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twocommuting irreduciblematrices inmaxalgebrahaveacommon

eigennode.

© 2010 Published by Elsevier Inc.

1. Introduction

The study of commuting complexmatrices has a long history. As observed in [13], Cayley considers

what appears to be a generic case of commuting matrices in his famous memoir [7]. Frobenius [15,

16] showed that if Ai, i = 1, . . . , r, are pairwise commuting matrices, then the eigenvalues α
j
i , j =
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1, . . . , n, of the matrices Ai may be ordered so that the eigenvalues of any polynomial p(A1, . . . , Ar)

are p(α
j
1, . . . ,α

j
r), j = 1, . . . , n. Another proof may be found in Schur [35]. Surprisingly, none of these

proofs mention eigenvectors. Frobenius [15] also showed that if for given matrices A, B the equation

AX = XB has a nonzero solution, then A and B have a common eigenvalue. Another well-known result

is that pairwise commuting matrices have a common eigenvector. We have found no reference for the

first explicit appearance of this property, though it easily follows from, e.g., the canonical form derived

byWeyr [37] and his discussion of commutingmatrices. Many generalizations and applications of this

result exist, see [14], [32] or [28]. Several books on matrix theory, such as [20], contain proofs of the

results stated above.

It is the purpose of this paper to prove analogs of these results for matrices over two semirings:

1. The semiring of nonnegative reals under the usual addition, here called (classical) nonnegative

algebra.

2. The semiring of nonnegative reals with the operation of maximum playing the role of addition,

here called max algebra.

Spectral theory of matrices in nonnegative algebra is usually called Perron–Frobenius theory after

the founders of this topic, see [29,30,17–19]. The basic results are again found inmany books onmatrix

theory, such as [20,24,33]. Commuting nonnegative matrices can be found in [3], see Section 7, and in

[31]. For further information relevant to the present article, see [34].

Spectral theory for matrices in max algebra was developed by Cuninghame-Green [9] and Gaubert

[21], see [5,4] for recent expositions.

See [11,12] for studies of commuting matrices in more general semirings.

We devote the main sections to properties of commuting matrices in max algebra. At the end of

this introduction we give a formal definition of max algebra and make some remarks on the relation

between the two theories. We then review basic max algebra spectral theory in Section 2 (for those

who are unfamiliar with this topic). We provide a proof that pairwise commuting matrices have a

common eigenvector in Section 3. We also derive some immediate consequences of this theorem,

concerning inequalities for Perron roots and matrix polynomials, and describe the intersection of

principal eigencones by means of the product of spectral projectors. In Section 4, we investigate

Frobenius normal forms of commutingmatrices, showing that in the important special casewhere the

Perron roots of the components are distinct, the transitive closures of the associated reduced digraphs

coincide. In Section5,weconsider theeigenvector scaling,which leadsus to study commutingmatrices

in Boolean algebra. As a result of this study we show that the critical digraphs of two commuting

irreducible matrices in max algebra share a common node. In Section 7, it is indicated that most

results in Sections 3 and 4 also hold in nonnegative matrix algebra. Section 6 is devoted to numerical

examples.

Bymax algebrawe understand the analog of linear algebra developed over themax-times semiring

(R+,⊕,×), which is the set of nonnegative numbers R+ equipped with the operations of “addition”

a⊕ b := max(a, b) and ordinary multiplication a× b. The zero and unity of this semiring coincide

with the usual 0 and 1. The operations of the semiring are extended to nonnegative matrices and

vectors in the same way as in conventional linear algebra. That is, if A = (aij), B = (bij) and C =
(cij) are matrices of compatible sizes with entries in R+, we write C = A⊕ B if cij = aij ⊕ bij for all

i, j and C = A⊗ B if cij = ⊕kaikbkj = maxk(aikbkj) for all i, j. If A is a square matrix over R+, then
the iterated product A⊗ A⊗ · · · ⊗ A in which the symbol A appears k times will be denoted by

Ak .

It is significant that max algebra can be obtained from nonnegative linear algebra by means of a

limit passage called Maslov dequantization [27]:

a⊕ b = lim
p→∞ a⊕p b, (1)

where a⊕p b := (ap + bp)1/p. Note that (R+,⊕p,×) forms a semiring which is isomorphic to the

semiring (R+,+,×) of nonnegative numbers equipped with the usual addition and multiplication.

Thus onemay expect, and this is indeed the case, thatmax algebra and nonnegative linear algebra have
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many interesting properties in common.1 For example, the Frobenius (normal) from of a reducible

matrix plays an important role in the study of reduciblematrices in both theories. In view of the above

discussion, it is not surprising that a comparisonof spectral properties of reduciblematrices shows that

one needs to replace strict inequalities in classical nonnegative spectral theory by weak inequalities

in max algebraic spectral theory, see [5] for a remark along these lines concerning eigenvectors.

The above notation employing⊕ and⊗ is standard inmax algebra. However, asmany results of the

present paper are true both in max algebra and in nonnegative linear algebra, it will be convenient to

write a+ b formax(a, b)when the argumentworks in both theories. On the other hand,we emphasize

by using the specific max algebraic notation when this is not the case.

2. The spectral problem in max algebra

We recall here some notation and basic facts about the spectral problem in max algebra, which we

use further in this paper. See [1,2,4,9,25] for general reference and more information.

Themaxalgebraic spectral problem forA ∈ Rn×n+ consists infinding eigenvaluesα ∈ R+ andnonzero

eigenvectors v ∈ Rn+ such that Av = αv is satisfied. Observe that the set V(A,α) := {v|Av = αv} is
a (max) cone of Rn+, that is, a subset of Rn+ closed under (max) addition and (nonnegative) scalar

multiplication. This cone will be called the eigencone of A associated with α. The set of eigenvalues,

which is nonempty like in the usual Perron–Frobenius theory, is called the spectrum of A and denoted

�(A). The largest eigenvalue of A will be denoted λ(A) and called the Perron root of A (since we want

the same terminology for max algebra and nonnegative matrix algebra), and the associated eigencone

will be called the principal eigencone of A.

Unlike in the case of classical algebra, there is an explicit formula for the max algebraic Perron root

of A = (aij) ∈ Rn×n+ :

λ(A) =
n⊕

k=1

⊕
i1 ,···,ik

(ai1i2 . . . aiki1)
1/k. (2)

This is also known as the maximal cycle (geometric) mean of A.

For A ∈ Rn×n+ we construct the associated digraph G = (N, E) by settingN = {1, . . . , n} and letting

(i, j) ∈ Ewhenever aij > 0.When this digraph contains at least one cycle, one distinguishes critical cy-

cles, where themaximum in (2) is attained. Further, one constructs the critical digraph C(A) = (NA
c , E

A
c ),

which consists of all the nodes NA
c and edges EAc of G on critical cycles. The nodes in NA

c will be called

critical nodes or eigennodes.

