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Abstract. Max cones are the subsets of the nonnegative orthant Rn
+ of the

n-dimensional real space Rn closed under scalar multiplication and componen-

twise maximisation. Their study is motivated by some practical applications
which arise in discrete event systems, optimal scheduling and modelling of syn-

chronization problems in multiprocessor interactive systems. We investigate

the geometry of max cones, concerning the role of the multiorder principle,
the Kleene stars, and the cyclic projectors.

The multiorder principle is closely related to the set covering conditions in

max algebra, and gives rise to important analogues of some theorems of convex
geometry. We show that, in particular, this principle leads to a convenient

representation of certain nonlinear projectors onto max cones.

The Kleene stars are fundamental in max algebra since they accumulate
weights of optimal paths and yield generators for max-algebraic eigenspaces of

matrices. We examine the role of their column spans called Kleene cones, as
building blocks in the Develin-Sturmfels cellular decomposition. Further we

show that the cellular decomposition gives rise to new max-algebraic objects

which we call row and column Kleene stars. We relate these objects to the max-
algebraic pseudoinverses of matrices and to tropical versions of the colourful

Carathéodory theorem.

The cyclic projectors are specific nonlinear operators which lead to the
so-called alternating method for finding a solution to homogeneous two-sided

systems of max-linear equations. We generalize the alternating method to the

case of homogeneous multi-sided systems, and we give a proof, which uses the
cellular decomposition idea, that the alternating method converges in a finite
number of iterations to a positive solution of a multi-sided system if a positive

solution exists. We also present new bounds on the number of iterations of
the alternating method, expressed in terms of the Hilbert projective distance

between max cones.
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1. Introduction

The nonnegative orthant Rn+ of the n-dimensional real space Rn can be viewed
as an n-dimensional free semimodule over the max-times semiring, which is the set
of nonnegative numbers R+ equipped with the operations of ’addition’ a ⊕ b :=
max(a, b) and the ordinary multiplication a⊗ b := a× b. The max-times semiring
is denoted by Rmax,× = (R+,⊕ = max,⊗ = ×). Zero and unity of the semiring
coincide with the usual 0 and 1. For instance, in this semiring 2 ⊗ 3 = 6 and
2 ⊕ 3 = 3. Subsemimodules of Rn+ = Rnmax,× are the subsets of Rn+ closed under
the componentwise maximization ⊕, and the usual multiplication by nonnegative
scalars. These subsemimodules will be called max cones, due to their obvious
analogy with convex cones. In a very important special case, max cones can indeed
be convex cones, but in general they are not convex, i.e., not stable under the usual
componentwise addition.

By max algebra we understand linear algebra over the semiring Rmax,×, ex-
tending the max,× arithmetic to nonnegative matrices and vectors in the usual
way. For instance, if A = (aij) and B = (bij) are two matrices of appropriate
sizes, then (A⊕ B)ij = aij ⊕ bij , or (A⊗ B)ij =

⊕
k aikbkj . The iterated product

A⊗A⊗ ...⊗A in which the symbol A appears k times will be denoted by Ak. We
assume that A0 := I, the unit matrix. The sets like {1, . . . ,m} or {1, . . . , n} will
be denoted by [m] or [n] respectively, and for a set of indices M , the number of
elements in M will be denoted by |M |.

The idempotency of addition a⊕a = a and the lack of subtraction are important
features of max algebra that make it different from the nonnegative linear algebra.

Max algebra has been known for some time, and we mention here the pioneer-
ing works of Cuninghame-Green [18, 19], Yoeli [47], Vorobyev [45], Carré [12],
Gondran and Minoux [27], K. Zimmermann [48], and U. Zimmermann [50], among
many others. Max algebra is often presented in the settings which seem to be differ-
ent from Rmax,×, namely, over semirings Rmax,+ = (R ∪ {−∞},⊕ = max,⊗ = +)
(max-plus semiring), Rmin,+ = (R ∪ {+∞},⊕ = min,⊗ = +) (tropical or min-plus
semiring), or most exotically Rmin,× = (R+ ∪ {+∞},⊕ = min,⊗ = ×) (min-times
semiring). All these semirings are isomorphic to each other and to Rmax,×. Max
algebra has important practical applications which arise in discrete event systems
and scheduling problems [2, 19, 23], and in modelling of synchronization problems
in multiprocessor interactive systems [10].

More generally, max algebra can be seen as a branch of tropical mathematics,
which is a rapidly developing field with applications in mathematical physics, op-
timal control, algebraic geometry and other research areas. See [36] for a recent
survey, and [34, 35] for recent collections of papers.

The similarity between max cones and convex cones was understood in the very
beginning by Vorobyev [45], who used the name ’extremally convex cones’ (instead
of semimodules or spaces). K. Zimmermann [49] defined extremally convex sets, or
tropically/max-plus convex sets as it would be called now, and proved a separation
theorem of a point from a closed convex set. This theorem was generalized and
more transparent proofs were given by Samborskĭı and Shpiz [42], Litvinov et al.
[37], Cohen et al. [15, 16], and also Develin and Sturmfels [22], Joswig [32]. We
note that the separation theorem of a point from a closed max cone, given below
as Theorem 2.6, is essentially the same result. In the ordinary convex geometry,
separation of a point from a convex set easily leads to the separation of two convex
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sets from each other. However, analogous statements for max cones arise differently
and are related to the investigation of certain nonlinear projectors onto max cones,
and their compositions called cyclic projectors, see Gaubert and Sergeev [26] and
Theorems 4.2 and 4.3 below. Remarkably, these cyclic projectors also appear in
the study of two-sided max-linear systems of equations, see Cuninghame-Green and
Butkovič [20], and lead to a pseudopolynomial method for finding solutions to such
systems. This will be discussed in the last section of the paper. We also note here
that cyclic projectors are special case of the multiplicative version of the min-max
functions studied in [13, 14, 41].

The geometry of max cones can be thought of as a special case of the multiorder
convexity, a concept introduced by Mart́ınez-Legaz and Singer [38]. Although this
idea was made explicit only recently in a work by Niţică and Singer [39], it is
closely related to the set-covering conditions for A⊗ x = b systems in max algebra
[2, 19, 45]. The multiorder principle, see Propositions 2.1 and 2.3 below, leads to
easy proofs of many statements concerning generators, extremals and bases of max
cones, see Butkovič et al.[11], including the tropical Carathéodory theorem, and
Minkowski’s theorem about extremals of closed cones (also Gaubert and Katz [24]).
The multiorder principle is also important for the tropical convexity approach,
meaning works of Develin, Sturmfels, Joswig, Yu et al. [6, 22, 32], since it describes
max cones as intersections of staircases, and their extremals as elements of bases
of monomial ideals.

Yet another approach to the geometry of max cones, though strongly related
to the previous one, is to represent max cones as cellular complexes, or, roughly
speaking, as unions of ordinary convex cones. This approach was put forward by
Develin and Sturmfels [22], and called cellular decomposition. The atoms of this
decomposition are well-known to specialists in convex geometry and combinatorics,
see Joswig and Kulas [33] for more details. As it was noticed in [43], these atoms
are column spans of uniquely defined Kleene stars, a fundamental concept in max
algebra.

