = λ2. �

Suppose now that Ay = λ + By has eigenvalues such that Ay is finite. We now turn

Ay = λ+By into a symmetric eigenproblem:

(42)

(
−∞ AT

A −∞

)(
x

y

)
= λ+

(
−∞ BT

B −∞

)(
x

y

)
This symmetric eigenproblem splits into two non-symmetric ones, one of them being

the transpose of the other. Using Proposition 24 we obtain that this symmetric problem

has the same spectrum as Ay = λ+By. It follows in particular [?] that the spectrum of
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general symmetric two-sided eigenproblem can be any given sequence of finite intervals

and points (see an example above).

5. Tropical linear programming

5.1. Formulations. In [BA08] Butkovič and Aminu considered the following tropical

analogue of the linear programming problem:

minimize px (resp. maximize qx)

subject to: Ax ∨ c ≤ Bx ∨ d , x ∈ (R ∪ {−∞})n ,
(43)

where p, q ∈ (R∪ {−∞})n, c, d ∈ (R∪ {−∞})m, and A,B ∈ (R∪ {−∞})m×n. Instead of

this problem, we will consider its generalization:

minimize (px ∨ r)− (qx ∨ s)

subject to: Ax ∨ c ≤ Bx ∨ d , x ∈ (R ∪ {−∞})n ,
(44)

The new problem formulation has a good geometric insight, since it means optimization

over a one-parametric family of general tropical half-spaces (or hyperplanes).

Formulation (44) can be recast in a more compact way as

(45) min{λ | Uy ≤ V (λ)y , yn+1 6= −∞ is solvable} ,

where

(46) U =

(
A c

p r

)
and V (λ) =

(
B d

λ+ q λ+ s

)
have dimensions (m+ 1)× (n+ 1).

We will also consider the separated case when p, r, q, s satisfy the following complemen-

tarity condition: pi ∨ qi and r ∨ s are finite but for each i either pi = −∞ or qi = −∞,

and also either r = −∞ or s = −∞. This arises from better geometric properties of

“separated” halfspaces. Homogenizing we obtain the following problem: find minimal

parameter λ such that the system

A1x ∨ A2y ≤ B1x ∨B2y,

ux ≤ λ+ vy,
(47)

where u is the vector of finite components of (p, r) and v is the vector of finite components

of (q, s).

Theorem 25. Bisection method and Newton algorithms described in Subsect. 3.2 can

be applied to the tropical linear programming formulations (43) and (44). Moreover the

bisection method is pseudopolynomial, and when all the data are integers bounded by M ,
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the number of iterations in the bisection method can be reduced to log(8M(min(m+ 1, n+

1)2).

Proof. Recall that (43) is an instance of (44), which is equivalent to problem (45) with

U and V (λ) as in (46). As (45) is a special case of Problem 1, all methods described in

Subsection 3.2 apply. Moreover, we have integrality of the objective function when the

entries of A,B are integer, similarly to [But10] Corollary 10.2.6 (also [BA08]). Following

the approach of [But10] Subsect. 10.2.3, the middle point in the bisection algorithm can

be replaced by its rounding, and the algorithm stops when U(k)− L(k) = 1. This shows

that the number of iterations can be reduced to log(8M(min(m+ 1, n+ 1))2). �

5.2. Tropical linear programming and mean-payoff games. The diagrams of mean-

payoff games for tropical linear programming are given below.

[m]

m+ 1

[n]

n+ 1

B

A]

d

c]

f ]

λ

[m]

m+ 1

[n]

n+ 1

B

A]

d

c]

λ+ f

0

Figure 3. Mean-payoff games for tropical linear programming (43):

min fx (left) and max fx (right)

In all these cases we play the game starting at the node number n+1 of Min. Analysing

such diagrams, Gaubert et al. [GKS10] conclude that in the tropical linear program-

ming (44) there are important certificates of optimality and unboundedness, which show

that the role of Lagrangian multipliers is played here by certain strategies. Below, the

subscript λ∗ of G indicates that the weights of certain edges are modified by adding λ (as

in the diagrams), and the subscripts σ or τ indicate at all nodes i of Max, resp. j of Min,

all edges except for (i, σ(i)), resp. (j, τ(j)), are removed.