The critical digraph is closely related to the series

A∗ = I ⊕ A⊕ A2 ⊕ · · · , (3)

where I is the unit matrix. This series is known to converge if, and only if, λ(A) � 1, in which case it is

called theKleene starofA. Ifλ(A) � 1, then this series canbe truncated:A∗ = I ⊕ A⊕ A2 ⊕ · · · ⊕ An−1.
Note that generally, any series like (3) can be defined as supremum, which is finite if the sequence of

matrices is bounded.

For A ∈ Rn×n+ such that λ(A) = 1, the principal eigencone is the set of max-linear combinations of

all columns of A∗ with indices in NA
c :

V(A, 1) =
{
⊕i∈NA

c
βiA
∗·i|βi ∈ R+

}
. (4)

In particular, we have

AA∗·i = A∗·i, A∗i·A = A∗i·, ∀i ∈ NA
c . (5)

Thus, unlike in the usual Perron–Frobenius theory, even if A ∈ Rn×n+ is irreducible (that is, the asso-

ciated digraph is strongly connected), the principal eigencone in max algebra may contain more than

1 Referring to max algebra spectral theory, Gaubert [23] remarks “The theory is extremely similar to the well-known Perron–

Frobenius theory”.
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just one ray. However, for irreducible A, λ(A) given by (2) is the only eigenvalue and every eigenvector

is positive, see Theorem 4.1.

By standard optimal path algorithms, the critical digraph and the columns of A∗ can be computed

in O(n3) operations. For further details we refer the reader to [4,25,2].

A (max) cone K ⊂ Rn+ is said to be finitely generated if it is the set of max-linear combinations

of a finite subset of vectors of Rn+. Equivalently, a cone K ⊂ Rn+ is finitely generated if there exists

a matrix X ∈ Rn×r+ , for some r ∈ N, such that K = Im(X), where as usual Im(X) := {Xu|u ∈ Rr+}.
Observe that if K is not trivial, we may assume that X does not have a null column. By (4), it follows

that the principal eigencone is finitely generated. Indeed, this property holds for any eigencone of A,

see, e.g., [5, Theorem 4.1]. Therefore, in what follows, for α ∈ �(A) we shall denote by XA
α any matrix

with nonzero columns satisfying V(A,α) = Im(XA
α).

Let us finallymention that like in classical algebra, any finite intersection of finitely generated (max)

cones is also finitely generated (this property follows from [6], see e.g. [22, Theorem 1]).

We summarize the main properties that will be used in this paper in the next proposition.

Proposition 2.1. In max algebra the following statements hold:
(i) Every matrix has an eigenvalue with a corresponding eigenvector.

(ii) Eigencones are finitely generated.

(iii) The intersection of two finitely generated (max) cones is finitely generated.

Further information on max algebra spectral theory will be given in Section 4.

3. Existence of common eigenvectors

3.1. Common eigenvector of two matrices

In this section onmax algebra we prove that two commutingmatrices have a common eigenvector.

With this aim, we shall need the following lemma.

Lemma 3.1. If A, B ∈ Rn×n+ commute, then any eigencone V(A,α) of A is invariant under B and any

eigencone V(B,α) of B is invariant under A.

Proof. Let v ∈ V(A,α). For u = Bv, we have

Au = ABv = BAv = αBv = αu. (6)

Therefore, B(V(A,α)) ⊂ V(A,α). �

Now it is possible to prove the following key result, which relates the eigencones of two commuting

matrices.

Theorem 3.2. If A, B ∈ Rn×n+ commute, then for any eigencone V(A,α) of A there exists an eigencone

V(B,μ) of B such that V(A,α) ∩ V(B,μ) contains a nonzero vector.

Proof. Let V(A,α) = Im(XA
α) be an eigencone of A. Then,

AXA
α = αXA

α , (7)

and since by Lemma 3.1 we have B(Im(XA
α)) ⊂ Im(XA

α), there exists a (nonnegative square) matrix C

such that BXA
α = XA

αC. Let z be any eigenvector of C, so that Cz = μz and z /= 0, and consider u = XA
αz.

Then, u /= 0 (recall that all the columns of XA
α are nonzero) and we obtain

Au = AXA
αz = αXA

αz = αu

Please cite this article in press as: R.D. Katz et al., On commuting matrices in max algebra and in classical
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and

Bu = BXA
αz = XA

αCz = μXA
αz = μu.

Thus, u ∈ V(A,α) ∩ V(B,μ). �

As an immediate consequence, we obtain:

Corollary 3.3. If A, B ∈ Rn×n+ commute, then they have a common eigenvector.

We remark that our proof of Theorem 3.2 also shows the following result:

Proposition 3.4. Let A ∈ Rn×n+ and let K be a (nontrivial) finitely generated cone of Rn+. If AK ⊆ K, then

A has an eigenvector in K.

3.2. Common eigenvector of several matrices

The results above can be generalized to several pairwise commuting matrices.

Theorem 3.5. Assume the matrices A1, . . . , Ar ∈ Rn×n+ commute in pairs. Then, given any eigenvalue

αi ∈ �(Ai),where i ∈ {1, . . . , r}, there existαj ∈ �(Aj) for all j /= i such thatV(A1,α1) ∩ · · · ∩ V(Ar ,αr)
contains a nonzero vector.

Proof. The case r = 2 is precisely Theorem 3.2. So assume that the statement of the theorem holds

for r = k and let A1, . . . , Ak, Ak+1 be k+ 1 matrices which commute in pairs.

Without lossofgenerality, assumeα1 ∈ �(A1) is given.By the inductionhypothesis, thereexistαj ∈
�(Aj), for j = 2, . . . , k, such that V(A1,α1) ∩ · · · ∩ V(Ak,αk) contains a nonzero vector. Moreover,

since by Proposition 2.1 any eigencone is finitely generated and any finite intersection of finitely gen-

eratedmax cones is also finitely generated, there exists a (nonnegative)matrix X such that V(A1,α1) ∩· · · ∩ V(Ak,αk) = Im(X). Note that we may assume, without loss of generality, that all the columns

of X are nonzero because Im(X) contains nonzero vectors.

SinceAi andAk+1 commute for i = 1, . . . , k, byLemma3.1 it follows thatAk+1(V(Ai,αi)) ⊆ V(Ai,αi)

for i = 1, . . . , k. Therefore, Ak+1(Im(X)) = Ak+1(∩ki=1V(Ai,αi)) ⊆ ∩ki=1V(Ai,αi) = Im(X) and thus

there exists a (nonnegative square) matrix C such that Ak+1X = XC.

Like in the proof of Theorem 3.2, let z be any eigenvector of C so that Cz = μz, for someμ ∈ �(C),
and define u = Xz. Since z /= 0 and the columns of X are nonzero, we have u /= 0 and

Ak+1u = Ak+1Xz = XCz = μXz = μu.

