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It is known that the max-algebraic powers Ar of a nonnegative ir-

reducible matrix are ultimately periodic. This leads to the concept

of attraction cone Attr(A, t), by which we mean the solution set of

a two-sided system λt(A)Ar ⊗ x = Ar+t ⊗ x, where r is any inte-

ger after the periodicity transient T(A) and λ(A) is the maximum

cycle geometric mean of A. A question which this paper answers, is

how to describe Attr(A, t) by a concise system of equations without

knowing T(A). This study requires knowledge of certain structures

and symmetries of periodic max-algebraic powers, which are also

described. We also consider extremals of attraction cones in a spe-

cial case, and address the complexity of computing the coefficients

of the system which describes attraction cone.
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1. Introduction

The max-algebraic cyclicity theorem states that if A ∈ R
n×n+ is irreducible and its maximal cycle

geometric mean λ(A) equals 1, then the sequence of max-algebraic powers Ak becomes periodic after

some finite transient time T(A), and that the ultimate period of Ak is equal to the cyclicity of the critical

graph. Cohen et al. [17,18] seem to be the first to discover this, see also [4,8,19,32]. Generalizations to

reducible case, computational complexity issues and important special cases of the cyclicity theorem

have been extensively studied in [8,20,28,29,36,37].
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The cyclicity theorem naturally leads to the concept of attraction cone Attr(A, t), bywhichwemean

the solution set of a two-sided system λt(A)Ar ⊗ x = Ar+t ⊗ x for any r � T(A) (all such systems

are equivalent). In particular, Attr(A, 1) is the set of vectors such that {Ak ⊗ x, k � 1} converges to a

max-algebraic eigenvector of A (i.e., vector x such that A ⊗ x = λ(A)x holds).

The problem of characterizing attraction cones is related to some control problems in max-linear

systems. For instance, given some “periodic regime”, it is desirable to describe its attraction domain

consisting of vectors which are driven to that regime by means of repeated action of max-linear

operator. For Mairesse [34], periodic regime is a given set of vectors such that the sequence {Akx, k �
1}, for the vectors x from the corresponding attraction domain, remains within that set after large

enough time. He studies attraction domains for 3×3matrices by examining all possible special cases,

in each case providing a nice graphical interpretation of the result.

Braker [6, Section 8.3] studies eigenvector attraction spaces, which are the same as Attr(A, 1) of the
present paper. He gives a sufficient condition when for x ∈ Attr(A, 1), the critical part of all vectors in

{Ak⊗x, k � 1} is constant andequals the critical part of aparticularmax-algebraic eigenvector ofA. No

description of attraction spaceswas developed in [6], whether in terms ofmax-linear systems or bases

ofmax-algebraic spaces. The present paper offers such a description, in terms of a two-sided system of

max-linear equations whose coefficients can be computed from the entries of A in a polynomial time.

Using the elimination method of Butkovič and Hegedüs [10], improved and implemented recently by

Allamigeon et al. [3], a basis of the solution set of any such two-sided system can be also obtained.

Our main tool is a special diagonal similarity scaling A �→ X−1AX called visualization, which brings

A to a form where all the entries of A do not exceed λ(A). Such scalings can be traced back to a work

of Fiedler and Pták [26], and the present paper studies their role in max algebra continuing the thread

of [9,12,13,22–25,39,42,44].

Nodes and edges that belong to the cycles attaining λ(A) constitute the critical graph, which is very

important for max algebra [4,19,31,32].

Oneof themainbenefitsof visualization is that it highlights the relationofmax-algebraicperiodicity

to Boolean periodicity, leading from the spectral projector of Cohen et al. [17,18], see also Baccelli et

al. [4], to CSR-representations introduced in Sergeev [42], see also Sergeev and Schneider [43] where

a more general notion of CSR-expansions is introduced and studied. For the max-algebraic powers of

nonnegative irreducible matrices, CSR-representation means that At = λt(A)C ⊗ St ⊗ R for t � T(A),
where C and R are extracted from some Kleene star (see page 1743), and S is diagonally similar to the

Boolean adjacency matrix of the critical graph.

A key role in Boolean periodicity is played by cyclic classes. Being inserted with S into the CSR-

representation, they determine the whole periodic dynamics of Ar by cyclically permuting critical

rows and columns. This naturally leads to circulant symmetries of periodic powers, and means that

the dimension can be effectively reduced from n to č + c, where č is the total number of cyclic classes

and c is the number of non-critical nodes. We show in Theorem 4.3, page 1747, that the equations of

the system λt(A)Ar ⊗ x = Ar+t ⊗ x that correspond to the non-critical nodes are redundant, and the

remaining critical subsystem can be written as St ⊗ R ⊗ x = R ⊗ x. This subsystem conveniently

breaks into several chains of equations, which correspond to the strongly connected components of

the critical graph.

Thechainsofequationscanbe further reducedbymeansof thechaincancellation,whichgeneralizes

the well-known rule ax ⊕ b = cx ⊕ d ⇔ b = cx ⊕ d if a < c. The coefficients of the reduced system

come from the core matrix, whose entries are maxima in the blocks of At determined by strongly

connected components of the critical graph together with noncritical nodes. The main result of the

paper appears as Theorem 4.5, page 1748, where the system for Attr(A, 1) is explicitly written in terms

of the core matrix and cyclic classes. This leads to further research problems: (1) how to efficiently

compute the coefficients of the system, (2) how to describe the extremal solutions (in the sense of

[11]).

We briefly outline the contents of the paper. Section 2 is devoted to necessary preliminaries onmax

algebra, Boolean algebra, cyclic classes, and some results on the properties of max-algebraic powers in

the periodic regime. In Section 3, we describe concepts and constructions associatedwith the periodic

regime, which are core matrix, CSR-representation and circulants. In Section 4, we derive the system
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for attraction cone, and study its extremal solutions and the computation of coefficients in the case

of strongly connected critical graph. In Section 5 we give two examples illustrating the results of the

paper.

We remark that the periodicity of max algebraic powers of matrices studied here can be regarded

as an “exactly solvable model” of max-plus semigroups studied by Merlet [35].

Parts of the present paper and Ref. [42] have been included in the monograph of Peter Butkovič [8,

Chapter 8].

2. Preliminaries

2.1. Kleene star and maximum cycle geometric mean

By max algebrawe understand the analogue of linear algebra developed over the max-times semi-

ring Rmax,× which is the set of nonnegative numbers R+ equipped with the operations of “addi-

tion” a ⊕ b := max(a, b) and the ordinary multiplication a ⊗ b := a × b. Zero and unity of this

semiring coincide with the usual 0 and 1. The operations of the semiring are extended to the non-

negative matrices and vectors in the same way as in conventional linear algebra. That is if A = (aij),
B = (bij) and C = (cij) are matrices of compatible sizes with entries from R+, we write C = A ⊕ B if

cij = aij ⊕ bij = max(aij, bij) for all i, j and C = A⊗ B if cij = ⊕
k aikbkj = maxk(aikbkj) for all i, j. If A

is a square matrix over R+ then the iterated product A ⊗ A ⊗ · · · ⊗ A in which the symbol A appears

k times will be denoted by Ak .

Themax-plus semiring Rmax,+ = (R ∪ {−∞}, ⊕ = max, ⊗ = +), developed over the set of real

numbers R with adjoined element −∞ and the ordinary addition playing the role of multiplication,

is another isomorphic “realization” of max algebra. In particular, x �→ exp(x) yields an isomorphism

between Rmax,+ and Rmax,×. In the max-plus setting, the zero element is −∞ and the unity is 0.

We will use the possibility to switch to this setting in the last section of this paper, which contains

examples. The main benefit is that max-plus operations with integers are much easier to perform by

hand.

Let A ∈ R
n×n+ . Consider the formal series

A∗ = I ⊕ A ⊕ A2 ⊕ · · · , (1)

where I denotes the identity matrix with entries

δij =
{
1, if i = j,

0, otherwise.

Series (1) is amax-algebraic analogue of (I−A)−1. It is called the Kleene star in the case of convergence

to a finite matrix. It can be shown that for any A ∈ R
n×n+ ,

A is a Kleene star ⇔ A2 = A, aii = 1 ∀i
⇔ aii = 1, aijajk � aik ∀i, j, k. (2)

Below a∗
ij will denote the (i, j) entry of A∗.