The aim of the present paper is to bring together some geometric and algebraic
ideas discussed above. Section 2 discusses the multiorder principle and related
results. In particular, we show that this principle leads to a convenient new repre-
sentation of the nonlinear projectors mentioned above. In Section 3 we recall the
concept of Kleene stars and examine the role of their column spans called Kleene
cones as building blocks in the Develin-Sturmfels cellular decomposition. Further
we show that, in turn, the cellular decomposition gives rise to new max-algebraic
objects which we call row and column Kleene stars. We relate these new con-
cepts to the max-algebraic pseudoinverses of matrices and to tropical versions of
the colourful Carathéodory theorem. In Section 4 we generalize the alternating
method of Cuninghame-Green and Butkovič [20] to the case of multisided systems
A(1) ⊗ x1 = . . . = A(k) ⊗ xk. We give a proof, based on the cellular decomposition
idea, that if the system has a positive solution, then the method converges to a
positive solution in a finite number of steps. We also present new bounds for the
number of iterations in the max-plus integer case, and in the general case when
there are no solutions, in terms of the Hilbert projective distance between max
cones.
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2. The role of multiorder

2.1. Generators, bases and extremals of max cones. Let S ⊆ Rn+. A
vector u ∈ Rn+ is called a max combination of S if

(2.1) u =
⊕
v∈S

λvv, λv ∈ R+,

where only a finite number of λv are nonzero. The set of all max combinations (2.1)
of S will be denoted by span(S). Evidently, span(S) is a max cone. If span(S) = V ,
then we call S a set of generators for V and say that V is generated, or spanned, by
S. In particular, the set of all max combinations of columns of a matrix A will be
denoted by span(A) and called the column span of A. If none of the elements of a
generating set S of a max cone V can be expressed as a max combination of other
elements, then S is called a (weak) basis of V .

A vector v ∈ V is called an extremal of V , if

v = u⊕ w, u,w ∈ V ⇒ v = u or v = w.

Extremals are analogous to extremal rays of convex cones. If v is an extremal of V
and λ > 0, then λv is also an extremal.

For all i = 1, . . . , n define the following preorder relation.

u ≤j v ⇔ uu−1
j ≤ vv

−1
j , uj 6= 0, vj 6= 0.

The classes of proportional elements (i.e. rays) are the equivalence classes of
these preorder relations. The importance of these relations for the geometry of max
cones is expressed by the following principle. Denote supp(y) := {i | yi 6= 0}.

Proposition 2.1. Let V = span(S), S ⊆ Rn+. Then the following are equiva-
lent.

1. y ∈ V .
2. For all j ∈ supp(y) there exists v ∈ S such that v ≤j y.

This principle appeared as a set covering condition, see Proposition 3.12 below,
already in the works of Vorobyev [45] and Zimmermann [48], and in the above form
(or with a subtle difference) it appeared quite recently in the works of Joswig [32],
Niţică and Singer [39], and Butkovič et al. [11], see also [9] and [22].

As it was remarked by Niţică and Singer [39], the above proposition means
that the geometry of max cones is a special case of the multiorder convexity [38].
In the multiorder convexity, one has a set of order relations, and a point y is said to
belong to the convex hull of S, if for any order there is a point in S which precedes
y with respect to that order.

The following proposition is the Tropical Carathéodory Theorem, see Helbig
[28], Develin and Sturmfels [22], and also [11, 25]. Note that it follows from
Proposition 2.1.

Proposition 2.2. Let S ⊆ Rn+. Then y ∈ span(S) if and only if there exist k
vectors v1, . . . , vk ∈ S, where k = | supp(y)|, such that y ∈ span(v1, . . . , vk).

The multiorder principle also means the following description of extremals [11].

Proposition 2.3. Let V ⊆ Rn+ be a max cone generated by S and let v ∈ V ,
v 6= 0. Then the following are equivalent.

1. v is an extremal in V .
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2. For some j ∈ supp(v), v is minimal with respect to ≤j in V .
3. For some j ∈ supp(v), v is minimal with respect to ≤j in S.

Propositions 2.1 and 2.3 lead to a number of statements about generators,
extremals and bases of max cones [11], we mention only the following two of them.
An element u ∈ Rn+ is called scaled, if ||u|| = 1, where || · || denotes some fixed
norm (say, the ordinary norm or the max norm). For the following proposition see
Butkovič et al. [11], and also [22, 46] for closely related statements.

Proposition 2.4. Let E be the set of scaled extremals in a max cone V ⊆ Rn+
and let S ⊆ Rn+ consist of scaled elements. Then the following are equivalent.

1. The set S generates V and none of the elements in S are redundant.
2. S = E and S generates V .
3. The set S is a basis for V .

Proposition 2.4 means that if a scaled basis of a max cone exists, then it is
unique and consists of all scaled extremals, i.e., all the elements that are minimal
with respect to some preorder relation ≤i. In particular, a scaled basis of a finitely
generated max cone V exists and is unique, and the cardinality of this basis will be
called the max-algebraic dimension of V .

The following result is analogous to Minkowski’s theorem about extremal points
of convex sets, and was obtained independently by Gaubert and Katz [24] and
Butkovič et al. [11].

Proposition 2.5. Let V ⊆ Rn+ be a closed max cone. Then V is generated by
its set of extremals, and any vector in V is a max combination of no more than n
extremals.

Note that any finitely generated max cone is closed ([11, 32]). One may also
think of colourful extensions of Propositions 2.2 and 2.5 in the sense of Bárány [4],
and progress in this direction is due to Gaubert and Meunier [25], see also Theorem
3.22 below.

2.2. Projectors and separation. Given a closed max cone V ⊆ Rn+, we can
define a nonlinear projector PV by

(2.2) PV (y) = max{v ∈ V | v ≤ y}.
This operator is homogeneous: PV (λy) = λPV (y), isotone: y1 ≤ y2 ⇒ PV (y1) ≤
PV (y2), nonincreasing: PV (y) ≤ y, and continuous, see [16] for the proof. For
any vector y there are coordinates which do not change under the action of the
projector: PV (y)i = yi. These coordinates will be called sleepers. Projectors lead
to separation theorems of the following kind, see [16, 22, 26, 32] and introduction
for some historical remarks.

Theorem 2.6. Let V ⊆ Rn+ be a closed max cone and let y ∈ Rn+ be not in
V . Then there exist a positive vector ỹ and a max cone Ṽ ⊇ V containing positive
vectors such that the set

(2.3) H = {v |
n⊕
i=1

ỹ−1
i vi ≥

n⊕
i=1

(PṼ (ỹ))−1
i vi}

contains V but not y. If y is positive and V contains positive vectors, then one can
take ỹ = y and Ṽ = V .
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The set H defined in (2.3) is an instance of the max analogue of a halfspace,
which is generally a set of the form {v |

⊕n
i=1 u

1
i vi ≥

⊕n
i=1 u

2
i vi}.

By comparing this to (2.3) we see that a separating halfspace has both u1 and
u2 positive and u1 ≤ u2, so that the inequality in (2.3) can be replaced by equality:

(2.4) H = {v |
n⊕
i=1

ỹ−1
i vi =

n⊕
i=1

(PṼ (ỹ))−1
i vi}.