Theorem 26 (Gaubert et al. [GKS10]). The tropical linear programming problem (45)

has the optimal value λ∗ ∈ R if, and only if, φ(λ∗) ≥ 0 and there exists a strategy τ of

Min such that the digraph Gτλ∗ satisfies the following conditions:
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[m]

m+ 1

[n]

n+ 1

B

A]

d

c]

λ+ q

p]

λ+ s

−r

[m]

m+ 1

[x]

[y]

B1

A]1

B2

A]2

u]

λ+ v

Figure 4. Mean-payoff game for the general tropical linear programming

(left) and the separated case (right)

(i) all circuits accessible from node n+ 1 of Min have nonpositive weight,

(ii) there is a circuit accessible from node n+ 1 of Min with zero weight,

(iii) each circuit of zero weight accessible from node n+ 1 of Min passes through node

m+ 1 of Max.

Moreover, these conditions are always satisfied when τ is left-optimal at point λ∗.

Theorem 27. The tropical linear programming problem (45) is unbounded if, and only

if, there exists a strategy σ of Max such that all circuits in the digraph Gσ0 accessed from

node n+ 1 of Min do not contain node m+ 1 of Max and have nonnegative weight.

If the strategies σ or τ and the scalar λ∗ are fixed (considered as inputs) the conditions

of Theorems 26 and 27, i.e., the validity of the certificates, can be checked in polynomial

time.

5.3. Separated case. In the maximization case of (43) when A,B, c, d have finite entries,

Butkovič and Aminu [BA08] obtained a particular version of Theorem 27 where this

certificate of unboundedness reduces to solvability of Ax ≤ Bx in (44). An analogous

more general result can be obtained for separated problem (47) (Figure 4).

Proposition 28. Let A,B, c, d have finite entries. Problem (47) is unbounded if and only

if A2y ≤ B2y has nontrivial solution.

The quality of bisection method crucially depends on the quality of initial bounds,

and the bound 4M(min(m + 1, n + 1)2 seems to be quite rough. To this end, Butkovič
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and Aminu obtained nicer bounds for their special formulation, which do not depend

on the dimension of the problem, in the case when the entries of A and B are finite.

Below we obtain a generalization of their bounds to (44) for the case of separated tropical

linear programming (47), when A,B, c, d have finite entries. It can be seen that (43), the

formulation of [BA08], corresponds to the following special cases of this formulation: 1)

min fx corresponds to the case when q is one-component (scalar), 2) max fx corresponds

to the case when p is one-component.

We are going to obtain the following lower bound:

(48) L = min
i

(min
j

(pj − b1
ij) + min

k
((max(a2

ik, b
2
ik)− qk))

Theorem 29. Suppose that all entries of A1, B1, A2, B2 are finite, p, q satisfy the com-

plementarity condition, and that A2y ≤ B2y does not have nontrivial solutions. Then

px− qy ≥ L for all solutions (x, y) of A1x ∨ A2y ≤ B1x ∨B2y.

Proof. We transform the system of constraints to the following form:

(49) (A1 ∨B1)x ∨ (A2 ∨B2)y = B1x ∨B2y.

For the solutions of this system it must hold that

(50) ∃i : (B1x)i ≥ ((A2 ∨B2)y)i,

otherwise we would have to satisfy the system without B1x, given that even (A2∨B2)y =

B2y cannot be satisfied.

Now suppose that for each i we can find such αi and βi that

(51) αi + px ≥ (B1x)i, ((A2 ∨B2)y)i ≥ βi + qy,

for any solution (x, y) and any i. Then we obtain that a solution (x, y) satisfies

(52) αi + px ≥ (B1x)i ≥ ((A2 ∨B2)y)i ≥ βi + qy,

for some i and hence px ≥ (βi − αi) + qy for some i. Hence any solution should satisfy

px ≥ min(βi − αi) + qx, and min(βi − αi) is a lower bound for (47). It remains to find

suitable αi and βi.

Notice that (51) can be relaxed by removing x and y:

(53) αi + p ≥ B1
i·, (A2 ∨B2)i· ≥ βi + q,
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where B1
i· and A2 ∨B2)i· denote the ith rows of B1, resp. A2 ∨B2. The greatest −αi and

βi that satisfy (53) are given by

(54) − αi = min
j

(pj − b1
ij), βi = min

k
((max(a2

ik, b
2
ik)− qk).

Substituting this into min(βi − αi) we obtain L. �

As a special case, let us get a bound for the problem max fx (given constraints in the

form of inequalities and transformed to equalities as above). For this we set pn+1 = 0

(one-component) , b1
i,n+1 = di, q = f , A2 ∨B2 = A:

(55) min
i

min
k

(−di + aik − fk).

Taking the inverse of (55) we obtain an upper bound for the maximization problem

(43)(see the same bound with c instead of d in [BA08] or [But10] Chapter 10).