Series (1) converges to a finite matrix if and only if λ(A) � 1, where

λ(A) = ⊕
k

⊕
i1,...,ik

(ai1i2ai2i3 . . . aiki1)
1/k (3)

is called themaximumcycle geometricmean (brieflym.c.g.m.) ofA. In this caseA∗ = I⊕A⊕· · ·⊕An−1.

See Carré [14], or [32] Lemma 2.2, or [8] Proposition 1.6.10 for reference. The operation of taking

m.c.g.m. is homogeneous: λ(μA) = μλ(A), and hence any matrix with λ(A) �= 0 can be scaled so

that λ( 1
λ(A)

A) = 1. Matrices with m.c.g.m. equal to 1 will be called definite.

To A = (aij) ∈ R
n×n+ we can associate the weighted digraph D(A) = (N(A), E(A)), with the set of

nodes N(A) = {1, . . . , n} and the set of edges E(A) = {(i, j) | aij �= 0} with weights w(i, j) = aij .
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Suppose that π = (i1, . . . , ip) is a path in D(A), then the weight of π is defined to be w(π, A) =
ai1i2ai2i3 . . . aip−1ip if p > 1, and 1 if p = 1. If i1 = ip then π is called a cycle.

It will be important that the entries of Ak , denoted by a
(k)
ij , are equal to the maximal weights of

paths of length k connecting i to j, and the non-diagonal entries of A∗ (denoted a∗
ij) represent just the

maximal weights of paths from i to j, with no length restrictions.

When any two nodes ofD(A) can be connected to each other by paths with nonzero weight (equiv-

alently, they belong to a cycle), D(A) is called strongly connected and A is called irreducible. Otherwise,

A is called reducible.

A cycle π = (i1, . . . , ik) in D(A) is called critical, if λ(A) = (w(π, A))1/k . Every node and edge

that belongs to a critical cycle is called critical. The set of critical nodes is denoted by Nc(A), the set of

critical edges is denoted by Ec(A). The critical digraph of A, further denoted by C(A) = (Nc(A), Ec(A)),
is the digraph which consists of all critical nodes and critical edges of D(A). For definite A ∈ R

n×n+ , it

follows that A∗ is well defined, AA∗ � A∗, and in particular a∗
ii = 1 and aija

∗
ji � 1 for all i, j. Moreover

it can be shown that

(i, j) ∈ Ec(A) ⇔ aija
∗
ji = 1, (4)

since any (i, j) ∈ Ec(A) lies on a critical cycle and the nondiagonal entries of A∗ represent weights

of certain paths. Further we assume without loss of generality that the critical graph occupies first c

nodes, i.e., that Nc(A) = {1, . . . , c}.
For any A ∈ R

n×n+ , λ(A) plays the role of the largest eigenvalue, with respect to the max-algebraic

eigenproblem A ⊗ x = λx. If A is definite then any column of A∗·i with i ∈ Nc(A) is a max-algebraic

eigenvector of A. Moreover if A is irreducible then A∗ is finite and any such vector is finite. The structure

of max-algebraic eigenspace (or as wewould say, eigencone) was established by Gondran andMinoux

[30] and Cuninghame-Green [19, Chapter 15]. See also [4, Theorem3.23], [31, Section 6.4], [32, Lemmas

2.7 and 2.8] or [8, Theorem 4.4.8] for more specific reference.

There are certain transformations that do not change max-algebraic structures associated with

nonnegative matrices. Consider a positive x ∈ R
n+ and define

X = diag(x) :=

⎛
⎜⎜⎜⎜⎝
x1 . . . 0

...
. . .

...

0 . . . xn

⎞
⎟⎟⎟⎟⎠ . (5)

The transformation A �→ X−1AX is called a diagonal similarity scaling of A. Such transformations do not

change λ(A) and C(A) [24]. They commute with max-algebraic multiplication of matrices and hence

with the operation of taking the Kleene star. Geometrically, they correspond to automorphisms ofRn+,

both in the case of max algebra and in the case of nonnegative linear algebra. Further we define a

particularly convenient form of matrices in max algebra.

A matrix A ∈ R
n×n+ is called visualized, if

aij � λ(A), ∀i, j = 1, . . . , n (6)

aij = λ(A), ∀(i, j) ∈ Ec(A) (7)

Note that (7) can be deduced from (6) and the definition of λ(A) (3).
Visualization scalings were known already to Afriat [1] and Fiedler and Pták [26], and motivated

extensive study of matrix scalings in nonnegative linear algebra, see e.g. [24,25,38,39]. We remark

that some constructions and facts related to application of visualization scaling in max algebra and

beyond have been observed in connection with max algebraic power method [22,23], behavior of

matrix powers [9], max-balancing [38,39] and tropical methods in eigenvalue perturbation theory [2].

As observed by Fiedler and Pták [26], a matrix A ∈ R
n×n+ with λ(A) = 1 (i.e., as we call it, definite)

can be scaled to a visualized form by any column of A∗. A more detailed description of visualization

scalings is given in [44] in terms of the convex cone {x | A ⊗ x � x} and its relative interior.
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Thepresent paper, alongwith [42,43], can be seen as a follow-upof [12,13,21,44]which established

basic techniques and terminology of visualization used here.

2.2. Max algebra and Boolean matrices

Max algebra is related to the algebra of Boolean matrices. The latter algebra is defined over the

Boolean semiring S which is the set {0, 1} equipped with logical operations “OR” a ⊕ b := a ∨ b and

“AND” a ⊗ b := a ∧ b. Clearly, Boolean matrices can be treated as objects of max algebra, as a very

special but crucial case.

For a strongly connected graph, its cyclicity is defined as the g.c.d. of the lengths of all cycles (or

equivalently, all simple cycles). If the cyclicity is 1 then the graph is called primitive, otherwise it is

called imprimitive. Wewill not distinguish between cyclicity (or primitivity) of a Booleanmatrix A and

the associated digraph D(A). Further we recall an important result of Boolean matrix theory.

Proposition 2.1 (see Brualdi and Ryser [7]). Let A ∈ Sn×n be irreducible, and let γA be the cyclicity of

D(A) (which is strongly connected). Then for each k � 1, there exists a permutation matrix P such that

P−1AkP has r irreducible diagonal blocks, where r = gcd(k, γA), and all elements outside these blocks are

zero. The cyclicity of all these blocks is γA/r.

In max algebra, let A ∈ R
n×n+ . Define the Boolean critical matrix A[C] = (a

[C]
ij ) by

a
[C]
ij =

{
1, (i, j) ∈ Ec(A)

0, (i, j) /∈ Ec(A).
(8)

Let A, B ∈ R
n×n+ . Assume that C(A) has nc strongly connected components (briefly, s.c.c.) Cμ for

μ = 1, . . . , nc , with cyclicities γμ. Denote by Nμ the set of nodes in Cμ. Denote by Bμν the block of B

extracted from the rows with indices in Nμ and columns with indices in Nν .

The following propositionwas obtained in [13], as a corollary of Proposition 2.1. See [42, Proposition

3.3] for a simple proof, which uses visualisation.

Proposition 2.2. Let A ∈ R
n×n+ and λ(A) �= 0.

1. λ(Ak) = λk(A).
2. (Ak)[C] = (A[C])k.
3. For each k � 1, there exists a permutation matrix P such that (P−1AkP)[C]

μμ, for each μ = 1, . . . , nc,

has rμ := gcd(k, γμ) irreducible blocks and all elements outside these blocks are zero. The cyclicity of

all blocks in (P−1AkP)[C]
μμ is equal to γμ/rμ.

For a path π in a digraph G = (N, E), where N = {1, . . . , n}, denote by l(π) the length of π , i.e.,

the number of edges traversed by π .

Proposition 2.3 (see Brualdi-Ryser [7]). Let G = (N, E) be a strongly connected digraph with cyclicity

γG. Then the lengths of any two paths connecting i ∈ N to j ∈ N (with i, j fixed) are congruent modulo γG.

Proposition 2.3 implies that the following equivalence relation can be defined: i ∼ j if there exists

a path π from i to j such that l(π) ≡ 0(mod γG). The equivalence classes of G with respect to this

relation are called cyclic classes [5,40,41]. The cyclic class of i will be denoted by [i].
Consider the followingaccess relationsbetweencyclic classes: [i] →t [j] if there exists apathπ from

a node in [i] to a node in [j] such that l(π) ≡ t(mod γG). In this case, a path π with l(π) ≡ t(mod γG)
exists between any node in [i] and any node in [j]. Further, by Proposition 2.3 the length of any path

between a node in [i] and a node in [j] is congruent to t, so the relation [i] →t [j] is well-defined.