The relation of Theorem 2.6 to the multiorder principle was made explicit by
Joswig [32]. Denote, for any positive y, ∆i(y) = {u ∈ Rn+ | u ≤i y}. Observe that⋃n
i=1 ∆i(y) = Rn+, and that the separating halfspace defined by (2.3) or equivalently

(2.4) can also be written as

(2.5) H =
⋃

i∈sl(PṼ ,ỹ)

∆i(PṼ (ỹ)),

where sl(PṼ , ỹ) is the set of sleepers, i.e., the indices k such that (PṼ (ỹ))k = ỹk.
Thus, in terms of the multiorder, the separation theorem says that, given a point y
and a closed max cone V , there is a point PṼ (ỹ) such that the union of some sectors
∆i(PṼ (ỹ)) contains the whole V while the complement of this union contains y.

If a max cone is generated by the columns of a matrix A ⊆ Rn×m+ , then,
denoting PA := Pspan(A), we deduce from (2.2) that

(2.6) PA(y) = A⊗ (A⊗′ y),

where A is the Cuninghame-Green inverse of A defined by aij = a−1
ji , and⊗′ denotes

the min-times matrix product. When calculating (2.6), we put by convention that
0−1 =∞ and 0⊗+∞ = 0. In this form (2.6), the nonlinear projectors were studied
by Cuninghame-Green [19]. We also note that formula (2.6) represents a projector
as a min-max function in the sense of [13, 14, 41], with addition being replaced
by multiplication.

When V is an arbitrary closed max cone, PV can be expanded in infinite sum
of ’elementary’ projectors using the following ’scalar product’, or an instance of
residuation [15, 16]:

y/v := min
i∈supp(v)

yiv
−1
i = max{λ | λv ≤ y}.

Namely,

(2.7) PV (y) =
⊕
v∈V

y/v v.

Formula (2.6) is a special case of (2.7), when V is finitely generated. Using the
multiorder, we can obtain the following refinement of (2.7). Denote by ∧ the
componentwise minimum of vectors in Rn+.

Theorem 2.7. Suppose that V ⊆ Rn+ is a closed max cone. Then for any
y ∈ Rn+, the components (PV (y))i, for i ∈ supp(y), are equal to

(2.8) (PV (y))i =
⊕
v∈Ei

y/v vi,

where Ei is the set of scaled points of V , minimal with respect to ≤i. The projector
PV is linear with respect to the componentwise minimum ∧ if and only if every set
Ei is a singleton.
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Proof. Writing (2.7) componentwise, we have that

(PV (y))i = max
v∈V : vi 6=0

(vi min
k:vk 6=0

ykv
−1
k ) = max

v∈V : vi 6=0
min
k:vk 6=0

yk(vkv−1
i )−1.

By Proposition 2.5, any closed max cone has a scaled basis E. Denote by Ei the set
of scaled vectors minimal with respect to ≤i, then for all v ∈ V and any i ∈ supp(v)
there is vi ∈ Ei such that vi ≤i v and hence (vik(vii)

−1)−1 ≥ (vkv−1
i )−1 for all k.

This proves (2.8), and (2.8) implies that if all the sets Ei consist of one element,
then the projector is expressed by a min-times matrix. Now suppose that there is
an i such that Ei has at least two elements, say, u and v. Then PV (u) = u and
PV (v) = v. If the projector is linear with respect to the componentwise minimum
∧, then PV (uu−1

i ∧ vv
−1
i ) = uu−1

i ∧ vv
−1
i , hence w = uu−1

i ∧ vv
−1
i ∈ V . As wi = 1,

we have that w ≤i v and w ≤i u. As u and v are both minimal with respect to ≤i,
w is not equal to either of them, which leads to a contradiction with the minimality
of u and v. The proof is complete. �

3. The role of Kleene stars

3.1. Kleene stars and Kleene cones. We start this section with some neces-
sary definitions. Let A = (aij) ∈ Rn×n+ . The weighted digraph DA = (N(A), E(A)),
whose nodes are N(A) = [n] and whose edges E(A) = N(A)×N(A) have weights
w(i, j) = aij , is called the digraph associated with A. Suppose that π = (i1, ..., ip)
is a path in DA, then the weight of π is defined to be w(π,A) = ai1i2ai2i3 . . . aip−1ip

if p > 1, and 0 if p = 1. A path which begins at i and ends at j will be called an
i → j path. If the starting node of a path coincides with the end node then the
path is called a cycle.

A path π is called positive if w(π,A) > 0. If for all i, j ∈ [n] there exists a
positive i→ j path, then A is called irreducible.

The maximum cycle geometric mean of A, further denoted by λ(A), is defined
by the formula

λ(A) = max
σ

µ(σ,A),

where the maximisation is taken over all cycles in the digraph and

µ(σ,A) = w(σ,A)1/k

denotes the geometric mean of the cycle σ = (i1, ..., ik, i1).
The following fact was proved by Carré [12], see also [2, 19].

Proposition 3.1. Let A ∈ Rn×n+ . The series

(3.1) A∗ = I ⊕A⊕A2 ⊕ . . .

converges to a finite limit and is equal to I⊕A⊕ . . .⊕An−1 if and only if λ(A) ≤ 1.
In this case also λ(A∗) ≤ 1.

The matrix series A∗ defined by (3.1) is called the Kleene star of A, which comes
from the theory of automata, see Conway [17]. Kleene stars enjoy the property
(A∗)2 = A∗, i.e., they are multiplicatively idempotent. Their diagonal entries are
all equal to 1, i.e., the Kleene stars are increasing. Actually these two properties
are also sufficient for a matrix to be a Kleene star, and further by a Kleene star we
will also mean any matrix with these two properties. We also note that (A∗)2 = A∗

implies that (A∗)∗ = A∗.
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A max cone will be called a Kleene cone if it can be represented as max-algebraic
column span of a Kleene star.

In terms of the multiorder, we can say that a matrix A is a Kleene star if and
only if aii = 1 for all i ∈ [n] and A·i ≤i A·k for all i, k such that aik 6= 0. That is, A
is a Kleene star if and only if aii = 1 and A·i is the unique minimum of span(A∗)
with respect to ≤i for all i ∈ [n], so that all the sets Ei defined in Theorem 2.7 are
singletons. The last sentence of Theorem 2.7 can be now formulated as follows.

Proposition 3.2. PV is a min-times linear operator if and only if V is a
Kleene cone. If V = span(A), where A is a Kleene star, then PV (y) = A ⊗′ y for
all y.

Kleene stars play crucial role in the description of max-algebraic eigenvectors
and subeigenvectors of nonnegative matrices. If for some x and λ we have that
A ⊗ x = λx, then λ is a max-algebraic eigenvalue of A, and x is a max-algebraic
eigenvector associated with this eigenvalue. Analogously, x is called a max-algebraic
subeigenvector associated with λ, if A⊗ x ≤ λx.

The well-known Perron-Frobenius theorem has a max-algebraic analogue [2, 3,
19, 45].

Theorem 3.3. Let A ∈ Rn×n+ .
1. A has a max-algebraic eigenvalue, and the number of such eigenvalues is

less than or equal to n.
2. λ(A) is the largest eigenvalue of A.
3. If A is irreducible, then λ(A) is the unique max-algebraic eigenvalue of A

and all eigenvectors associated with λ(A) are positive.