Thus, u ∈ Im(X) ∩ V(Ak+1,μ) = V(A1,α1) ∩ · · · ∩ V(Ak,αk) ∩ V(Ak+1,μ). �

Next we investigate the eigenvalues of polynomials of commuting matrices, assuming that their

coefficients are nonnegative. For the polynomials in max algebra (also known as max-polynomials),

replace the usual addition of monomials by maximum.

Theorem 3.6. Let A1, . . . , Ar ∈ Rn×n+ commute in pairs and let p(x1, . . . , xr) be a polynomial. Then,

(i) For each i ∈ {1, . . . , r} andαi ∈ �(Ai), there existαj ∈ �(Aj) for all j /= i such that p(α1, . . . ,αr) ∈
�(p(A1, . . . , Ar)).

(ii) For each λ ∈ �(p(A1, . . . , Ar)) there exist αi ∈ �(Ai) for all i = 1, . . . , r such that

λ = p(α1, . . . ,αr).

Proof. (i) Let i ∈ {1, . . . , r} and αi ∈ �(Ai). By Theorem 3.5, there exist αj ∈ �(Aj) for all j /= i and a

nonzero vector v ∈ Rn+ such thatAiv = αiv for all i = 1, . . . , r. But thenwe also have p(A1, . . . , Ar)v =
p(α1, . . . ,αr)v, and so p(α1, . . . ,αr) ∈ �(p(A1, . . . , Ar)).

Please cite this article in press as: R.D. Katz et al., On commuting matrices in max algebra and in classical
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(ii) Let λ ∈ �(p(A1, . . . , Ar)). Since A1, . . . , Ar and p(A1, . . . , Ar) commute in pairs, by Theorem

3.5 there is an eigenvector v ∈ V(p(A1, . . . , Ar), λ) which is also an eigenvector of Ai associated with

some eigenvalue αi ∈ �(Ai), for all i = 1, . . . , r. But then λv = p(A1, . . . , Ar)v = p(α1, . . . ,αr)v and

it follows that λ = p(α1, . . . ,αr). �

Corollary 3.7. Let A1 · · · Ar ∈ Rn×n+ commute in pairs and let p(x1, . . . , xr) be a polynomial. Then,

(i) λ(p(A1 · · · Ar)) � p(λ(A1) · · · λ(Ar)).
(ii) λ(A1 + · · · + Ar) � λ(A1)+ · · · + λ(Ar).
(iii) λ(A1 · · · Ar) � λ(A1) · · · λ(Ar).

Moreover, equality holds in all the above relations if the matrices A1 · · · Ar are irreducible.

Proof. Part (i) follows from Theorem 3.6 and the monotonicity of polynomials, and parts (ii) and (iii)

are special cases. If thematrices are irreducible, then each of themhas unique eigenvalue, andwe have

the equalities. �

In the case of max algebra we also have λ(A1 ⊕ · · · ⊕ Ar) � λ(Ai) for all i = 1, . . . , r, as the Perron

root expressed by (2) is monotonic. Hence (ii) always holds with equality in max algebra.

3.3. Intersection of principal eigencones

A matrix Q is called a projector on a cone K ⊂ Rn+ if Im(Q) = K and Q2 = Q . This implies that

Qx = x if, and only if, x ∈ K . In general, there are many projectors on the same cone, but if two

such projectors P, Q commute, then they are identical because we have Px = QPx = PQx = Qx for all

x ∈ Rn+.
We recall that the eigencone V(A, λ(A)) associated with λ(A) (assumed to be nonzero) is called

the principal eigencone of A and a projector on V(A, λ(A)) which commutes with A is called a spec-

tral projector for A. Since V(A, λ(A)) = V(A/λ(A), 1), there is no loss of generality in assuming that

λ(A) = 1. In max algebra, one can explicitly define such projector. There are two definitions in the

literature:

Q̃(A) = ⊕
i∈NA

c

A∗·iA∗i·, (8)

and

Q(A) = lim
p→∞

⊕
m� p

Am. (9)

The first of these is found in Baccelli et al. [2, Section 3.7.3], see also [8], and the second one is found

in a more general context in Kolokoltsov and Maslov [26, Section 2.4].

We shall need the following proposition, which shows that these projectors are indeed identical.

See [26, Theorem 2.11] for a closely related result.

Proposition 3.8. Let A ∈ Rn×n+ withλ(A) = 1. Then, there is a unique spectral projector on V(A, 1)which

is given, equivalently, by (8) or (9).

Proof. In the first place, note that in the matrix case, (9) may be replaced by

Q(A) = lim
p→∞ ApA∗, (10)

see the remarks on A∗ in Section 2. Since using (3) and the continuity of operations we have

Ap+1A∗ � ApA∗, it follows that the limit in (10) exists.

Please cite this article in press as: R.D. Katz et al., On commuting matrices in max algebra and in classical
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By the continuity of operations, limp→∞(CpB) = (limp→∞ Cp)B for any converging sequence of

matrices Cp and any matrix B. Using this, we observe that if B is any matrix which commutes with

A, then B also commutes with Q(A). Since as shown above any two commuting projectors on the

same cone are identical, we conclude that any spectral projector for A is equal to Q(A). Therefore, in
particular we have Q̃(A) = Q(A). �

Next we state two lemmas. The first one exploits (9) and follows from the continuity of multiplica-

tion. The second lemma is standard and its proof is recalled for the convenience of the reader.

Lemma 3.9. If A, B ∈ Rn×n+ commute, then Q(A) and Q(B) commute.

Lemma 3.10. Let Qi, i = 1, . . . , r, be pairwise commuting projectors. Then,

Im(Q1) ∩ · · · ∩ Im(Qr) = Im(Q1 · · ·Qr). (11)

Proof. If x ∈ Im(Q1) ∩ · · · ∩ Im(Qr), then Qix = x for i = 1, . . . , r, and hence (Q1 · · ·Qr)x = x. Thus,

x ∈ Im(Q1 · · ·Qr). Conversely, if x ∈ Im(Q1 · · ·Qr), then (Q1 · · ·Qr)y = x for some vector y. Multiply-

ing this equation byQi, for i = 1, . . . , r, using the idempotency ofQi and commutativity, it follows that

Qix = x. �

Note that Lemma 3.10 also holds if we require that any permutation of Q1, . . . , Qr yields the same

product, which is a weaker commutativity condition.

Lemma 3.10 implies that we can express the intersection of the principal eigencones of commuting

matrices as follows:

V(A1, 1) ∩ · · · ∩ V(Ar , 1) = Im(Q(A1)) ∩ · · · ∩ Im(Q(Ar)) = V(Q(A1) · · ·Q(Ar), 1). (12)

In the general (reducible) case, this intersection may reduce to the zero vector. Since by (iii) of Corol-

lary 3.7 we have λ(Q(A1) · · ·Q(Ar)) � 1, it follows that (12) is not trivial if, and only if, the Perron

root of Q(A1) · · ·Q(Ar) is 1, in which case this intersection is given by the principal eigencone of

Q(A1) · · ·Q(Ar). Using definition (8), we can compute this product in O(rn3) operations, and then it

requires nomore thanO(n3) operations to compute its Perron root and describe its principal eigencone

when the Perron root is 1.