Class [j] is called adjacent to [i] if [i] →1 [j].
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Cyclic classes can be computed in O(|E|) time by digraph condensation methods [5,7].

The notion of cyclic classes and access relations can be generalized to the case when G has nc
disjoint strongly connected components Gμ with cyclicities γμ, for μ = 1, . . . , nc (this is how the

critical graph inmax algebra looks like). In this casewewrite i ∼ j if i, j belong to the same component

Gμ and there exists a path π from i to j such that l(π) ≡ 0(mod γμ). If l(π) ≡ t(mod γμ), then we

write [i] →t [j]. In this case the cyclicity of G is γ := l.c.m.(γμ), μ = 1, . . . , nc.
Wewill be interested in the cyclic classes of critical graphs, and belowwe also give an interpretation

of these, in terms of the Boolean matrix A[C]. Let A ∈ R
n×n+ . Following Brualdi and Ryser [7] we can

find an ordering of the indices such that any submatrix A[C]
μμ, which corresponds to an imprimitive

component Cμ of C(A), will be of the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A[C]
s1s2

0 · · · 0

0 0 A[C]
s2s3

· · · 0

...
...

...
. . .

...

0 0 0 · · · A[C]
sk−1sk

A[C]
sks1

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

where k = γμ. Indices si, for i = 1, . . . , k, correspond to cyclic classes. More precisely, the cyclic

class corresponding to si is adjacent to the cyclic class corresponding to si+1 for i = 1, . . . , k − 1,

and the cyclic class of sk is adjacent to the cyclic class of s1. By Proposition 2.2 part 2, when A is raised

to power k, A[C] is also raised to the same power over the Boolean algebra. Any power of A[C] has a

block-permutation form similar to (9), with a different pattern of nonzero blocks.

Theorem 5.4.11 of [33] implies that the sequence (Ak)[C] = (A[C])k becomes periodic after k �
(n− 1)2 + 1, with period γ = lcm(γμ), μ = 1, . . . , nc . In the periodic regime, all entries of nonzero

blocks are equal to 1. This fact is one step from the periodicity of matrices in max algebra.

Further we always assume that the cyclic classes are properly arrangedmeaning that any submatrix

A[C]
μμ is of the form (9).

2.3. Spectral projector and periodicity in max algebra

We assume as before that the critical graph C(A) occupies the first c nodes. For a definite A ∈ R
n×n+ ,

consider the matrix Q(A) with entries

qij =
c⊕

k=1

a∗
ika

∗
kj, i, j = 1, . . . , n. (10)

The max-linear operator whose matrix is Q(A), is a max-linear spectral projector associated with A, in

the sense that it projectsR
n+ on themax-algebraic eigencone {x | A⊗ x = x}, see [4] Subsection 3.7.3.

We also note that Q(A) is important for the policy iteration algorithm of [16].

We will need the following property of Q(A) which follows directly from (10).

Proposition 2.4. For a definite A ∈ R
n×n+ , any column (or row) of Q(A) with index in 1, . . . , c is equal

to the corresponding column (or row) of A∗.

This operator is closely related to the periodicity questions.

Theorem 2.5 (Baccelli et al. [4], Theorem 3.109). Let A ∈ R
n×n+ be irreducible and definite, and let all

s.c.c. of C(A) have cyclicity 1. Then there is an integer T(A) such that Ar = Q(A) for all r � T(A).

It can be easily shown that Theorem 2.5 can be generalized to the situation when A is in a blockdi-

agonal form with irreducible definite diagonal blocks A11, . . . , Auu so that



1742 Sergeı̆ Sergeev / Linear Algebra and Its Applications 435 (2011) 1736–1757

A =

⎛
⎜⎜⎜⎜⎝
A11 . . . 0

...
. . .

...

0 . . . Auu

⎞
⎟⎟⎟⎟⎠ . (11)

If A is irreducible and definite, then Ak for all k � 1 can be transformed by a simultaneous permuta-

tion of columns and rows to the blockdiagonal form (11), where all blocks A11, . . . , Auu are irreducible

and definite.

Indeed, let us show that A11, . . . , Auu are definite (i.e., that the m.c.g.m. of each block is 1). On one

hand, it is evidentwhenA is assumed to be visualised, that them.c.g.m. of each block does not exceed 1.

On theotherhand, any columnA∗·iwith1 � i � c is apositivemax-algebraic eigenvectorofAandhence

of Ak . This shows that each block of Ak has an eigenvector with eigenvalue λ(A), hence the m.c.g.m. of

each block, being equal to the largest max-algebraic eigenvalue of that block, cannot be less than 1.

It follows from Proposition 2.2 part 3 that all components of C(Aγ ) are primitive, where γ is the

cyclicity of C(A).
These arguments lead us to the following extension of Theorem 2.5.

Theorem 2.6. Let A ∈ R
n×n+ be irreducible and definite, and let γ be the cyclicity of C(A). There exists

T(A) such that

1. Atγ = Q(Aγ ) for all tγ � T(A);
2. Ar+γ = Ar for all r � T(A).

T(A) will be called the transient, and the powers Ar for r � T(A) will be called periodic powers.

The following properties of periodic powerswere established in [42], Propositions 4.4 and 4.5. Both

properties are deduced there from Theorem 2.6 above (though not explicitly stated in that paper).

Here and in the sequel a
(k)
ij will denote the (i, j) entry of Ak , with a few explicitly stated exceptions

from this rule.

Proposition 2.7. Let A ∈ R
n×n+ be a definite and irreduciblematrix, and let t � 0 be such that tγ � T(A).

Then for every integer l � 0

A
tγ+l

k· =
c⊕

i=1

a
(tγ )
ki A

tγ+l

i· , A
tγ+l

·k =
c⊕

i=1

a
(tγ )
ik A

tγ+l

·i , 1 � k � n. (12)

In the following Tc(A) denotes the number after which the critical rows and columns of Ar become

periodic. It is shown in [42] that Tc(A) � n2. It can be conjectured that Tc(A) � (n − 1)2 + 1, the

same bound as for the Boolean periodicity.

Proposition 2.8. Let A ∈ R
n×n+ be a definite and irreducible matrix, and let i, j ∈ {1, . . . , c} be such that

[i] →l [j], for some 0 � l < γ .

1. For any r � Tc(A), there exists t � 0 such that

a
(tγ+l)
ij Ar·i = A

r+l
·j , a

(tγ+l)
ij Ar

j· = A
r+l
i· . (13)

2. If A is visualized, then for all r � Tc(A)

Ar·i = A
r+l
·j , Ar

j· = A
r+l
i· . (14)

Let us also note the following corollaries of Proposition 2.8.

Corollary 2.9. Let A ∈ R
n×n+ be irreducible and visualized. For r � Tc(A), all rows (and all columns) of

Ar with indices in the same cyclic class are identical.
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Corollary 2.10. Let A ∈ R
n×n+ be irreducible. For r � Tc(A) and i ∈ Nμ, A

r·i = A
r+γμ

·i and Ar
i· = A

r+γμ

i· .

Proof. If A is visualized then this follows from Proposition 2.8, part 2. Now observe that the equalities

Ar·i = A
r+γμ

·i and Ar
i· = A

r+γμ

i· are invariant under diagonal similarity scaling. �

3. Properties of periodic powers

3.1. Core matrix

In the sequel we always assume that A ∈ R
n×n+ is irreducible. Let C(A) consist of nc components

Cμ with cyclicities γμ, for μ = 1, . . . , c. Let γ = l.c.m. (γμ) and c be the number of non-critical

nodes. Further it will be convenient (though artificial) to consider, together with these components,

also “non-critical components” Cμ forμ = nc + 1, . . . , nc + c, whose node sets Nμ consist of just one

non-critical node, and whose set of edges is empty.

Consider the block decomposition of Ar for r � 1, induced by the subsetsNμ forμ = 1, . . . , nc +c.

The submatrix of Ar extracted from the rows in Nμ and columns in Nν will be denoted by A(r)
μν . If A is

visualized and definite, we define the corresponding core matrix ACore = (αμν), μ, ν = 1, . . . , nc +
c by

αμν = max{aij | i ∈ Nμ, j ∈ Nν}. (15)

The entries of (ACore)∗ will be denoted by α∗
μν . Their role is investigated in the next theorem.