The set of eigenvectors associated with a fixed eigenvalue λ is a max cone, and
analogously the set of subeigenvectors associated with a fixed λ is a max cone,
so they will be called the eigencone and the subeigencone associated with λ. For
a nonnegative square matrix A ∈ Rn×n+ the eigencone associated with 1 will be
denoted by V (A), and the subeigencone associated with 1 will be denoted by V ∗(A).
A matrix A ∈ Rn×n+ is called definite, if λ(A) = 1. We do not lose much generality
when considering definite matrices, as for any matrix A with λ(A) 6= 0, the matrix
A/λ(A) is definite and has the same eigenvectors and subeigenvectors as A.

Any subeigencone is a Kleene cone, and the other way around.

Proposition 3.4. Let A ∈ Rn×n+ be definite, then V ∗(A) = V (A∗) = span(A∗).

Proof. First note that by Proposition 3.1, if λ(A) = 1 then A∗ exists and
λ(A∗) = 1.

We show that V ∗(A) = V (A∗). Suppose that A∗ ⊗ x = x, then A ⊗ x ≤ x,
because A ≤ A∗. If A ⊗ x ≤ x, then (I ⊕ A) ⊗ x = x and also A∗ ⊗ x = x, since
Am ⊗ x ≤ x for any m (due to the isotonicity of matrix multiplication).

We show that V (A∗) = span(A∗). It is immediate that V (A∗) ⊆ span(A∗), as
V (A) ⊆ span(A) for any matrix A. If A∗ converges, then A ⊗ A∗ = A ⊕ A2⊕...,
so A⊗ A∗ ≤ A∗ meaning that each column of A∗ is a subeigenvector of A. Hence
span(A∗) ⊆ V ∗(A). �

The positivity of subeigenvectors is addressed in the following observation.

Proposition 3.5. Let A ⊆ Rn×n+ be such that aii = 1 for all i ∈ [n]. Then
V ∗(A) contains a positive vector if and only if A is definite.
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Proof. The “if” part: If A is definite, then by Proposition 3.4 V ∗(A) =
span(A∗) and we can take, for a positive subeigenvector of A, any max combination
of all the columns of A∗ with positive coefficients.

The “only if” part: Suppose that there exists a positive x such that A⊗x ≤ x,
and take a cyclic permutation τ = (i1, . . . , ik) of a subset of [n]. Then we have that
ailil+1xil+1 ≤ xil for l ∈ [k], assuming ik+1 := i1. Multiplying all these inequalities
and cancelling the coordinates of x we have that w(τ,A) ≤ 1. Hence λ(A) ≤ 1. As
all diagonal entries are equal to 1, we have that λ(A) = 1. �

Proposition 3.4 implies that if A is a Kleene star, then

span(A) = V (A) = V (A∗) = V ∗(A) = {x | aijxj ≤ xi, i, j ∈ [n]},

and it is not hard to see the following.

Proposition 3.6. Let K be a max cone in Rn+. Then it is a Kleene cone if
and only if for some matrix B it is the solution set of the system of inequalities
bijxj ≤ xi, i, j ∈ [n], satisfied by at least one positive x.

Proof. The “if” part: If the system is satisfied by a positive x, then bii ≤ 1
for all i ∈ [n]. Take B̃ := I ⊕ B, then B̃ has all diagonal entries equal to 1,
K = V ∗(B̃) and there is a positive x ∈ V ∗(B̃). By Proposition 3.5, B̃ is definite,
and by Proposition 3.4, K = span((B̃)∗).

The “only if” part: If K is a Kleene cone span(A∗), then by Proposition 3.4
and Proposition 3.5 we can take B := A∗. �

The above observations imply that Kleene cones are convex cones, and that
they have many close relatives in the realm of combinatorial geometry, see Joswig
and Kulas [33].

One may think of various systems of inequalities describing the same Kleene
cone. However, the Kleene star which defines this cone is unique [43].

Proposition 3.7. Suppose that A and B are two Kleene stars. Then A = B
if and only if span(A) = span(B).

We now describe the bases of V (A) and V ∗(A), for a definite matrix A ∈ Rn×n+ .
The cycles with the cycle geometric mean equal to 1 are called critical, and the
nodes and the edges of DA that belong to critical cycles are called critical. The
set of critical nodes is denoted by Nc(A), the set of critical edges is denoted by
Ec(A), and the critical digraph of A, further denoted by C(A) = (Nc(A), Ec(A)),
is the digraph that consists of all critical nodes and critical edges of DA. All cycles
of C(A) are critical [2]. For two vectors x and y, we write x ∼ y if x = λy for
λ > 0. The following theorem follows from well-known results on the max-algebraic
spectral theory [2, 19, 23].

Theorem 3.8. Let A ∈ Rn×n+ be definite, and let M(A) denote a set of indices
such that for each strongly connected component of C(A) there is a unique index in
M(A) which belongs to that component.

1. The following statements are equivalent: A∗·i ∼ A∗·j, A
∗
i· ∼ A∗j·, i and j

belong to the same strongly connected component of C(A).
2. Any column of A∗ is a max extremal of span(A∗).
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3. The subeigencone of A, which is the eigencone of A∗, is

V ∗(A) = V (A∗) =

 ⊕
i∈M(A)

αiA
∗
·i ⊕

⊕
j /∈C(A)

αjA
∗
·j , αi, αj ∈ R+

 ,

and none of the columns of A∗ in this description are redundant.
4. The eigencone of A is

V (A) =

 ⊕
i∈M(A)

αiA
∗
·i, αi ∈ R+

 ,

and none of the columns of A∗ in this description are redundant.

Proposition 2.4 and Theorem 3.8 imply that extremals of V ∗(A) are precisely
the columns of A∗, so the columns of A∗, after eliminating the proportional ones,
constitute the basis of V ∗(A) = span(A∗), and the columns whose indices belong
to C(A) constitute the basis of V (A). Denote by nc(A) the number of strongly
connected components in C(A), and denote by Nc(A) the set of nodes that are not
critical. Theorem 3.8 yields the following corollary.

Proposition 3.9. For any definite matrix A ∈ Rn×n+ , the max-algebraic di-
mension of the subeigencone of A is equal to nc(A) + |Nc(A)|. The max-algebraic
dimension of the eigencone is equal to nc(A).

Kleene cones are both convex cones and max cones. They are inhabitants of
two worlds, that of max algebra and tropical convexity, and that of nonnegative
linear algebra and ordinary convexity. One might think of an interplay between
these worlds. For a definite matrix A, define the linear space

(3.2) L(C(A)) = {x ∈ Rn | aijxj = xi, (i, j) ∈ Ec(A)}.
A proof of the following theorem can be found in [44].

Theorem 3.10. Let A ∈ Rn×n+ be a definite matrix. Then L(C(A)) is the
linear hull of the convex cone V ∗(A). The linear dimension of V ∗(A), i.e., the
dimension of L(C(A)), is equal to the max-algebraic dimension of V ∗(A), i.e., to
nc(A) + |Nc(A)|.

The intersection of Kleene cones is again a Kleene cone. More precisely, we have
the following proposition, see Butkovič [7] for the case k = 2. The proof is based on
the formula (A∗⊕B∗)∗ = (A∗⊗B∗)∗, which follows from (A⊕B)∗ = A∗⊗(B⊗A∗)∗
[17], and on the observations above.

Proposition 3.11. Let A(1), . . . , A(k) ∈ Rn×n+ be Kleene stars. The following
are equivalent.