4. Frobenius normal forms

Let G = (N, E) be the associated digraph of A ∈ Rn×n+ and Gμ = (Nμ, Eμ), for μ = 1, . . . , t, be the

connected components of G. We construct the reduced digraph R with set of nodes {1, . . . , t} setting
an edge (μ, ν) whenever there exist i ∈ Nμ and j ∈ Nν such that (i, j) ∈ E. We shall call a connected

component (or the corresponding set of nodes) of G a class of A and also use that term for the nodes of

R. Further, we also identify subsets S of nodes of R with the union of the corresponding classes of A,

that is S may denote ∪ν∈SNν .

Each classμ is labeled by the correspondingmaximal cycle (geometric)meanαμ, whichwill be also

called the Perron root of the class.Wewriteμ→ ν ifμ = ν or if there exists a path in R connectingμ
to ν (in other words, ifμ has access to ν). A set I of classes is an initial segment of R if ν ∈ I andμ→ ν
imply that μ ∈ I. The set of all classes μ such that μ→ ν will be denoted by Intl(ν) and called the

initial segment generated by ν in R. If S is a set of classes, then a class ν ∈ S is said to be initial in S if

μ→ ν and μ ∈ S imply that μ = ν . Similarly, a class ν ∈ S is called final in S if ν → μ and μ ∈ S

imply thatμ = ν . An initial (respectively, final) class in {1, . . . , t} is simply called initial (respectively,

final). A class ν is said to be spectral if ν is initial, or ifαν > 0 andμ→ ν imply thatαμ � αν . A spectral

class ν is called premier spectral if μ→ ν and μ /= ν imply that αμ < αν .

Access relations for G and R are normally visualized in terms of a Frobenius form. There exists a

simultaneous permutation of rows and columns of A such that

Please cite this article in press as: R.D. Katz et al., On commuting matrices in max algebra and in classical
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A =

⎛⎜⎜⎜⎜⎜⎜⎝
A11 0 · · · 0 0

A21 A22 · · · 0 0
...

...
. . .

...
...

A(t−1)1 A(t−1)2 · · · A(t−1)(t−1) 0

At1 At2 · · · At(t−1) Att

⎞⎟⎟⎟⎟⎟⎟⎠
with irreducible diagonal blocks Aμμ for μ = 1, . . . , t.

A Frobenius (normal) form of A arises from each total ordering of the classes of R that is anti-

compatiblewith the partial order given by the access relations, viz.μ→ ν impliesμ � ν . In particular,

given any initial segment I ofR there is a Frobenius formofA forwhich the classes of I are s, s+ 1, . . . , t
for some s ∈ {1, . . . , t}.

We now state the fundamental spectral theorem of max algebra. Recall that the support of a vector

x ∈ Rn+ consists of all i ∈ N such that xi > 0.

Theorem 4.1. Let A ∈ Rn×n+ andλ ∈ R+. Then, a subset U of N is the support of an eigenvector associated

with λ if, and only if,

(i) There is an initial segment I of R such that U = ∪ν∈INν .
(ii) All final classes ν in I are spectral and satisfy αν = λ.

This theorem has a long history and has been stated in different ways, see, e.g., [23,21,9,5,4,2]. The

statement in Theorem 4.1 is essentially the same as the one that appeared in [23].

The following corollary is immediate.

Corollary 4.2. Let A ∈ Rn×n+ . Then,

(i) λ is an eigenvalue if, and only if, there is a spectral class ν such that αν = λ.
(ii) ν is a spectral class if, and only if, there exists an eigenvector with support Intl(ν).
(iii) A spectral class ν is premier spectral if, and only if, any eigenvector associated withαν whose support

is contained in Intl(ν) has its support equal to Intl(ν).
(iv) If the reduced digraph of A has a unique spectral class ν with Perron root αν , then any eigenvector

associated with αν has support Intl(ν).
(v) If the Perron roots of all classes are distinct, then all spectral classes are premier spectral and all

eigenvectors have support Intl(ν) for some spectral class ν.

The following well-known corollary also follows easily from Theorem 4.1.

Corollary 4.3. For any A ∈ Rn×n+ with λ(A) > 0 the following statements are equivalent:
(i) A has a positive eigenvector.
(ii) The Perron root of any final class is λ(A) (and so, in particular, all final classes are spectral).

If either condition holds, then any positive eigenvector is associated with the eigenvalue λ(A).

The proof of our next lemma essentially repeats arguments used to prove Corollary 3.3 and

Theorem 3.5.

Lemma 4.4. Let A ∈ Rn×n+ and C ∈ Rm×m+ . If AX = XC, where X ∈ Rn×m+ and every column of X is

nonzero, then any eigenvalue of C is also an eigenvalue of A.

Proof. Suppose that λ ∈ �(C) and let z ∈ Rm+ be an eigenvector of C associated with λ. Then, AXz =
XCz = λXz. Since every column of X is nonzero, we have Xz /= 0 and thus λ ∈ �(A). �
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If A and C are irreducible, then in Lemma 4.4 it is enough to assume that X is nonzero because the

vector z in the proof above is positive. Thus, we obtain:

Lemma 4.5. Let A ∈ Rn×n+ and C ∈ Rm×m+ be irreducible matrices. If AX = XC, where X ∈ Rn×m+ is

nonzero, then λ(A) = λ(C).

The following important lemma indicates what happens if a matrix commutes with an irreducible

matrix.

Lemma 4.6. If A, B ∈ Rn×n+ commute and B is irreducible, then

(i) The Perron root of every final class and every initial class of A is λ(A) (and so, in particular , all final

classes are spectral).
(ii) A has the unique eigenvalue λ(A).
(iii) If A is reducible, then at least two distinct classes of A have Perron root λ(A).

Proof. In the first place, note that the lemma is obvious if λ(A) = 0, so wemay assume that λ(A) > 0.

(i) From Corollary 3.3, we know that A and B have a common eigenvector. Since B is irreducible, all

its eigenvectors are positive. It follows by (ii) of Corollary 4.3 that all final classes of A have Perron

root λ(A) and are therefore spectral. Similarly, the transpose AT commutes with the irreducible

matrix BT and therefore all final classes of AT have Perron root λ(A). But the final classes of AT

are precisely the initial classes of A.

(ii) This follows easily from (i), Theorem 4.1 and the definition of spectral class.

(iii) If A is reducible, either it has two initial classes or an initial class and a distinct final class. �

Remark 4.7. In Corollary 3.7, the irreducibility assumption can be relaxed. We need there that just

one of the matrices is irreducible, for then by (ii) of Lemma 4.6 each matrix has a unique

eigenvalue.