Theorem 3.1. Let A ∈ R
n×n+ be a definite visualized matrix and r � Tc(A). Let μ, ν = 1, . . . , nc + c be

such that at least one of these indices is critical. Then the maximal entry of the block A(r)
μν is equal to α∗

μν .

Proof. The entry α∗
μν is the maximal weight over paths from μ to ν , with respect to the matrix ACore.

We take such a path (μ1, . . . , μl) with maximal weight, where μ1 := μ and μl = ν . With this path

we can associate a path π in D(A) defined by π = τ1 ◦ σ1 ◦ τ2 ◦ . . . ◦ σl−1 ◦ τl , where τi are critical

paths which entirely belong to the components Cμi
, and σi are edges withmaximal weight connecting

Cμi
to Cμi+1

. Such a path exists since any two nodes in the same component Cμ can be connected to

each other by critical paths if μ is critical, and if μ is non-critical then Cμ consists just of one node.

The weights of τi are equal to 1, hence the weight of π is equal to α∗
μν . It follows from the definition

of αμν and α∗
μν that α∗

μν is the greatest weight over all paths which connect nodes in Cμ to nodes in

Cν . As at least one of the indices μ, ν is critical, there is freedom in the choice of the paths τ1 or τl
which can be of arbitrary length. Assume w.l.o.g. that μ is critical. Then for any r exceeding the length

of σ1 ◦ τ2 ◦ . . . ◦σl−1 ◦ τl which we denote by lμν , the block A(r)
μν contains an entry equal to α∗

μν which

is the greatest entry of the block. Taking the maximum T ′(A) of lμν over all ordered pairs (μ, ν) with

μ or ν critical, we obtain the claim for r � T ′(A). Since at r � Tc(A) the critical rows and columns of

Ar are periodic, the claim also holds for r � Tc(A). �

3.2. CSR-representation

For a definite visualized matrix A ∈ R
n×n+ , the statements of Propositions 2.7 and 2.8 can be

combined in the following. Let C ∈ R
n×c+ and R ∈ R

c×n+ bematrices extracted from the first c columns

(resp. rows) of Q(Aγ ) (or equivalently (Aγ )∗), and let S := A[C], the critical matrix of A defined by (8).

Theorem3.2. Let A ∈ R
n×n+ be definite and visualized. For r � T(A) and r ≡ l(mod γ ), Ar = C⊗Sl⊗R.

In particular, the submatrices of critical columns of Ar , resp. critical rows of Ar , are expressed as C ⊗ Sl,

resp. Sl ⊗ R.
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Proof. By (10) Q(Aγ ) = C ⊗ R, and by Theorem 2.6 Aγ t = Q(Aγ ) = C ⊗ R for γ t � T(A). Further C
(resp. R) can be extracted from the first c columns (resp. rows) of Aγ t . Thus the claim is already proved

for r = γ t � T(A).

As S = A[C], it follows that 1) the (i, j) entry of Sl can be 1 only if [i] →l [j], 2) for each pair of

classes [i] →l [j] and each i1 ∈ [i] there exists j1 ∈ [j] such that the (i1, j1) entry of Sl equals 1.

Using these two observations and equation (13) applied to Aγ t and Aγ t+l for γ t � T(A), we obtain

that the critical columns of Aγ t+l are given by C ⊗ Sl and the critical rows of Aγ t+l are given by Sl ⊗ R.

Combining this with any of the two equations of (12), we obtain that Aγ t+l = C ⊗ Sl ⊗ R, for any

γ t � T(A). �

Further we observe that the dimensions of periodic powers and the CSR-representation established

in Theorem 3.2 can be reduced.

The rows and columns with indices in the same cyclic class coincide in any power Ar , where r �
Tc(A) and A is definite and visualized. Hence the blocks of Ar , for μ, ν = 1, . . . , nc + c and r � Tc(A)
(in particular, r � n2), are of the form

A(r)
μν =

⎛
⎜⎜⎜⎜⎝
ã
(r)
s1t1

Es1t1 . . . ã
(r)
s1tm

Es1tm
...

. . .
...

ã
(r)
skt1

Eskt1 . . . ã
(r)
sktm

Esktm

⎞
⎟⎟⎟⎟⎠ , (16)

where k (resp. m) are cyclicities of Cμ (resp. Cν ), indices s1, . . . , sk (resp. t1, . . . , tm) correspond to

properly arranged cyclic classes of Cμ (resp. Cν ), and Esitj are matrices with appropriate dimensions

with all entries equal to 1. We assume that Cμ has just one “cyclic class” if μ is non-critical.

Formula (16) defines the square matrix Ã(r) with č + c rows and columns, where č is the total

number of cyclic classes, as matrix with entries ã
(r)
sitj

. Corresponding to (16), this matrix has blocks

Ã(r)
μν =

⎛
⎜⎜⎜⎜⎝
ã
(r)
s1t1

. . . ã
(r)
s1tm

...
. . .

...

ã
(r)
skt1

. . . ã
(r)
sktm

⎞
⎟⎟⎟⎟⎠ . (17)

It follows that Ã(r1+r2) = Ã(r1) ⊗ Ã(r2) for all r1, r2 � Tc(A). In words, the multiplication of any two

powers A(r1) and A(r2) for r1, r2 � Tc(A) reduces to the multiplication of Ã(r1) and Ã(r2).

If we take r = γ t + lwhere γ t � T(A) (instead of Tc(A) above) and denote Ã := Ã(γ t+1), then due

to the periodicity we obtain

Ã(γ t+l) = Ã((γ t+1)l) = (Ã(γ t+1))l = Ãl, (18)

so that Ã(r) can be regarded as the lth power of Ãwhere r ≡ l(mod γ ), for all r � T(A).
Matrices C, R, and St for t � (n− 1)2 + 1 have the same block structure as in (16). This shows that

the behavior of periodic powers Ar is fully described by

Ãr = C̃ ⊗ S̃l ⊗ R̃, r ≡ l(mod γ ), (19)

where S̃ is a č × č Boolean matrix with blocks

S̃μμ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S̃μν = 0 for μ �= ν , (20)



Sergeı̆ Sergeev / Linear Algebra and Its Applications 435 (2011) 1736–1757 1745

where C̃ and R̃ are extracted from critical columns and rows of Ãγ = Q(Ãγ ), or equivalently, formed

from the scalars in the blocks of C and R. The dimensions of C̃ and R̃ are (č + c) × č and č × (č + c),
respectively.

3.3. Circulant properties

MatrixA ∈ R
n×n+ is calleda circulant if there exist scalarsα0, . . . , αn−1 such thataij = αd whenever

j − i = d(mod n). This looks like

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0 α1 α2 · · · αn−1

αn−1 α0 α1 · · · αn−2

αn−2 αn−1 α0 · · · αn−3

...
. . .

. . .
. . .

...

α1 α2 . . . . . . α0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

We also consider the following generalizations of this notion.

Matrix A ∈ R
m×n+ will be called a rectangular circulant, if aij = aps whenever p = i + t(mod m)

and s = j + t(mod n), for all i, j, t. Whenm = n, this is an ordinary circulant given by (21).

Matrix A ∈ R
m×n+ will be called a block k × k circulant when there exist scalars α1, . . . , αk and a

block decomposition A = (Aij), i, j = 1, . . . , k such that Aij = αdEij if j − i = d(mod k), where all

entries of blocks Eij are equal to 1.

A ∈ R
m×n+ is called d-periodic when aij = ais if (s − j)mod n is a multiple of d, and when aji = asi

if (s − j)modm is a multiple of d.

We give an example of 6 × 9 rectangular circulant A:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 0 1 2 0 1 2

2 0 1 2 0 1 2 0 1

1 2 0 1 2 0 1 2 0

0 1 2 0 1 2 0 1 2

2 0 1 2 0 1 2 0 1

1 2 0 1 2 0 1 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This example provides evidence that a rectangularm× n circulant consists of ordinary d× d circulant

blocks where d =g.c.d.(m, n). In particular, it is d-periodic. Also, there exist permutation matrices P

and Q such that PAQ is a block circulant:

PAQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1 2 2 2

0 0 0 1 1 1 2 2 2

2 2 2 0 0 0 1 1 1

2 2 2 0 0 0 1 1 1

1 1 1 2 2 2 0 0 0

1 1 1 2 2 2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We formalize these observations in the following.
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Proposition 3.3. Let A ∈ R
m×n+ be a rectangular circulant, and let d =g.c.d.(m, n).