1.
⋂k
i=1 span(A(i)) contains a positive vector.

2. λ(
⊕k

i=1A
(i)) = 1.

3. λ(
⊗k

i=1A
(π(i))) = 1 for some permutation π of {1, . . . , k}.

4. λ(
⊗k

i=1A
(π(i))) = 1 for all permutations π of {1, . . . , k}.

If any of these equivalent conditions are true, then

(3.3)
k⋂
i=1

span(A(i)) = span((
k⊕
i=1

A(i))∗) = span((
k⊗
i=1

A(π(i)))∗)
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for all permutations π.

Proof. Complete Rmax,× with +∞ and assume a×+∞ = +∞ for any positive
a and 0×+∞ = 0. Matrix algebra over this completed semiring is a regular algebra
in the sense of [17]. This means in particular that A∗ is always defined, (A∗)∗ = A∗,
(A⊕ B)∗ = A∗ ⊗ (B ⊗ A∗)∗ and (A⊗ B)∗ = I ⊕ (A⊗ (B ⊗ A)∗). If A and B are
two Kleene stars, then

(A⊗B)∗ = I ⊕ (A⊗ (B ⊗A)∗) = A⊗ (B ⊗A)∗ =

= (A⊕B)∗ = (B ⊕A)∗ = (B ⊗A)∗.
(3.4)

It can be shown by induction that (A(1)⊕. . .⊕A(k))∗ = (A(π(1)⊗. . .⊗A(π(k))∗ for any
permutation π of {1, . . . , k}. Using Proposition 3.1 we obtain that λ(

⊕k
i=1A

(i)) ≤ 1
is true if and only if λ(

⊗k
i=1A

π(i)) ≤ 1 is true for some π, and hence if and only
if the same is true for all π. The inequalities here can be replaced by equalities,
since all diagonal entries, and hence all eigenvalues, of any product or entrywise
maximum of Kleene stars, are greater than or equal to 1. This yields equivalence
of 2., 3., and 4.

We now prove the equivalence between 1. and 2., and (3.3). We have that

(3.5) V ∗(
k⊕
i=1

A(i)) =
k⋂
i=1

V ∗(A(i)) =
k⋂
i=1

span(A(i)),

where the first equality is immediate, and the second equality follows from Proposi-
tion 3.4. Note that all diagonal entries of

⊕k
i=1A

(i) are 1, and by Proposition 3.5,
V ∗(

⊕k
i=1A

(i)) contains a positive vector if and only if λ(
⊕k

i=1A
(i)) = 1. This, to-

gether with (3.5), implies the equivalence between assertions 1. and 2. By Propo-
sition 3.4, V ∗(

⊕k
i=1A

(i)) = span((
⊕k

i=1A
(i))∗) since λ(

⊕k
i=1A

(i)) = 1, which
yields (3.3). �

3.2. Cellular decomposition. We have described some properties of Kleene
cones. Though such cones are very special, they can be viewed as building blocks,
or atoms, of any finitely generated max cone. This can be seen as the main idea
of the cellular decomposition, an ingenuous concept of Develin and Sturmfels [22],
which we adjust below to the setting of max cones.

Let A ⊆ Rn×m+ be a nonnegative matrix with m nonzero columns and n nonzero
rows. The column type of y with respect to A is defined to be the m-tuple of subsets
T1, . . . , Tm of [n], where every Tj , for j ∈ [m] is defined by

Tj = {i ∈ [n] | aijy−1
i ≥ akjy−1

k , k ∈ [n]} = {i ∈ [n] | y ≥i A·j}.

The row type of y with respect to A is an n-tuple of subsets S1, . . . , Sn of [m], where
every Si, for i ∈ [n], is defined by

Si = {j ∈ [m] | aijy−1
i ≥ akjy−1

k , k ∈ [n]} = {j ∈ [m] | y ≥i A·j} =

= {j ∈ [m] | i ∈ Tj}.

The theory of A⊗x = y systems [2, 9, 19, 22, 45, 48] is based on the following set
covering conditions for y to be in span(A), see the proposition below. The multi-
order principle (Proposition 2.1) can be seen as a reformulation of these conditions,
therefore we leave the proposition below without proof.
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Proposition 3.12. Let A ∈ Rn×m+ have all rows and columns nonzero and let
y ∈ Rn+ be a positive vector with the column type T = (T1, . . . , Tm) and the row type
S = (S1, . . . , Sn). The following are equivalent.

1. y ∈ span(A);
2.

⋃m
i=1 Ti = [n];

3. none of Si, i ∈ [n] are empty.

See also Akian et al. [1] for an infinite-dimensional generalisation in the context
of Galois connections.

Following Develin and Sturmfels [22], we can see this from a geometric view-
point. For any row type S, we define its region with respect to A by

XS = {y positive | yky−1
i ≥ akja−1

ij , ∀k, i, ∀j ∈ Si}.
Proposition 3.12 means that the part of span(A) consisting of all positive vectors is
the union of the regions XS such that S do not contain empty sets ([22], Theorem
15). If XS is not empty, then the closure of XS is

(3.6) cl(XS) = {y ∈ Rn+ | akja−1
ij yi ≤ yk, ∀k, i, ∀j ∈ Si}.

It follows from the results of [22] that the relative interiors of regions build up a
cellular decomposition of the positive part of Rn+. We will need a weaker statement,
but without positivity.

Proposition 3.13. Suppose that A ∈ Rn×m+ has all rows and columns nonzero.
Then the max cone span(A) is the union of cl(XS) such that XS are not empty and
S do not contain empty sets.

Proof. As A has all rows nonzero, the max cone span(A) contains positive
vectors. By Proposition 3.12 if y is positive, then y ∈ span(A) if and only if the row
type of y does not contain empty sets. Hence the positive part of span(A) is the
union of nonempty XS such that S do not contain empty sets. Further, span(A) is
the closure of its positive part. Indeed, span(A) contains positive vectors and for
any u ∈ span(A) and a positive v ∈ span(A) we can take w = u ⊕ εv ∈ span(A),
so that ||w − u|| ≤ ε||v|| (the max norm) and w is positive. Hence span(A) is the
union of closed regions cl(XS) such that XS are not empty and S do not contain
empty sets. �

From the max-algebraic point of view, an important role in the cellular decom-
position is played by strongly definite matrices, which are definite matrices with all
diagonal entries equal to 1. Note that any Kleene star is a strongly definite matrix.

Observe that cl(XS) is the subeigencone of the n×n matrix AS = (aSij) defined
by

(3.7) aSij =

{⊕
k∈Sj

aika
−1
jk , if Sj 6= ∅,

δij , if Sj = ∅,

where δij are Kronecker symbols (δij = 0 if i 6= j and δij = 1 if i = j). It is
immediate that all diagonal entries of AS are equal to 1. We have the following
proposition which can be used to compute the generators of any closed region, a
preliminary version of this proposition appeared in [43].

Proposition 3.14. The closed region cl(XS) contains positive vectors if and
only if AS is a strongly definite matrix, and in this case cl(XS) = V ∗(AS) =
span((AS)∗).
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Proof. From (3.6) and (3.7) one infers that cl(XS) = V ∗(AS). After that,
the claim follows from Proposition 3.4 and Proposition 3.5. �

Propositions 3.13 and 3.14 have the following consequences.