The transitive closureofR is thedigraphR∗whichhas the edge (μ, ν) if, andonly if,μ→ ν inR.We

shall say that μ covers ν in R∗ if μ /= ν , μ→ ν and the following property is satisfied: μ→ δ→ ν
implies that either δ = μ or δ = ν .

The main result of this section is the following theorem.

Theorem 4.8. Suppose that A1, . . . , Ar ∈ Rn×n+ pairwise commute and that all classes of Ai, for each

i ∈{1, . . . , r}, have distinct Perron roots. Then,

(i) All classes of A1, . . . , Ar and A1 + · · · + Ar coincide.
(ii) The transitive closures of the reduced digraphs of A1, . . . , Ar and A1 + · · · + Ar coincide.
(iii) The spectral classes of the reduced digraphs of A1, . . . , Ar and A1 + · · · + Ar coincide. In particular,

A1, . . . , Ar have the same number of distinct eigenvalues.
(iv) Let μ1, . . . ,μm be the common spectral classes of A1, . . . , Ar and denote the Perron root of the μjth

class of Ai byα
j
i . Then, for any polynomial p(x1, . . . , xr), the eigenvalues of p(A1, . . . , Ar) are precisely

p(α
j
1, . . . ,α

j
r) for j = 1, . . . , m (possibly with repetitions).

Proof. (i) Suppose that C := A1 + · · · + Ar is in Frobenius form and partition Ai, for i = 1, . . . , r,
correspondingly. Evidently, a Frobenius form of B := Ai, for i = 1, . . . , r, is a refinement of the Frobe-

nius form of C. Since Bμμ and Cμμ commute and Cμμ is irreducible, by (iii) of Lemma 4.6 and our

assumption, it follows that Bμμ is also irreducible. Therefore, B = Ai is also in Frobenius form. This

proves (i).
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(ii) Now suppose that ν covers μ in the reduced digraph associated with C. Then, for B := Ai the

matrices(
Bμμ 0

Bνμ Bνν

)
and

(
Cμμ 0

Cνμ Cνν

)
commute and, by assumption, Cνμ /= 0. Suppose that Bνμ = 0. Examining the (2, 1) block of the

products of these matrices we obtain

BννCνμ = CνμBμμ. (13)

Since Bμμ and Bνν are irreducible, it follows from Lemma 4.5 that the Perron roots of Bμμ and Bνν are

equal. This contradicts our assumption and hence Bνμ /= 0. But two transitive digraphs coincide if the

cover relations are identical. This proves (ii).

(iii) In the first place, observe that any initial segment Intl(ν) generated by a class ν in the reduced

digraph associatedwith one of thematrices A1, . . . , Ar or A1 + · · · + Ar is independent of the choice of

the matrix because the transitive closures of their reduced digraphs coincide. For this reason, in what

follows we shall denote by Intl(ν) this common initial segment and we shall not specify the matrix it

corresponds to.

Letμj be a spectral class of Ai. Since all classes of Ai have distinct Perron roots, from (v) of Corollary

4.2 it follows that every spectral class is premier spectral and that every eigenvector of Ai associated

with α
j
i has support Intl(μj). But, by Theorem 3.5, there are eigenvalues of Ak for k /= i that share an

eigenvectorwith the eigenvalueα
j
i of Ai. Since this eigenvector has support Intl(μj), by (ii) of Corollary

4.2 it follows that μj is a spectral class for all Ak .

Note that the above argument shows that any spectral class of Ai is also a spectral class of A1 +· · · + Ar . To prove the converse in max algebra, suppose that μ is a spectral class of A1 + · · · + Ar .

Using the additivity of Perron roots (see Corollary 3.7), we obtain

⊕r
i=1 λ((Ai)νν) = λ((⊕r

i=1Ai)νν) � λ((⊕r
i=1Ai)μμ) = ⊕r

i=1λ((Ai)μμ), (14)

for all ν ∈ Intl(μ). Without loss of generality, assume that⊕r
i=1λ((Ai)μμ) = λ((A1)μμ). Then, from

(14) it follows that λ((A1)νν) � λ((A1)μμ) for all ν ∈ Intl(μ), implying that μ is a spectral class of A1,

and hence of all Ai.

(iv) By Theorem 3.5, for each common spectral class μj of A1, . . . , Ar there exists a common eigen-

vector vj whichhas support Intl(μj). SinceAiv
j = α

j
i v

j for i = 1, . . . , r, it follows thatp(A1, . . . , Ar)v
j =

p(α
j
1, . . . ,α

j
r)v

j and thus p(α
j
1, . . . ,α

j
r) is an eigenvalue of p(A1, . . . , Ar). Let now λbe an eigenvalue

of p(A1, . . . , Ar). As p(A1, . . . , Ar) commutes with Ai for all i = 1, . . . , r, by Theorem 3.5 there exists

an eigenvector v of p(A1, . . . , Ar) associated with λwhich is also an eigenvector of Ai for all i. Then, by

(v) of Corollary 4.2 there exists a common spectral class μj of A1, . . . , Ar such that the support of v is

equal to Intl(μj). Therefore, we have Aiv = α
j
i v for all i = 1, . . . , r, implying that λ = p(α

j
1, . . . ,α

j
r)

because λv = p(A1, . . . , Ar)v = p(α
j
1, . . . ,α

j
r)v. �

As it was already observed, under the assumptions of Theorem 4.8, the eigenvalues α
j
i , i = 1, . . . , r,

of thematricesA1, . . . , Ar are associatedwith somecommonspectral classμj of their reduceddigraphs.

We next show how to compute the intersection of the corresponding eigencones. Let I be the initial

segment generated by the spectral classμj in any of the reduced digraphs associatedwith thematrices

Ai (recall that this initial segment is independent of the choice of thematrix because the transitive clo-

sures of their reduced digraphs coincide).Wewrite uniquely each vector x ∈ Rn+ as x[I] + x[I′], where

I′ is the complement of I in {1, . . . , n}. Since I is an initial segment of the reduced digraphs associated

with all thematricesAi, there is a Frobenius formof all thesematrices such that I = {s, s+ 1, . . . , t} for
some s ∈ {1, . . . , t}. If we denote the submatrix of Ai based on the set of classes I by Ai[I, I], then as the

matrices A1, . . . , Ar commute in pairs, it follows that also the matrices A1[I, I], . . . , Ar[I, I] commute in

pairs. Therefore, we can apply themethod described in Section 3.3 to compute the intersection of their

principal eigencones. Moreover, by Corollary 4.2 we know that x ∈ V(A1,α
j
1) ∩ · · · ∩ V(Ar ,α

j
r) if, and

only if, x[I′] = 0 and x[I] ∈ V(A1[I, I],αj
1) ∩ · · · ∩ V(Ar[I, I],αj

r), where the latter is the intersection of
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the principal eigencones of Ai[I, I], because by the definition of thesematrices we have λ(Ai[I, I]) = α
j
i

for all i = 1, . . . , r.