1. A is d-periodic.

2. There exist permutation matrices P and Q such that PAQ is a block d × d circulant.

Proof. 1. There are integers t1 and t2 such that d = t1m + t2n. Using the definition of rectangular

circulant we obtain aij = ais, if s = j + t1m(mod n), and hence if s = j + d(mod n). Analogously for

rows, we obtain that aji = asi, if s = j + t2n(mod m), and hence if s = j + d(mod m).
2. As A is d-periodic, all rows such that i+ d = j(mod m) are equal, so that {1, . . . ,m} can be divided

in d groups each with m/d indices, in such a way that Ai· = Aj· if i and j belong to the same group.

We can find a permutation matrix P such that A′ = PA will have rows A′
1· = . . . = A′

d· = A1·,
A′
d+1· = . . . = A′

2d· = A2·, and so on. Analogously we can find a permutation matrix Q such that

A′′ = PAQ will have columns A′′·1 = . . . = A′′·d = A′·1, A′′·d+1 = . . . = A′′·2d = A′·2, and so on. Then A′′
has blocks (A′′

ij) for i, j = 1, . . . , d. of dimension n/d × m/d, where A′′
ij = aijEij , and Eij has all entries

1. As A is d-periodic, it can be shown that its submatrix extracted from the first d rows and columns,

is a circulant. Hence A′′ is a block circulant. �

When g.c.d.(m, n) = 1, the rectangular circulant is 1-periodic, i.e., a constant matrix.

Proposition 3.4. Let A ∈ R
n×n+ be a definite visualized matrix which admits block decomposition (16),

and r � T(A). Let Cμ, Cν be two (possibly equal) components of C(A), and d = g.c.d.(γμ, γν).

1. Ã(r)
μν is a rectangular circulant (which is a circulant if μ = ν).

2. For any critical μ and ν , there is a permutation P such that (PT ÃP)(r)μν is a block d× d circulant matrix.

3. If r is a multiple of γμ, then Ã(r)
μμ are circulant Kleene stars, where all off-diagonal entries are strictly

less than 1.

Proof. 1. Using Eq. (14) we see that for all (i, j) and (k, l) such that k = i + t(mod γμ) and l =
j + t(mod γν),

ã
(r)
sktl

= ã
(r+t)
sitl

= ã
(r)
sitj

.

2. Ifμ = ν then P = I, and ifμ �= ν then P is any permutationmatrix such that its “subpermutations”

for Nμ and Nν are given by P and Q of Proposition 3.3.

3. Part 1 shows that Ã(r)
μμ are circulants for any r � T(A) and critical μ. If r is a multiple of γμ then,

using the periodicity of critical rows and columns (Corollary 2.10) we obtain that Ã(r)
μμ are submatrices

of Ãγ = Q(Ãγ ) and hence of (Ãγ )∗. This implies, using (2), that they are Kleene stars. As the μth

component of C(Ã) is just a cycle of length γμ, the corresponding component of C(Ãγμ) consists of γμ

loops, showing that the off-diagonal entries of Ã(r)
μμ are strictly less than 1. �

4. Attraction cones

4.1. A system for attraction cone

Let A ∈ R
n×n+ and λ(A) = 1. The attraction cone Attr(A, t), where t � 1 is an integer, is the set

which consists of all vectors x, for which there exists an integer r such that Ar ⊗ x = Ar+t ⊗ x, and

hence this is also true for all integers greater than or equal to r. Actually we can speak of any r � T(A),
due to the following observation.
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Proposition 4.1. Let A be irreducible and definite. The systems Ar ⊗ x = Ar+t ⊗ x are equivalent for all

r � T(A).

Proof. Let x satisfy As ⊗ x = As+t ⊗ x for some s � T(A), then it also satisfies this system for all

greater s. Due to the periodicity, for all k from T(A) � k � s there exists l > s such that Ak = Al .

Hence Ak ⊗ x = Ak+t ⊗ x also hold for T(A) � k � s. �

Corollary 4.2. Attr(A, t) = Attr(At, 1).

Proof. By Proposition 4.1, Attr(A, t) is solution set to the system Ar ⊗ x = Ar+t ⊗ x for any r � T(A).

It follows that Atl ⊗ x = At(l+1) ⊗ x for any l � T(A)/t, and hence for any l � T(At). �

An equation of Ar ⊗ x = Ar+t ⊗ x whose index (meaning the index of the corresponding row

of Ar and Ar+t) is in {1, . . . , c} will be called critical, and the subsystem of equations with indices in

{1, . . . , c} will be called the critical subsystem.

Theorem 4.3. Let A be irreducible and definite and let r � T(A). Then Ar ⊗ x = Ar+t ⊗ x is equivalent

to its critical subsystem, which can be written as St ⊗ R ⊗ x = R ⊗ x.

Proof. Consider an equation of Ar
k· ⊗ x = A

r+t
k· ⊗ x whose index is non-critical. Using (12) it can be

written as

c⊕
i=1

a
(r)
ki A

r
i· ⊗ x =

c⊕
i=1

a
(r)
ki A

r+t
i· ⊗ x, (22)

hence it is a max combination of equations in the critical subsystem.

As the systems Ar+t ⊗ x = Ar ⊗ x are equivalent to each other for all r � T(A), we can assume

w.l.o.g. that r is a multiple of γ . It follows now from Theorem 3.2 that the critical subsystem above can

be written as St ⊗ R ⊗ x = R ⊗ x. �

It is proved in [42], following the idea of [40], that the coefficients of the systemof Ar ⊗x = Ar+t ⊗x

for r � T(A) can be obtained in O(n3 log n) operations, by means of matrix squaring and permutation

on cyclic classes.

Next we show how the specific circulant structure of Ar at r � T(A) can be exploited, to cancel

the redundant terms in the system of equations for the attraction cone Attr(A, 1). Due to Theorem 3.1

the core matrix ACore = {αμν | μ, ν = 1, . . . , nc}, and its Kleene star (ACore)∗ = {α∗
μν | μ, ν =

1, . . . , nc} will be of special importance. We introduce the notation

M(r)
ν (i) = {j ∈ Nν | a(r)

ij = α∗
μν}, i ∈ Nμ, ∀ν : Cν �= Cμ,

K(r)(i) = {t > c | a(r)
it = α∗

μν(t)}, i ∈ Nμ,
(23)

where Cμ and Cν are s.c.c. of C(A), Nμ and Nν are their node sets, and ν(t) in the second definition

denotes the index of the non-critical component which consists of the node t. The sets M(r)
ν (i) are

non-empty for any ν , critical i and r � Tc(A), due to Theorem 3.1. However, K(r)(i) may be empty.

The results of Subsection 3.3 lead to the following properties of M(r)
ν (i) and K(r)(i).

Proposition 4.4. Let r � Tc(A) and μ, ν ∈ {1, . . . , nc}.
1. If [i] →t [j] then M(r+t)

ν (i) = M(r)
ν (j) and K(r+t)(i) = K(r)(j).

2. Each M(r)
ν (i) is the union of some cyclic classes of Cν .

3. Let i ∈ Nμ and d = g.c.d.(γμ, γν). Then, if [p] ⊆ M(r)
ν (i) and [p] →d [s] then [s] ⊆ M(r)

ν (i).

4. Let i, j ∈ Nμ and p, s ∈ Nν . Let [i] →t [j] and [p] →t [s]. Then [p] ⊆ M(r)
ν (i) if and only if

[s] ⊆ M(r)
ν (j).
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Next we establish the cancellation rules which will enable us to write out a concise system of

equations for the attraction cone Attr(A, 1).
If a < c, then

{x : ax ⊕ b = cx ⊕ d} = {x : b = cx ⊕ d}. (24)

Now consider a system of equations over max algebra:

n⊕
i=1

a1ixi ⊕ c1 =
n⊕

i=1

a2ixi ⊕ c2 = · · · =
n⊕

i=1

anixi ⊕ cn. (25)

Suppose that α1, . . . , αn ∈ R+ are such that ali � αi for all l and i, and Sl = {i | ali = αi}
for l = 1, . . . , n. Let Sl be such that

⋃n
l=1 Sl = {1, . . . , n}. Repeatedly applying the elementary

cancellation law described above, we obtain that (25) is equivalent to⊕
i∈S1

αixi ⊕ c1 = ⊕
i∈S2

αixi ⊕ c2 = · · · = ⊕
i∈Sn

αixi ⊕ cn. (26)

We will refer to the equivalence between (25) and (26), which we acknowledge to [21], as to chain

cancellation.