Proposition 3.15. For any matrix A ∈ Rn×m+ with no zero rows there exist
Kleene stars A(1), . . . , A(l) ∈ Rn×n+ such that span(A) =

⋃l
i=1 span(A(i)).

Proposition 3.16. For any matrix A ∈ Rn×m+ with no zero rows there exist
Kleene stars A(1), . . . , A(l) ∈ Rn×n+ such that for any y ∈ Rn+ we have that PAy =
A(k) ⊗′ y for some k.

To express the dimension of a region, Develin and Sturmfels [22] introduce the
undirected graph GS : The set of nodes of this graph is [n], it contains all loops
(i, i), and for i 6= j an edge (i, j) belongs to GS if and only if there exists k ∈ Si∩Sj .
The following observation relates this notion to max algebra.

Proposition 3.17. Let A ∈ Rn×m+ be a matrix with no zero rows and columns,
let y ∈ Rn+ be a positive vector and S be the row type of y with respect to A. Then
GS = C(AS).

Proof. Note that as all entries of AS are equal to 1, the graph C(AS) contains
all loops.

Let i 6= j and (i, j) ∈ GS , then there exists k ∈ Si ∩ Sj . It follows that
aika

−1
jk = yiy

−1
j ≥ aila

−1
jl for all l ∈ Sj , and therefore aSij = aika

−1
jk . Analogously,

aSji = ajka
−1
ik , and therefore aSija

S
ji = 1 so that (i, j) ∈ C(AS).

Let (i, j) ∈ C(AS), then observe that aSijyj < yi is impossible, because the
multiplication with other inequalities over the critical cycle would lead to 1 < 1.
So aSijyj = yi, and hence there exists k ∈ Sj such that aika−1

jk yj = yi. But then
also k ∈ Si and (i, j) ∈ GS . �

The equality GS = C(AS) means that C(AS) is symmetrical and (i, j) ∈ GS if
and only if (i, j) or equivalently (j, i) belong to C(AS). Theorem 3.10 and Proposi-
tion 3.17 yield the following result, see also Develin and Sturmfels [22], Proposition
17.

Theorem 3.18. Let A ∈ Rn×m+ be a matrix with no zero rows and columns,
let y be a positive vector and S be the row type of y with respect to A, then both
max-algebraic and linear dimensions of cl(XS) are equal to the number of connected
components in GS.

3.3. Row and column Kleene stars. For a matrix A = (aij) ∈ Rn×n+ and
any permutation σ ∈ Sn (where Sn denotes the group of all permutations of [n])
define the weight of σ to be w(σ) :=

∏n
i=1 aiσ(i). The max-algebraic permanent of

A is defined as

(3.8) per(A) =
⊕
σ∈Sn

w(σ),

and a permutation, at which the maximum in (3.8) is attained, is called a maximal
permutation. For any permutation σ, define the diagonal matrix Dσ = (dσij) by

dσij =

{
aij , if j = σ(i);
0, otherwise.
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Observe that A(Dσ)−1 is an instance of AS , for the type S = {{σ(1)}, . . . , {σ(n)}}.
The subeigencone V ∗(A(Dσ)−1) is precisely the closed region cl(XS). It contains
positive vectors if and only if A(Dσ)−1 is strongly definite, and this is true if and
only if the permutation σ is maximal [9]. This is also equivalent to (Dσ)−1A being
strongly definite. Further A(Dσ)−1 will be denoted by Acσ and (Dσ)−1A will be
denoted by Arσ. The entries of Acσ and Arσ are

(3.9) acσij = aiσ(j)a
−1
jσ(j), arσij = a−1

σ−1(i)iaσ−1(i)j .

The Kleene stars of Acσ and Arσ will be denoted by Acσ∗ and Arσ∗ and called
column Kleene stars and row Kleene stars, respectively.

The results of Yoeli [47], see also Cuninghame-Green [19], Theorem 27-11, and
Izhakian [29, 31] suggest that row and column Kleene stars are related to the max-
algebraic pseudoinverses of matrices. The pseudoinverse of A is defined, see [19]
and [47], as A5 = (per(A))−1Aadj. Here Aadj is the pseudoadjugate of A defined
by aadj

ij = per(Aji), where Aji is the complementary minor to aij . The following
proposition collects some facts about strongly definite matrices, which are due to
Yoeli and Cuninghame-Green.

Proposition 3.19. Let A ∈ Rn×n+ be strongly definite.

1. I ≤ A ≤ A2 ≤ . . . ≤ An−1 = An = . . ..
2. A∗ = An−1.
3. A∗ = Aadj = A5.

Izhakian [29, 31] studies the products A ⊗ A5 and A5 ⊗ A over extended
tropical semiring, with the main emphasis on the questions of regularity and rank.
In this context, he proves [31] that the products A ⊗ A5 and A5 ⊗ A are Kleene
stars. Below we give an elementary proof that over max algebra, these products
are equal to column and row Kleene stars, respectively.

Theorem 3.20. Let A ∈ Rn×n+ have nonzero permanent. For any permutation
σ with maximal weight we have that Acσ∗ = DσA5 = A⊗A5 and Arσ∗ = A5Dσ =
A5 ⊗A.

Proof. Using (3.9) and the definition of Aadj, we write:

aadj
ij =

⊕
π:π(j)=i

∏
k 6=j

akπ(k) =
⊕

π:π(j)=i

∏
k 6=j

aσ−1π(k),π(k)a
cσ
k,σ−1π(k) =

=
∏
k 6=i

aσ−1(k)k ·
⊕

π:π(j)=i

∏
k 6=j

acσk,σ−1π(k) =

= per(A) · a−1
σ−1(i)i ·

⊕
π:π(j)=σ−1(i)

∏
k 6=j

acσkπ(k) = per(A) · a−1
σ−1(i)i(a

cσ)adj
σ−1(i)j .

By Proposition 3.19, (Acσ)adj = Acσ∗, so we have obtained that Aadj =
per(A)(Dσ)−1Acσ∗, and hence A5 = (Dσ)−1(Acσ)∗ and DσA5 = (Acσ)∗. We
now infer that

(A⊗A5)ij =
⊕
k

aika
5
kj =

⊕
k

aika
−1
σ−1(k)ka

cσ∗
σ−1(k)j =

⊕
k

acσiσ−1(k)a
cσ∗
σ−1(k)j = acσ∗ij .
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Thus A⊗A5 = Acσ∗. On the other hand, one can similarly obtain that
aadj
ij = per(A)arσ∗iσ(j)a

−1
jσ(j) and that A5 ⊗A = A5Dσ = Arσ∗. �

Clearly this theorem yields the following corollary the first part of which was
obtained in [43]. This corollary means that for any matrix with nonzero permanent,
both row Kleene star and column Kleene star are uniquely defined.

Proposition 3.21. Let A ∈ Rn×n+ have nonzero permanent. Then for all
permutations σ with maximal weight, the corresponding column Kleene stars Acσ∗

are equal to each other, and the row Kleene stars Arσ∗ are also equal to each other.

The idea of the proof in [43] was to notice that the (sub)eigencones of Acσ

are the same for all maximal permutations σ, and to use Proposition 3.7 that any
Kleene star is uniquely defined by its column span.