5. Common scaling and application of Boolean algebra

5.1. Common scaling and saturation digraphs

The whole of this section is in max algebra only. It is inspired by the works of Cuninghame-Green

and Butkovič [10,4], where commuting matrices are studied in the context of two-sided systems and

generalized eigenproblem. In these works, commuting irreducible matrices are assumed to have a

common eigennode. We are going to show that it is always the case.

If A = (aij) and B = (bij) are irreducible and AB = BA, then they have a common positive eigen-

vector u, and using U = diag(u) they can be simultaneously scaled to Ã := U−1AU and B̃ := U−1BU.

Assumed that λ(A) = λ(B) = 1, for Ã = (ãij) and B̃ = (b̃ij) we obtain

Au = u⇒ ∀i∃j: aijuj = ui ⇔ ãij = 1,

∀i, j: aijuj � ui ⇔ ãij � 1.

Bu = u⇒ ∀i∃j: bijuj = ui ⇔ b̃ij = 1,

∀i, j: bijuj � ui ⇔ b̃ij � 1.

(15)

Defining Ã[1] = (ã
[1]
ij ) and B̃[1] = (b̃

[1]
ij ) by:

ã
[1]
ij =

{
1, ãij = 1,

0, otherwise.
b̃
[1]
ij =

{
1, b̃ij = 1,

0, otherwise.
(16)

it follows that

∀i∃j: ã[1]ij = 1, ∀i∃k: b̃[1]ik = 1. (17)

Defining digraphs G1 = (N, E1) and G2 = (N, E2) so that (i, j) ∈ E1, respectively, (i, k) ∈ E2, if and only

if ã
[1]
ij = 1, respectively, b̃

[1]
ik = 1,we see that by (17) each node in these digraphs has an outgoing edge.

Thematrices Ã[1] and B̃[1] are the adjacency matrices of G1 and G2, respectively. These digraphs are also

the saturation digraphs of uwith respect toA and B [2],meaning that (i, j) ∈ E1 (respectively, (i, j) ∈ E2)

if, and only if, aijuj = ui (respectively, bijuj = ui).We recall the followingwell-known result, providing

a proof for the reader’s convenience.

Proposition 5.1 (Baccelli et al. [2]). Let A ∈ Rn×n+ be irreducible and let v ∈ Rn+ be an eigenvector of A.
Then, the strongly connected components of the saturation digraph of v with respect to A are the same as

those of the critical digraph C(A).

Proof. We need to show that any edge in a strongly connected component of a saturation digraph is

critical, and the other way around, that any critical edge is present in any saturation digraph. Recalling

that every edge in a strongly connected component of a digraph belongs to a cycle, it suffices to show

that any cycle in a saturation digraph is critical and the other way around, that any critical cycle is

present in any saturation digraph. Assume w.l.o.g. that λ(A) = 1. The first part: if (i1, . . . , ik) is a cycle
of a saturation digraph w.r.t. an eigenvector v, then ai1i2vi2 = vi1 , . . . , aiki1vi1 = vik . Multiplying all

these equalities and canceling the product vi1 , . . . , vik , we obtain ai1i2 . . . aiki1 = 1, thus (i1, . . . , ik) is
critical. The second part: assume that (i1, . . . , ik) is critical but it is not a cycle of the saturation digraph.

Then, we have ai1i2vi2 � vi1 , . . . , aiki1vi1 � vik where one of the inequalities is strict. Multiplication and

cancelation of vi1 , . . . , vik now yield ai1i2 . . . aiki1 < 1, a contradiction. The proof is complete. �

This proposition tells us that the strongly connected components of G1 and G2 are those of C(A) and
C(B).
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5.2. Commuting Boolean matrices

Nowwe study inmore detail the case of Booleanmatrices, to show that two irreducible commuting

matrices in max algebra always have a common eigennode. In a similar way, the graph of commuting

Boolean matrices is studied in [11, Proposition 10] to make an observation about the general case.

We need a couple of simple facts. Combined with Proposition 5.1, they will provide the connection

between max algebra and the Boolean case.

Lemma 5.2. If matrices A, B ∈ Rn×n+ are such that aij � 1 and bij � 1 for all i, j ∈ N, then (AB)[1] =
A[1]B[1].

Proof. For all i, k ∈ N, we may have two cases:

n⊕
j=1

aijbjk = 1 or

n⊕
j=1

aijbjk < 1. (18)

In the first case of (18), there exists h such that aihbhk = 1, which implies aih = bhk = 1, since aij � 1

and bij � 1 for all i and j. Passing to A[1] and B[1] we have a
[1]
ih = b

[1]
hk = 1 and thus a

[1]
ih b
[1]
hk = 1. Using

this we obtain

n⊕
j=1

a
[1]
ij b
[1]
jk = 1, (19)

In the second case of (18), there are no such h as above, and we obtain

n⊕
j=1

a
[1]
ij b
[1]
jk = 0. (20)

It follows that (AB)[1] = A[1]B[1]. �

We immediately deduce the following observation.

Lemma 5.3. If the matrices A, B ∈ Rn×n+ are such that AB = BA, and aij � 1, bij � 1 for all i, j ∈ N, then

A[1]B[1] = B[1]A[1].

This motivates us to study the Boolean case in more detail.

Theorem 5.4. LetG1 andG2 be twocommutingdigraphs (meaning that their adjacencymatrices commute)
with nonzero out-degree of each node, and let Gμ

1 = (N
μ
1 , E

μ
1 ) for μ = 1, . . . , m1 and Gν

2 = (Nν
2 , E

ν
2 ) for

ν = 1, . . . , m2 be the nontrivial strongly connected components of G1 and G2, respectively. Then, there
exists a cycle c1 ∈ G1 such that all nodes on this cycle belong to

⋃m2

ν=1 Nν
2 , and a cycle c2 ∈ G2 such that

all nodes on this cycle belong to
⋃m1

μ=1 N
μ
1 .

Proof. We show the first part of the claim, i.e., that there exists a cycle c1 ∈ G1 such that all nodes on

this cycle belong to
⋃m2

ν=1 Nν
2 .