Using notation (23) and Proposition 4.4 we formulate the main result of the paper.

Theorem 4.5. Let A ∈ R
n×n+ be a visualized matrix and r � Tc(A) be a multiple of γ . Then Attr(A, 1) is

the solution set of the system

⊕
k∈[i]

xk ⊕ ⊕
Cν �=Cμ

α∗
μν

⎛
⎜⎝ ⊕

k∈M
(r)
ν (i)

xk

⎞
⎟⎠ ⊕ ⊕

t∈K(r)(i)

α∗
μν(t)xt

= ⊕
k∈[j]

xk ⊕ ⊕
Cν �=Cμ

α∗
μν

⎛
⎜⎝ ⊕

k∈M
(r)
ν (j)

xk

⎞
⎟⎠ ⊕ ⊕

t∈K(r)(j)

α∗
μν(t)xt, (27)

where [i] and [j] range over all pairs of cyclic classes such that [i] →1 [j] and Cμ is the component of C(A)
which contains both [i] and [j].
Proof. By Theorem 4.3 the attraction cone Attr(A, 1) is described by the system S ⊗ R ⊗ x = R ⊗ x,

which can be written as⊕
k

a
(r)
ik xk = ⊕

k

a
(r)
jk xk, ∀i, j : [i] →1 [j], (28)

for any r � Tc(A).
Proposition 3.4, part 2, implies that all principal submatrices of Ar extracted from critical compo-

nents have a circulant block structure. In this structure, if r is amultiple of γ , all entries of the diagonal

blocks are equal to 1, and the entries of all off-diagonal blocks are strictly less than 1. Hence we can

apply the chain cancellation (equivalence between (25) and (26)) and obtain the first terms on both

sides of (27). By Theorem 3.1 each block Aμν contains an entry equal to α∗
μν . For a non-critical ν(t),

this readily implies that the corresponding “subcolumn” Aμν(t) contains an entry α∗
μν(t). Applying the

chain cancellationwe obtain the last terms on both sides of (27). Due to the block circulant structure of

Aμν with bothμ and ν critical, see Proposition 3.4 or Proposition 4.4, we see that each column of such

block also contains an entry equal to α∗
μν . Applying the chain cancellation we obtain the remaining

terms in (27). �

Remark 4.6. We can allow any r � Tc(A) in (27), but then k ∈ [i] and k ∈ [j] in the first terms on

both sides have to be replaced by k : [i] →r [k] and k : [j] →r [k] respectively.
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Remark 4.7. As Attr(A, t) = Attr(At, 1), system (27) also describes more general attraction cones, it

only amounts to substituting C(At) for C(A) and the entries of ((At)Core)∗ for α∗
μν (the dimension of

this matrix will be different from that of ACore in general, see Proposition 2.2 part 3).

Wenote that the system for Attr(A, 1)naturally breaks into several chains of equations correspond-
ing to the s.c.c. of C(A). If we start with (28), it can be equivalently written as R ⊗ x = H ⊗ y, where

H ∈ R
c×nc+ is a Boolean matrix with entries

hiμ =
{
1, if i ∈ Nμ,

0, otherwise.
(29)

We can apply cancellation as described in the proof of Theorem 4.5, to get rid of redundant terms on

the left-hand side of the two-sided system.

If C(A) is strongly connected thenH is a vector of all ones, and the two-sided system R⊗ x = H⊗ y

becomes essentially one-sided. We treat this case in the next subsections.

4.2. Extremals of attraction cones

System (27) in general consists of several chains of equations corresponding to s.c.c. of C(A). Each
chain is of the form⊕

i∈T1

aixi = ⊕
i∈T2

aixi = · · · = ⊕
i∈Tm

aixi, (30)

where T1 ∪ . . . ∪ Tm = {1, . . . , n} and ai come from the entries of (ACore)∗.
Here, we consider only the case of strongly connected C(A), i.e., only one chain. By scaling yi = aixi

we obtain⊕
i∈T1

yi = ⊕
i∈T2

yi = · · · = ⊕
i∈Tm

yi, (31)

Note that when the critical graph is not strongly connected, we have several chains of equations

and the coefficients of (30) in general cannot be scaled to get (31) for each chain at the same time.

By ei we denote the vector which has the ith coordinate equal to 1 and all the rest equal to 0. Vector

y ∈ R
n+ will be called scaled if

⊕n
i=1 yi = 1, and set S is called scaled if it consists of scaled vectors.

We say that V ⊆ R
n+ is generated by S ⊆ R

n+ (also, S is a generating set of V) if S ⊆ V and for any

x ∈ V there exist y1, . . . , yl ∈ S and α1, . . . , αl ∈ R+ such that x = ⊕l
i=1 αiy

i.

We investigate extremal solutions of (31): a solution x is called extremal if x = y ⊕ z for two other

solutions y, z implies that x = y or x = z [11,27]. The following can be deduced from the results of

[10,11,27].

Proposition 4.8. The solution set of any finite system of max-linear equations has a finite generating set.

In particular, it is generated by extremal solutions, and any set of scaled generators for the solution set

contains all scaled extremal solutions.

In the next propositionwe show that extremal solutions of (31) can have only 0 and 1 components.

Proposition 4.9. Let y be a scaled solution of (31) and let 0 < yi < 1 for some i. Then y is not an extremal.

Proof. Let K< := {i | 0 < yi < 1} and K1 := {i | yi = 1}, and define vectors v0 and v1(k) for each
k ∈ K< by

v0i =
{
1, if i ∈ K1

0, otherwise
, v1i (k) =

{
1, if i ∈ K1 ∪ {k}
0, otherwise

. (32)



1750 Sergeı̆ Sergeev / Linear Algebra and Its Applications 435 (2011) 1736–1757

Observe that both v0 and v1(k) for any k ∈ K<, are solutions to (31), different from y. We have:

y = v0 ⊕ ⊕
k∈K<

yk · v1(k), (33)

hence y is not an extremal. �

Let T = (tij) be them × n Boolean matrix defined by

tij =
{
1, if j ∈ Ti,

0, otherwise,
(34)

where Ti are from (31).

A subset K ⊆ {1, . . . , n} is called a covering of T if each Ti contains an index from K . The following

is immediate.

Proposition 4.10. A scaled vector y is a solution of (31) if and only if K1 := {i | yi = 1} is a covering of

T.

A covering K is called minimal if it does not contain any proper subset which is also a covering.

A covering K will be called nearly minimal if it contains no more than one proper subcovering K ′.
Observe that then the complement K\K ′ consists of just one index. Hence, a covering is nearlyminimal

if and only if there may exist no more than one i ∈ K such that K\{i} is a covering.

Proposition 4.11. Extremal solutions of (31) are precisely vK := ⊕
i∈K ei, where K is a nearly minimal

covering of T.

Proof. If a covering K is not nearly minimal, then there exist i and j such that K[i] := K\{i} and

K[j] := K\{j} are both coverings of T . Then vK[i] and vK[j] are both solutions and v = vK[i] ⊕ vK[j]
hence vK is not extremal.

Conversely, if vK is not extremal, then there exist y �= vK and z �= vK such that vK = y ⊕ z. Hence

y � vK and z � vK , and also y and z are not proportional with each other. By Proposition 4.9, see in

particular (33), we can represent y and z as combinations of Boolean solutions of (31). These solutions

correspond to coverings, which must be proper subsets of K . At least two of these coverings must be

different from each other (since y and z are not proportional), hence K is not nearly minimal. �

Thus, the problem of finding all nearly minimal coverings of a Boolean matrix is equivalent to the

problem of finding all extremal solutions of (31).

The following case applies if the critical graph is strongly connected and occupies all nodes.

Corollary 4.12. Let T1, . . . , Tm be pairwise disjoint, then the scaled extremals are precisely all vectors

vS = ⊕
i∈S e

i, where S is an index set which contains exactly one index from each set Ti.