For a square matrix A, the span of its column Kleene star is the only region
of span(A) which may have full linear dimension, and the linear dimension of that
region determines the tropical rank of A, introduced by Develin et al. [21], and also
investigated by Izhakian [30]. When the tropical rank is full, the interior of span of
the column Kleene star is the simple image set of A studied by Butkovič [8]: It is
the set of vectors y ∈ Rn+ such that Ax = y has a unique solution. In what follows,
the span of column Kleene star of A will be called the essential span of A.

The following theorem, which is a slight generalization of Theorem 8 by Gaubert
and Meunier [25], illustrates the role of essential span in the geometry of max cones.
It can be thought of as a colourful generalization of Minkowski’s theorem for max
cones in the sense of Bárány [4].

Theorem 3.22. Let U ⊆ Rn+ be a closed max cone and let V 1, . . . , V n ⊆ Rn+
be closed max cones such that the intersection of V i with U is nontrivial for all
i ∈ [n]. Then there exist vectors v1, . . . , vn such that vi is an extremal of V i, for
i ∈ [n], and span(v1, . . . , vn) has nontrivial intersection with U .

Proof. Take any nonzero points y1 ∈ V 1 ∩ U, . . . , yn ∈ V n ∩ U and consider
the matrix A ∈ Rn×n+ with columns A·i = yi, for i = 1, . . . , n. Assume first that
A has permutations with nonzero weight. The essential span of A is the closed
region cl(XS), where S = {{σ(1)}, . . . , {σ(n}}, for any maximal permutation σ.
Take any u ∈ cl(XS), then u ∈ U and u ≥i A·σ(i) for all i. The column A·σ(i) is
equal to yσ(i) and it belongs to V σ(i). Applying Minkowski theorem (Proposition
2.5) and the multiorder principle (Proposition 2.1), we obtain an extremal vσ(i) of
V σ(i) such that vσ(i) ≤i yσ(i) ≤i u. Applying Proposition 2.1 again, we see that
u ∈ span(vσ(1), . . . , vσ(n)). As u ∈ U , the claim follows.

In the case when A does not have nonzero permutations, an inductive argument
using Hall’s marriage theorem, see [25], shows that there exist subsets of indices M ,
N1 and N2 such that the submatrix A[N1,M ] is zero, while the submatrix A[N2,M ]

is square and has a permutation with nonzero weight. Then the above argument
goes with the essential span of that submatrix. �

4. Cyclic projectors and the alternating method

4.1. Cyclic projectors and separation of several max cones. Let
V 1, . . . , V k be closed max cones in Rn+ and denote by Pi the projector onto V i. The
composition Pk · · ·P1 will be called the cyclic projector associated with V 1, . . . , V k.
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This operator inherits many properties of the sole projector: it is a homogeneous,
continuous, isotone and nonincreasing operator. In general, it is not linear with
respect to max and min operations. Such operators can be treated by nonlinear
Perron-Frobenius theory. In particular, the following theorem of Nussbaum [40]
generalizes the well-known Collatz-Wielandt formula for the spectral radius of a
nonnegative matrix.

Theorem 4.1. Let F be a continuous, homogeneous and isotone operator in
Rn+. Then the spectral radius of F is equal to

(4.1) r(F ) = inf{λ | ∃y positive: Fy ≤ λy}.

Such operators have no more than one eigenvalue over any set of vectors with
the same support, and therefore the total number of their eigenvalues is finite. For-
mula (4.1) implies that the spectral radius is monotone. Define the cyclic projective
distance of y1, . . . , yk ∈ Rn+ by

(4.2) ρH(y1, . . . , yk) = log
⊕

i1,...,ik∈M
y1
i1(y2

i1)−1 · . . . · ykik(y1
ik

)−1,

when supp(y1) = . . . = supp(yk) = M , and by +∞ otherwise. In the case k = 2
this is the Hilbert projective distance between two points in Rn+. An equivalent
definition is

(4.3) ρH(y1, . . . , yk) = log inf{
k∏
i=1

λi | yi ≤ λiyi+1, i ∈ [k]},

where yk+1 := y1. Note that ρH is stable under multiplication of the arguments by
nonzero scalars and under their cyclic permutation. If

∑n
l=1 y

i
l = 1 for i ∈ [k], then

it follows from (4.3) that λi ≥ 1, and ρH(y1, . . . , yk) = 0 if and only if y1 = . . . = yk.
For general y1, . . . , yk ∈ Rn+\{0}, ρH(y1, . . . , yk) = 0 if and only if y1, . . . , yk are
proportional to each other.

Define the cyclic projective distance between closed max cones V 1, . . . , V k by

(4.4) ρH(V 1, . . . , V k) = inf
y1∈V 1,...,yk∈V k

ρH(y1, . . . yk).

The minimum in (4.4) is attained since ρH is lower semicontinuous, see Proposi-
tion 4.8 below.

The monotonicity of spectral radius is crucial for the following theorem [26].

Theorem 4.2. Let V 1, . . . , V k be closed max cones in Rn+. Suppose that y0 is
an eigenvector of Pk · · ·P1 associated with the spectral radius, and consider vectors
y1 ∈ V 1, . . . , yk ∈ V k defined by y1 := P1y

0, . . . , yk := Pky
k−1. Then

ρH(y1, . . . , yk) = ρH(V 1, . . . , V k) = − log r(Pk · · ·P1).

Cyclic projectors also enable to prove a separation theorem for closed max cones
[26], with the following ideas in mind. Firstly, formula (4.1) implies the existence
of a positive subeigenvector with λ < 1. Secondly, if we take such a subeigenvector,
then its projections onto V 1, . . . , V k define separating halfspaces, see Theorem 2.6.

Theorem 4.3. Let V 1, . . . , V k ⊆ Rn+ be closed max cones. If each of V 1, . . . , V k

has a positive vector, then the following are equivalent.
1. There exists a positive vector y and λ < 1: Pk · · ·P1y ≤ λy.
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2. There exist halfspaces H1, . . . ,Hk such that V 1 ⊆ H1, . . . , V k ⊆ Hk and⋂k
i=1Hi = {0}.

3.
⋂k
i=1 V

i = {0}.
4. r(Pk · · ·P1) < 1.

The statements 2. and 3. are equivalent even if V 1, . . . , V k do not have positive
vectors.

4.2. The alternating method and its convergence. In what follows we
consider the case when V 1 = span(A(1)), . . . , V k = span(A(k)), and A(1), . . . , A(k)

are nonnegative matrices with an equal number of nonzero rows. A natural question
is to find a positive solution to the system of equations

(4.5) A(1) ⊗ x1 = . . . = A(k) ⊗ xk,
and the cyclic projectors provide an efficient method for doing this.

ALTERNATING METHOD

Input: Nonnegative matrices A(1) ∈ Rn×m1
+ , . . . , A(k) ∈ Rn×mk

+ with an equal
number n of nonzero rows.

Initialization: Arbitrary positive y(0) := y(1)0.

Iteration: Number l ≥ 1. For all s = 1, . . . , k compute x(l)s := A(s) ⊗′ y(l)s−1 and
y(l)s := A(s) ⊗ x(l)s. Set x(l) := x(l)k and y(l) := y(l)k.

Stop: If y(l) = y(l−1), then stop. The vectors x(l)s, for s = 1, . . . , k, give a solution
to system (4.5). Else if y(l)

i < y
(0)
i for all i ∈ [n], then stop. There is no solution.