Pick ν1 ∈ {1, . . . , m2} and consider the subdigraph G1[Nν1
2 ] of G1 induced by the nodes in N

ν1
2

(informally, the part of G1 which penetrates the component ν1 of G2). Either G1[Nν1
2 ] has a cycle and

then there is nothing to prove, or it is acyclic. In the latter case, let i1 ∈ N
ν1
2 be a leaf in G1[Nν1

2 ]
(a node with no arcs back into N

ν1
2 ). Denote M = {j: (i1, j) ∈ E1}. As i1 is a leaf in G1[Nν1

2 ], we have

M ∩ N
ν1
2 = ∅. There is a cycle c ∈ G2, which goes through i1 (this cycle is unrelated to c1 which we

are going to construct). Select j ∈ M and consider the path c ◦ (i1, j) (first turn around along c in G2

then move i1→ j in G1). As the digraphs commute, there is a path P = (i1, k) ◦ P′, where (i1, k) ∈ E1
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and the path P′ ∈ G2 ending at j is of the same length as c. Hence, for each node j ∈ M there exists a

node k ∈ M such that k has access to j in G2. This implies that some nodes in M lie on a cycle in G2,

and hence M intersects with N
ν2
2 for some ν2 ∈ {1, . . . , m2}. Taking j2 ∈ M ∩ N

ν2
2 we obtain the edge

i1→ j2 in G1 such that i1 ∈ N
ν1
2 and j2 ∈ N

ν2
2 .

Consider thedigraphG1[Nν2
2 ]. If it is not acyclic then there is nothing to prove, otherwiseweproceed

to a leaf i2 accessed by j2 in G1[Nν2
2 ]. We have obtained the path i1→ j2→ · · · → i2 in G1, whose

nodes lie in
⋃m2

ν=1 Nν
2 . Arguing as abovewe can continue this path until we obtain a cycle c1 in G1 which

has all nodes in
⋃m2

ν=1 Nν
2 . This shows the first part of the claim.

The second part of the claim, i.e., the cycle c2 in G2 which has all nodes in
⋃m1

ν=1 Nν
1 , is obtained

analogously. �

Theorem 5.4 implies notable facts about the critical digraphs of two commuting matrices in max

algebra.

Theorem 5.5. If two irreducible matrices A, B ∈ Rn×n+ commute, then the claim of Theorem 5.4 holds for

the strongly connected components of C(A) and C(B). In particular, A and B have a common eigennode.

Proof. IfA, B ∈ Rn×n+ commute, then theyhaveacommoneigenvectorubyCorollary3.3. If thematrices

are irreducible, then u is positive, and U := diag(u) can be used to make a simultaneous diagonal

similarity scaling: Ã := U−1AU and B̃ = U−1BU. Evidently ÃB̃ = B̃Ã. Also we have C(̃A) = C(A) and

C(̃B) = C(B). Notice that Ã[1], respectively, B̃[1], is the adjacency matrix of the saturation digraph of u

with respect toA, respectively, toB. These saturationdigraphswill bedenotedbyG1 andG2, respectively

(with the intention to use Theorem 5.4). By Lemma 5.3, we have Ã[1]B̃[1] = B̃[1]Ã[1]. As G1 and G2 are

saturation digraphs, each node in these digraphs has an outgoing edge. Applying Theorem 5.4 we

obtain that the claim of Theorem 5.4 holds for the strongly connected components of G1 and G2. By

Proposition 5.1, these components are precisely the strongly connected components of C(A) and C(B).
Now, Theorem 5.4 also implies that A and B have a common eigennode. �

Let us consider a special case, which presumably appears if the commuting A and B are taken at

random.

Corollary 5.6. Let two irreduciblematricesA, B ∈ Rn×n+ commute. IfC(A) = (NA
c , E

A
c )andC(B)=(NB

c , E
B
c )

both consist of just one cycle, then NA
c = NB

c .

6. Examples of commuting matrices in max algebra

In this section, we give several examples in max algebra, which will appear now as the semiring

(R ∪ {−∞},max,+), i.e. the set R ∪ {−∞} equipped with max as “addition” and the usual sum as

“multiplication”. This semiring is isomorphic to (R+,max,×) via the logarithmic transform.

Consider the irreducible commuting matrices

A1 =
⎛⎝−2 1 −∞
−1 −1 −2
−1 −∞ −2

⎞⎠ and A2 =
⎛⎝ 0 −1 −1
−∞ 0 −4
−3 −∞ 0

⎞⎠ .

Then, it is straightforward to check that λ(A1) = λ(A2) = 0, NA1
c = {1, 2} and NA2

c = {1, 2, 3}. There-
fore, as claimed in Theorem 5.5, A1 and A2 have a common eigennode.

In order to compute their common eigenvectors, we apply the method described in Section 3.3.

Since

Q(A1) =
⎛⎝ 0 1 −1
−1 0 −2
−1 0 −2

⎞⎠ and Q(A2) =
⎛⎝ 0 −1 −1
−7 0 −4
−3 −4 0

⎞⎠ ,
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it follows that

Q(A1)Q(A2) =
⎛⎝ 0 1 −1
−1 0 −2
−1 0 −2

⎞⎠ .

Then, by (12) we have

V(A1, 0) ∩ V(A2, 0) = V(Q(A1)Q(A2), 0) =
{
λ(1, 0, 0)T |λ ∈ R ∪ {−∞}

}
.

The following example of commuting matrices illustrates Lemma 4.6. Let

A =
⎛⎝1 −∞ −∞
1 0 −∞
0 1 1

⎞⎠ and B =
⎛⎝0 0 0

0 0 0

0 0 0

⎞⎠ .

Then, A and B commute, B is irreducible and A satisfies the conditions of Lemma 4.6.

As an example of reducible commuting matrices, consider

A1 =
⎛⎜⎜⎝

0 −∞ −∞ −∞
1 3 −∞ −∞
2 −∞ −1 −∞
−∞ −∞ 0 2

⎞⎟⎟⎠ and A2 =
⎛⎜⎜⎝
6 −∞ −∞ −∞
5 7 −∞ −∞
8 −∞ 5 −∞
5 −∞ 6 8

⎞⎟⎟⎠ .

The classes of thesematrices are their diagonal elements. Since the Perron roots of the classes (i.e., the

diagonal entries in this case) of each of these matrices are distinct, we know by Theorem 4.8 that the

transitive closure of the reduced digraph associated with these matrices are the same, even if these

digraphs are different, as canbe easily checked. By the same theorem,weknow that the spectral classes

of the associated reduced digraph coincide. In this case, for both matrices the spectral classes are 2

and 4. Each of these matrices has two different eigenvalues corresponding to their spectral classes.

The eigenvalues of A1 are 3 and 2 and the ones of A2 are 7 and 8.

7. Classical nonnegative matrices

In this section, we assume knowledge of some basic results on nonnegative matrices found in, e.g.,

[3] or [20]. Most of the results and arguments of Section 3 (except for the last subsection) and Section

4 were meant to be true also for nonnegative matrices in classical matrix algebra. In this section, we

explicitly state the most important of such results and show where the classical nonnegative theory

is different.