Proof. Any such set S forms a minimal covering of T , and it can be shown that the solution set of (31)

is generated by vS , so there are no more scaled extremals (or nearly minimal coverings). �

4.3. An algorithm for finding the coefficients of an attraction system

Coefficients of the system of equationswhich defines attraction cone are determined by the entries

of (ACore)∗ which can be found in O((nc + c)3) operations, where nc is the number of s.c.c. of C(A)
and c is the number of non-critical nodes. However, it remains to find the places where these coeffi-

cients appear, i.e., the sets M(r)
ν (i) and K(r)(i) for i = 1, . . . , c. Solving this problem, we get another

polynomial method for computing the coefficients of (27).

Here we restrict our attention to the case when C(A) is strongly connected. In this case there are no

second terms on both sides of (27) and we need only K(r)(i). The digraphD(ACore) associated with the
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matrix ACore consists of one critical node which corresponds to the whole C(A) and will be denoted by

μ, and c non-critical nodes ν(t), for t > c. The core matrix is of the form

ACore =
⎛
⎝1 h

g B

⎞
⎠ , (35)

the entries αμν and the entries of h, g and B = (bν(s),ν(t)) are given by

αμμ = 1,

hν(t) = αμν(t) = c
max
k=1

akt, gν(t) = αν(t)μ = c
max
k=1

atk, t > c,

bν(s)ν(t) = αν(s)ν(t) = ast, s > c, t > c.

(36)

Denote by [→m i] the cyclic class [j] such that [j] →m [i]. For each t > c, we initialize Boolean

c-vectors Pt by

Pt(i) =
⎧⎨
⎩1, if [→1 i] ∩ arg

c
max
k=1

akt �= ∅
0, otherwise.

(37)

Pt encode the Boolean information associated with h (shifted cyclically by 1).

Further we compute the Kleene star of the non-critical submatrix B := AMM , where M denotes

the set of non-critical nodes, and store the information on the lengths of paths with maximal weight

and length not exceeding c in sets Ust associated to each entry of B. To compute these sets we use the

formula

B∗ = I ⊕ B ⊕ · · · ⊕ Bc−1, (38)

where for each entry of this matrix series we find the arguments of maxima.

Note that b
(t)
ij < b∗

ij for all t � c and all i, j, since every path of length exceeding c − 1 contains

a cycle which can be deleted from the path while strictly increasing the weight. Therefore, paths with

lengths exceeding c − 1 do not contribute to Ust .

To combine the information associated with h and B∗, we recall the max-algebraic version of bor-

dering method due to Carré [14], which computes

(ACore)∗ =
⎛
⎝1 hT

g B

⎞
⎠

∗
=

⎛
⎝ 1 hT ⊗ B∗

B∗ ⊗ g B∗ ⊕ B∗ ⊗ g ⊗ hT ⊗ B∗

⎞
⎠ , (39)

where h, g ∈ R
c+. Note that all information that we need for system (27), is in the entries of hT ⊗ B∗

and in the indices of equations of the systemwhere the entries of hT ⊗B∗ appear. Computing (hT ⊗B∗)i
means in particular obtaining the “winning” indices

Wt = arg max
s>c

hν(s)b
∗
ν(s)ν(t). (40)

After that, the idea is to combine Ps with Ust for all s ∈ Wt and unite the obtained indices. More

precisely, for each numberm stored in Ust we define the shifted Boolean vector P→m
s by

P→m
s (i) =

⎧⎨
⎩1, if [→m+1 i] ∩ arg

c
max
k=1

aks �= ∅
0, otherwise.

(41)

Equivalently,

P→m
s (i) = 1 ⇔ Ps(j) = 1 and [j] →m [i]. (42)
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After that, we define

Gt := ∨
s∈Wt

∨
m∈Ust

P→m
s . (43)

Proposition 4.13. Let t > c, and let r � T(A) be a multiple of γ . Then for all i � c, t ∈ K(r)(i) if and

only if Gt(i) = 1.

Proof. By (42) and (43), Gt(i) = 1 if and only if there exist s ∈ Wt andm ∈ Ust such that P→m
s (i) = 1.

Then there exists a pathπ1◦τ ◦π2 whereπ1 starts in i, belongs to C(A) andhas length−m−1(mod γ ),
τ is an edge which attains hν(s) = maxcl=1 als, and π2 is entirely non-critical, has length m, weight

b∗
ν(s)ν(t), and connects s to t. The weight of π1 ◦ τ ◦ π2 is equal to 1 · hs · b∗

st = α∗
μν(t), and the length

is a multiple of γ , meaning that a
(r)
it = α∗

μν(t) and t ∈ K(r)(i).

The other way around, let t ∈ K(r)(i). Then there exists a path π of length r that connects i to t

and has weight α∗
μν(t) = ⊕

s hν(s)b
∗
ν(s)ν(t). We can decompose π = π ′

1 ◦ τ ′ ◦ π ′
2, where τ ′ is an edge

connecting a critical node to a non-critical node s′ > c, and π ′
2 has only non-critical nodes. Obviously

w(π) � w(τ ′ ◦ π ′
2) � ⊕

s hν(s)b
∗
ν(s)ν(t) = α∗

μν(t). But w(π) = α∗
μν(t), hence w(τ ′ ◦ π ′

2) = α∗
μν(t)

and w(π ′
1) = 1 so that π ′

1 entirely belongs to C(A). As w(τ ′) � hν(s′) and w(π ′
2) � b∗

ν(s′)ν(t) but

w(τ ′ ◦ π ′
2) � ⊕

s hν(s)b
∗
ν(s)ν(t), we deduce that w(τ ′) = hν(s′) and w(π ′

2) = b∗
ν(s′)ν(t). In particular,

the length of π ′
2 does not exceed c − 1. Using (42) and (43) we conclude that Gt(i) = 1. �

Summarizing above said, we have the following algorithm for computing the coefficients of (27) in

the case when C(A) is strongly connected. Recall that in this case there is no second term on both sides

of (27). The computation of coefficients of the third term includes the computation of h ⊗ B∗ and the

sets K(r)(i) for i � c (in fact we can improve the algorithm since only γ of them are different).

Algorithm 1. Compute the coefficients of (27) if C(A) is strongly connected.

Input. Visualized matrix A, critical graph C(A) which is strongly connected and the cyclic classes of

C(A).

1. Compute h (takes cc operations) and initialize Pt for t > c (takes O(c2c) operations).
2. Compute B∗ and sets Ust for all s, t > c. It takes O(c4) operations (see (38)).

3. Compute hB∗ and Gt for t > c, by (40), (42) and (43). Computation of hB∗ and Wt by (40) requires

O(c2) operations, computation of shifted Boolean vectors is O(cc2), and the conjunction (43) takes

O(cc3) operations.

4. Compute K(r)(i) using Proposition 4.13. This requires cc operations.

As the overall complexity does not exceed O(c4) + O(c2c) + O(cc3) = O(nc3) + O(c2c) operations,
we conclude the following.

Proposition 4.14. Let A ∈ R
n×n+ be visualized, C(A) be strongly connected, c be the number of non-critical

nodes, and suppose we know C(A) and all cyclic classes. Then Algorithm 1 computes the coefficients of the

attraction system in no more than O(c3n) + O(c2c) operations.

It is also important that the eigenvalue and an eigenvector of irreduciblematrix can be computed by

thepolicy iteration algorithmof [15],which is very fast in practice. After that, C(A) and the cyclic classes

can be computed inO(n2) time. Thuswe are led to an efficientmethod of computing the coefficients in

the case when A is irreducible and C(A) is strongly connected, especially in the case when the number

of non-critical nodes is small. Note that the case of irreducible A and strongly connected C(A) is generic
when matrices A are real and generated at random. Also, in this generic case it almost never happens

that maxima in blocks or among the weights of paths are achieved twice, whichmeans that we do not

need to assign Boolean vectors or sets to each entry. In this case the total number of operations in the

algorithm is reduced to O(c3) + O(cc), which comes from computing h and B∗.
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When C(A) is not strongly connected, the borderingmethod (39) can be used to obtain an algorithm

which operates only with the entries of ACore. However, the complexity of operations with indices and

Boolean numbers significantly increases in that general case.