For the problem min fx we have p = f , B1 = B, qn+1 = 0 (one component), max(a2
i,n+1, b

2
i,n+1) =

ci:

mini minj(fj − bij + ci), which is less than the bound of [BA08] (also [But10] Chapter

10): maxi|ci>di minj(fj − bij + ci). Such improvement is possible because in this case A2

and B2 are just c and d respectively, and it is easy to see that some of the inequalities in

A2y ≤ B2y are always true (where ci ≤ di, and the rest are always false (where ci > di).

Further research: Try to generalize this kind of observations.

5.4. Numerical experiments. A set of MATLAB programs was written, in order to

implement the methods of solving two-sided eigenproblem Ax = λ + Bx as well as the

bisection method and Newton iterations for tropical linear programming.

Below we present some graphs showing how bisection method and Newton iterations

behave on randomly generated instances of tropical linear programming with entries of

matrices and vectors ranging from −500 to 500. The matrices A and B in (43) and (44)

are square, with dimensions ranging from 1 to 400.

Figure 5 displays the cases of tropical linear programming (43), where all entries in (43)

are finite. Here the certificates of unboundedness reduce to solvability of a tropical two-

sided system of inequalities. When a feasible and bounded problem is generated, it

is solved by bisection and Newton algorithms. For smaller dimensions the results are

compared in order to ensure that the solution is correct.

The bisection method works similarly in both cases, with the number of iterations

quickly approaching a constant level of 9 or 10 iterations (log 500 or log 1000). Thin red

line represents the run of bisection method (up to 250), and thick red line represents the

constant level of 10.
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Figure 5. The work of bisection method and Newton iteration in the cases

of minimization (left) and maximization (right)

Thin blue line represents the run of Newton iterations, and thick blue line represents

their average number calculated for each interval of 20 dimensions. In the case of mini-

mization, the average number of Newton iterations slowly grows, being smaller than 10

before n = 250, but exceeding 10 at larger dimensions. Naturally the number of itera-

tions for the same dimension may be very different, depending on the configuration and

complexity of tropical polytopes (i.e., solution sets of Ax ∨ c ≤ Bx ∨ d. In the case of

maximization, the number of iterations is usually below 5. We think that this is due to

the scarcity of bounded instances of the problem: if a bounded problem is generated,

typically after very long sequence of tries where either boundedness or feasibility fail,

then it represents a very “thin” polytope whose dimension is much lower than m = n or

even reduced to one point. However, it also may be that the maximization is “simpler”

than minimization: actually it always suffices to find the greatest point of the solution set

(which is straightforward if the generators of the polytope are known). We also remark

that there does not seem to be any correlation between the number of iterations of Newton

and bisection methods.

Figure 6 displays the cases of general (fractional) tropical linear programming 44 with

all entries finite (left) and with the frequency of −∞ entries 0.7. In the case of −∞
entries, we ensure that the set of constraints contains neither −∞ rows on the right-hand

side nor −∞ columns on the left-hand side, which is the same as Assumptions 1 and 2 on

the mean-payoff game. The case of general tropical linear programming with finite entries
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Figure 6. The work of bisection method and Newton iteration in the cases

of fractional programming with finite entries (left) and the work of Newton

iteration if the rate of −∞ entries is 0.7 (right)

shows almost the same picture as in the case of minimization. Here, we would expect

that the bisection method which uses more general lower bound (48) is slightly worse,

and the Newton iterations are slightly better being closer to the case of maximization.

The case when −∞ appear with a regular frequency is even more favourable for Newton

iterations, due to the sparsity of G. We preferred to show level 10 as in the other graphs

instead of the bound log(8Mn2) for bisection method which is always much greater than

the number of Newton iterations.
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[BA08] P. Butkovič and A. Aminu. Introduction to max-linear programming. IMA Journal of Man-

agement Mathematics, 2008.
[BCOQ92] F. L. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat. Synchronization and Linearity:

an Algebra for Discrete Event Systems. Wiley, 1992.
[BH84] P. Butkovic and G. Hegedus. An elimination method for finding all solutions of the system

of linear equations over an extremal algebra. Ekonom.-Mat. Obzor (Prague), 20(2):203–215,
1984.

[BH04] W. Briec and C. Horvath. B-convexity. Optimization, 53:103–127, 2004.
[BNgC08] M. Bezem, R. Nieuwenhuis, and E. Rodŕıguez Carbonell. The max-atom problem and its

relevance. In Proceedings of the 15th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR’08), volume 5330 of LNCS, Doha (Qatar), No-
vember 2008. Springer.

[Bur91] S.M. Burns. Performance analysis and optimization of asynchronous circuits. PhD thesis,
California Institute of Technology, 1991.
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