Let A ∈ Rn×n+ . Following standard terminology, we call an eigenvalue λ of A a distinguished eigen-

valueofA ifλ � 0and there is anonnegative eigenvector corresponding to it. In this section,�(A)will be

the set of distinguished eigenvalues of A and V(A, λ) the convex cone of nonnegative eigenvectors (and
the 0 vector) associated with a distinguished eigenvalue λ. By the Perron–Frobenius theorem, �(A)
is nonempty and the largest element in �(A) is called the Perron root of A. Moreover, any eigencone

V(A, λ) is finitely generated, and the intersection of finitely generated convex cones is again finitely

generated. Matrices leaving a cone invariant in Rn+ (indeed in Rn) have been much studied, see, e.g.,

[36]. Proposition 3.4 is well known in this context.

Lemma 3.1, Theorems 3.2, 3.5, Corollary 3.3 and their proofs go through without further change to

the classical nonnegative case, except that we need to insert the adjective “nonnegative” in

Corollary 3.3.

Corollary 3.3A. If A, B ∈ Rn×n+ commute, then they have a common nonnegative eigenvector.

It follows that if A and B are commuting nonnegative matrices and one of them is irreducible, then

they have a common Perron vector.

Theorem 3.6 and Corollary 3.7 are also valid in the classical nonnegative case under the following

assumptions: the matrices A1, . . . , Ar ∈ Rn×n+ commute in pairs and p(x1, . . . , xr) is a real polyno-

mial such that p(A1, . . . , Ar) is nonnegative and, in the case of Corollary 3.7, all the coefficients of
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p(x1, . . . , xr) are nonnegative. In the latter, by the analog of Remark 4.7, we need to assume only one

of the Ai is irreducible.

Turning to Section 4, we again construct the reduced digraph of A ∈ Rn×n+ and we now label each

class μ with its classical Perron root αμ. By a theorem of Frobenius [19], we replace Theorem 4.1 by:

Theorem 4.1A. Let A ∈ Rn×n+ and λ ∈ R+. Then, a subset U of N is the support of a nonnegative eigen-

vector associated with λ if, and only if,

(i) There is an initial segment I such that U = ∪ν∈INν .
(ii) All final classes ν in I are premier spectral and satisfy αν = λ.

See, e.g., [34].Weobserve that the supports of nonnegative eigenvectors ofA ∈ Rn×n+ are completely

determined in Theorem 4.1A by (i) the classes (i.e., the strongly connected components) of G, (ii) the
Perron roots of these classes and (iii) the access relations of R (equivalently the arcs of R∗). A similar

remark holds for Theorem 4.1 and other results in Sections 3 and 4.

We restate Corollary 4.2 as:

Corollary 4.2A. Let A ∈ Rn×n+ . Then,

(i) λ is a distinguished eigenvalue if, and only if, there is a premier spectral class ν such that αν = λ.
(ii) ν is a premier spectral class if, and only if, there exists a nonnegative eigenvectorwith support Intl(ν).
(iii) If ν is a premier spectral class, then any nonnegative eigenvector associated with αν whose support

is contained in Intl(ν) has its support equal to Intl(ν).
(iv) If the reduced digraph of A has a unique premier spectral class ν with Perron root αν , then any

nonnegative eigenvector associated with αν has support Intl(ν).
(v) If the Perron roots of all classes are distinct, then all nonnegative eigenvectors have support Intl(ν)

for some premier spectral class ν .

The analog of Corollary 4.3 in nonnegative linear algebra is well known, but we need to replace

(ii) of Corollary 4.3 by: “The Perron root of any final class is λ(A) and all final classes are premier

spectral”. Lemma 4.4 goes through without change except that we need to replace “eigenvalue” with

“distinguished eigenvalue” and Lemma 4.5 also holds in nonnegative linear algebra.

In the classical nonnegative casewe obtain the following known stronger formof Lemma4.6,which

may be found on [3, p. 53]. We give a short proof along the lines of the proof of Lemma 4.6.

Lemma 4.6A. If A, B ∈ Rn×n+ commute and B is irreducible, then the Perron root of A is its unique distin-

guished eigenvalue. Moreover, if A is reducible, it is completely reducible (viz, the direct sum of irreducible

matrices after a permutation similarity).

Proof. We repeat the proof of (i) of Lemma 4.6 to show that both A and AT have positive eigenvectors.

This implies that all initial andfinal classes in the reduceddigraphofA are premier spectralwith Perron

root λ(A). But a premier spectral class cannot have access to another premier spectral class with the

same Perron root. It follows that all initial classes are final and vice versa. This means that a class has

access only to itself, which proves the lemma. �

Theorem 4.8 also holds in nonnegative algebra, with exception of the last part of (iii) whose proof

is specific to max algebra. Thus we obtain the following main theorem of this section.

Theorem 4.8A. Suppose that A1, . . . , Ar ∈ Rn×n+ pairwise commute and that all classes of Ai, for each

i ∈ {1, . . . , r}, have distinct Perron roots. Then,

(i) All classes of A1, . . . , Ar and A1 + · · · + Ar coincide.
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(ii) The transitive closures of the reduced digraphs of A1, . . . , Ar and A1 + · · · + Ar coincide.
(iii) The reduced digraphs of A1, . . . , Ar have the same premier spectral classes, which are premier spectral

classes of A1 + · · · + Ar . In particular, A1, . . . , Ar have the same number of distinct distinguished

eigenvalues.
(iv) Let μ1, . . . ,μm be the common premier spectral classes of A1, . . . , Ar and denote the Perron root

of the μj-th class of Ai by α
j
i . Then, for any real polynomial p(x1, . . . , xr) such that p(A1, . . . , Ar)

is nonnegative, the distinguished eigenvalues of p(A1, . . . , Ar) are precisely p(α
j
1, . . . ,α

j
r) for j =

1, . . . , m (possibly with repetitions).

We end this section with an example to illustrate Theorem 4.8A.

Example 7.1. Let

A =
⎛⎝10 0 0

5 0 0

2 3 3

⎞⎠ and B =
⎛⎝3 0 0

1 1 0

0 1 2

⎞⎠ .

Then, AB = BA. The classes of A and B are their diagonal elements, and the skeleton of their reduced digraphs

(meaning the diagram of cover relations) is

1← 2← 3 .

The premier spectral classes of both matrices are 1 and 3 and the distinguished eigenvalues are the

corresponding entries. Their common (nonnegative) eigenvectors are (2, 1, 1)T and (0, 0, 1)T , respectively.
Of course, AT and BT also commute. Note that the skeleton of their reduced digraphs is obtained by

reversing the arrows in the diagram above. The only spectral class of AT or BT is 1 and their common

eigenvector is (1, 0, 0)T .
To illustrate (iv) of Theorem 4.8A, consider polynomial p(x, y) = x2y− xy. We have

p(A, B) = A2B− AB =
⎛⎝270 0 0

135 0 0

123 12 12

⎞⎠ . (21)

Thus p(A, B) is nonnegative and, as predicted by (iv) of Theorem 4.8A, the eigenvalues are p(10, 3) = 270

and p(3, 2) = 12.
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