5. Examples

5.1. Circulants

Here we consider a 9 × 9 example of definite and visualized matrix in max-plus algebra

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−8 0 −1 −8 −8 −9 −4 −5 −1

−4 −5 0 −2 −6 0 −7 −3 −9

−7 −9 −8 0 −8 −4 −6 −9 −10

−8 −8 −10 −7 0 −4 −6 −10 −1

−2 −8 −7 −4 −8 0 −3 −1 −10

0 −1 −2 −7 −10 −6 −3 −6 −1

−10 −7 −7 −7 −6 −1 −5 0 −9

−8 −3 −6 −8 −6 −8 −5 −10 0

−4 −3 −5 −6 −6 −10 0 −6 −9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (44)

The critical graph of this matrix consists of two s.c.c. comprising 6 and 3 nodes respectively. They

are shown in Figures 1 and 2, together with their cyclic classes.

The components of C(A) induce block decomposition

A =
⎛
⎝A11 A12

A21 A22

⎞
⎠ , (45)

1

2 3

4

56

7

8

9

Fig. 1. Critical graph of (44).

I I

II

II

III

III

IV

V

V I

Fig. 2. Cyclic classes of the critical graph.
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where

A11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−8 0 −1 −8 −8 −9

−4 −5 0 −2 −6 0

−7 −9 −8 0 −8 −4

−8 −8 −10 −7 0 −4

−2 −8 −7 −4 −8 0

0 −1 −2 −7 −10 −6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A22 =

⎛
⎜⎜⎜⎝
−5 0 −9

−5 −10 0

0 −6 −9

⎞
⎟⎟⎟⎠ (46)

The core matrix and its Kleene star are equal to

ACore = (ACore)∗ =
⎛
⎝ 0 −1

−1 0

⎞
⎠ . (47)

By calculating A, A2, . . . we obtain that the powers of A become periodic after T(A) = 6. In the block

decomposition of A6 analogous to (45), we have the following circulants:

A
(6)
11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −2 0 −1 −2

−2 0 −1 −2 0 −1

−1 −2 0 −1 −2 0

0 −1 −2 0 −1 −2

−2 0 −1 −2 0 −1

−1 −2 0 −1 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A
(6)
12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 −1 −1

−1 −2 −1

−1 −1 −2

−2 −1 −1

−1 −2 −1

−1 −1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A
(6)
21 =

⎛
⎜⎜⎜⎝
−3 −1 −2 −3 −1 −2

−2 −3 −1 −2 −3 −1

−1 −2 −3 −1 −2 −3

⎞
⎟⎟⎟⎠ , A

(6)
22 =

⎛
⎜⎜⎜⎝

0 −3 −2

−2 0 −3

−3 −2 0

⎞
⎟⎟⎟⎠ .

(48)

The corresponding blocks of “reduced” power Ã(6) are

Ã
(6)
11 =

⎛
⎜⎜⎜⎝

0 −1 −2

−2 0 −1

−1 −2 0

⎞
⎟⎟⎟⎠ , Ã

(6)
12 =

⎛
⎜⎜⎜⎝
−2 −1 −1

−1 −2 −1

−1 −1 −2

⎞
⎟⎟⎟⎠ ,

Ã
(6)
21 =

⎛
⎜⎜⎜⎝
−3 −1 −2

−2 −3 −1

−1 −2 −3

⎞
⎟⎟⎟⎠ , Ã

(6)
22 =

⎛
⎜⎜⎜⎝

0 −3 −2

−2 0 −3

−3 −2 0

⎞
⎟⎟⎟⎠ .

(49)

Note that Ã
(6)
11 and Ã

(6)
22 are Kleene stars, with all off-diagonal entries negative.

Using (48), we specialize system (27) to our case, we see that this system of equations for the

attraction cone Attr(A, 1) consists of two chains of equations, namely

x1 ⊕ x4 ⊕ (x8 − 1) ⊕ (x9 − 1) = x2 ⊕ x5 ⊕ (x7 − 1) ⊕ (x9 − 1)

= x3 ⊕ x6 ⊕ (x7 − 1) ⊕ (x8 − 1),

(x2 − 1) ⊕ (x5 − 1) ⊕ x7 = (x3 − 1) ⊕ (x6 − 1) ⊕ x8

= (x1 − 1) ⊕ (x4 − 1) ⊕ x9.

(50)
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1

2

3
4 5 6

Fig. 3. Critical graph and non-critical nodes of (51).

Note that only 0 and−1, the coefficients of (ACore)∗ (which is equal to ACore in our example), appear

in this system.

5.2. Algorithm for the strongly connected case

Here, we consider a 6 × 6 max-plus example

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 0 −1 −19 −7 −3

−3 −4 0 −10 −19 −16

0 −3 −1 −10 −8 −8

−1 −4 −4 −1 −1 −3

−1 −1 −4 −2 −4 −1

−4 −2 −4 −1 −4 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (51)

and apply to it the algorithm described in Subsection 4.3. The critical graph of this matrix consists just

of one cycle of length 3, and there are 3 non-critical nodes.

The core matrix in this case is equal to

ACore =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −10 −7 −3

−1 −1 −1 −3

−1 −2 −4 −1

−2 −1 −4 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

Vector h = (−10 − 7 − 3)T , whose components are computed by

hi =
3⊕

k=1

aki, for i = 4, 5, 6, (52)

comprises 2, 3, 4-components of the first row of ACore. The arguments of maxima in (52) give, after

the cyclic shift by one position, the Boolean vectors

P4 = (1 0 1), P5 = (0 1 0), P6 = (0 1 0). (53)

These vectors encode, for the corresponding non-critical nodes t = 4, 5, 6, the starting cyclic classes

(here, just critical nodes!) of paths which go from C(A) directly to t and whose length is 3.

The non-critical principal submatrix of A and its Kleene star are equal to

B =

⎛
⎜⎜⎜⎝
−1 −1 −3

−2 −4 −1

−1 −4 −1

⎞
⎟⎟⎟⎠ , B∗ =

⎛
⎜⎜⎜⎝

0 −1 −2

−2 0 −1

−1 −2 0

⎞
⎟⎟⎟⎠
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The lengths of optimal non-critical paths (whoseweights are entries of B∗) can bewritten in thematrix

of sets

U =

⎛
⎜⎜⎜⎝

{0} {1} {2}
{1, 2} {0} {1}
{1} {2} {0}

⎞
⎟⎟⎟⎠ (54)

Further we compute

hT ⊗ B∗ = (−10 − 7 − 3) ⊗

⎛
⎜⎜⎜⎝

0 −1 −2

−2 0 −1

−1 −2 0

⎞
⎟⎟⎟⎠ = (−4 − 5 − 3)

The maxima in
⊕

t htb
∗
ti for all i are achieved only at t = 6, so W4 = W5 = W6 = {6}. Hence G4,

G5 and G6 are shifted P6 and the shift is determined by the components in the last row of U which is

({1} {2} {0}). From P6 = (0 1 0) we conclude that

G4 = (0 0 1), G5 = (1 0 0), G6 = (0 1 0).

By Proposition 4.13 we have that Gi(t) = 1 if and only if t ∈ K(r)(i) (where r � T(A) is a multiple

of γ = 3). Using this rule we obtain that K(r)(1) = {5}, K(r)(2) = {6}, K(r)(3) = {4}, and using the

vector of coefficients hT ⊗ B∗ = (−4 − 5 − 3), we can write out the system for attraction cone

x1 ⊕ (x5 − 5) = x2 ⊕ (x6 − 3) = x3 ⊕ (x4 − 4). (55)

To verify this result, we observe that in our case T(A) = 8 and

A8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 0 −4 −6 −4

0 −1 −1 −5 −5 −4

−1 0 −1 −5 −6 −3

−2 −1 −2 −6 −1 −4

−2 −1 −1 −5 −7 −4

−2 −3 −2 −6 −7 −6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 −5 −5 −4

−1 0 −1 −5 −6 −3

−1 −1 0 −4 −6 −4

−2 −2 −1 −5 −7 −5

−1 −2 −1 −5 −6 −5

−2 −2 −3 −7 −7 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Applying cancellation to the critical subsystem of A8 ⊗ x = A9 ⊗ x, we obtain (55).
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[10] P. Butkovič, G. Hegedüs, An elimination method for finding all solutions of the system of linear equations over an extremal

algebra, Ekonom.-Mat. Obzornik (Prague) 20 (2) (1984) 203–215.
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[40] B. Semančíková, Orbits in max–min algebra, Linear Algebra Appl. 414 (2006) 38–63.
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