Over the semiring Rmax,+ = (R ∪ {−∞},⊕ = max,⊗ = +) and for k = 2, this
method was formulated by Cuninghame-Green and Butkovič [20]. The method
is essentially a max-algebraic version of the cyclic projections method known in
optimization theory [5], since y(l) = Pk · · ·P1y

(l−1).
The first part of the stop condition follows from the fact that P1, . . . , Pk are

nonincreasing projectors onto span(A(1)), . . . , span(A(k)). Indeed, if y(l−1) = y(l),
then the inequalities

y(l) ≥ Pk−1 · · ·P1y
(l−1) ≥ . . . ≥ P1y

(l−1) ≥ y(l−1)

are satisfied with equalities, implying that y(l)s = Ps · · ·P1y
(l) are equal for all

s ∈ [k] and that y(l) ∈ span(A(1)) ∩ . . . ∩ span(A(k)). As y(l)s = A(s) ⊗ x(l)s for
s ∈ [k], we have that x(l)s, for s ∈ [k], give a solution to (4.5).

Also note that the absence of zero rows in the matrices implies that all vectors
in the sequence generated by the alternating method are positive and hence any
solution, which the alternating method may find, has to be positive.

The following proposition, similar to the results of [20], justifies the second part
of the stop condition. It emphasizes the role of sleepers, i.e., such indices i(s) ∈ [n]
(for s = 1, . . . , k) that y(1)s

is) = y
(2)s
is

= . . . for the whole sequence {y(l)s, l ≥ 1},
and j(s) ∈ [ms] such that x(1)s

js
= x

(2)s
js

= . . . for the whole sequence {x(l)s, l ≥ 1}.
Sleepers will be called eternal, if the corresponding coordinates are constant for all
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l ≥ 1, and temporary, if the corresponding coordinates are constant up to the last
iteration of the alternating method.

Proposition 4.4. Let A(1), . . . , A(k), x(l)s and y(l)s be as in the formulation
of the alternating method. Then

1. temporary sleepers exist for all sequences {x(l)s} and {y(l)s}, s ∈ [k].
2. if (4.5) has a solution, then eternal sleepers exist for all sequences {x(l)s}

and {y(l)s}, s ∈ [k].
3. if (4.5) has a positive solution, then {x(l)s} and {y(l)s}, for all s ∈ [k],

are bounded from below by positive vectors.

Proof. 1. Assume that for some s ∈ [k] and l ≥ 1 we have that all coordinates
of y(l)s or x(l)s are strictly less than that of y(1)s or x(1)s. Then we have that
y(l)s ≤ µy(1)s or x(l)s ≤ µx(1)s for some µ < 1. As all matrix multiplications are
homogeneous and isotone, we have that y(l) ≤ µy(1) so that all coordinates of y(l)

are strictly less than that of y(0) and the alternating method immediately stops.
2. and 3. Take any s ∈ [k]. If there is a vector y in the intersection of column

spans, we can scale it so that y ≤ y(1)s and yi = y
(1)s
i for some i. In terms of the

multiorder, y ≤i y(1)s (for this scaling it is essential that y(0) and hence y(1)s are
positive). As the projectors are all isotone and y is their fixed point, we have that
y ≤ y(l)s and yi = y

(l)s
i for the whole sequence. If (4.5) has a positive solution, then

the same scaling argument shows that the sequence {y(1)s, y(2)s, . . .} is bounded
from below by a positive vector. Now note that the same line of argument applies
to {x(l)s} as well. �

In what follows we will prove that the alternating method converges to a positive
solution if a positive solution exists. We note here that a cyclic projector is a
min-max function in the sense of [13, 14, 41], with addition being replaced by
multiplication, and the convergence of the alternating method follows from the
results of [13, 41] concerning the ultimate periodicity of min-max functions. Below
we give a different proof which uses the cellular decomposition idea.

We first investigate the convergence of the alternating method for Kleene stars,
which then enables us, using cellular decomposition, to prove the finiteness results
for general matrices.

Proposition 4.5. Suppose that A(1), . . . , A(k) ∈ Rn×n+ are Kleene stars. If
span(A(1))∩ . . .∩ span(A(k)) contains a positive vector, then the alternating method
converges in no more than n iterations.

Proof. The alternating method starts with an arbitrary positive initial vector
y and repeatedly applies the composition Pk · · ·P1. Due to Proposition 3.2 we have
that

Pk · · ·P1y = A(k) ⊗′ . . .⊗′ A(1) ⊗′ y,
and hence

(Pk · · ·P1)my = (A(k) ⊗′ . . .⊗′ A(1))m ⊗′ y.
This means that the stabilization of the alternating method is equivalent to the
stabilization of (A(1) ⊗ . . . ⊗ A(k))m ⊗ y for any positive y. Denote the matrix
product A(1) ⊗ . . . ⊗ A(k) by C. By Proposition 3.11 we have that λ(C) = 1. We
also have that the diagonal entries of C are equal to 1 and hence it is a strongly
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definite matrix. By Proposition 3.19 the powers of C stabilize in no more than
n− 1 steps, and this proves the claim. �

Now we make use of the cellular decomposition to prove that if there is a
positive solution, then the alternating method finds a positive solution in a finite
number of steps. First we prove the following technical proposition.

Proposition 4.6. Suppose that A(1), . . . , A(k) ∈ Rn×n+ have all diagonal entries
equal to 1 and suppose that any product D of no more than n of them has λ(D) ≤
1. Fix a mapping j : {1, . . .} 7→ {1, . . . , k}. Consider the sequence of products
C(m) = A(j(m)) ⊗ . . .⊗A(j(1)), for m ≥ 1. Then there exists m ≤ nk − 1 such that
C(m) = C(m+1).

Proof. For the case of just one matrix, this is Proposition 3.19. We argue
by induction, assuming the result is true for k − 1 matrices and proving it for k.
Choose any mapping π : {1, . . . , n} 7→ {1, . . . , k}. Then either for some m < nk we
have that there are no repetitions before that m and

C(m) =
n⊗
i=1

A(π(i)) ⊗B(i),

where each B(i) is a product of less than nk−1−1 matrices, or there is a repetition,
and in this case we are done. Hence, for M = nk − 1, either there are repetitions
before that M , or the product C(M) = (c(M)

ij ) contains all the above mentioned
products. We claim then that

(4.6) c
(m)
ij =

⊕
π,in−1,...,i1

a
(π(n))
i in−1

· . . . · a(π(1))
i1 j

.

for all m ≥M . Indeed, c(m)
ij is greater than or equal to the maximum on the r.h.s.

due to the choice of M and since all diagonal entries of all matrices are 1. It is
actually equal to this maximum because all products of no more than n matrices
have λ ≤ 1, so the weight of any path of length M does not exceed the weight of
the simple path obtained after cycle deletion, and the weights of all simple paths
are already in (4.6). �

Theorem 4.7. Suppose that A(1) ∈ Rn×m1
+ , . . . , A(k) ∈ Rn×mk

+ have all rows
nonzero and are such that span(A(1)) ∩ . . . ∩ span(A(k)) contains a positive vector.
Then the alternating method stabilizes in a finite number of steps.

Proof. It follows from Proposition 3.15 that for each matrix A(i) we have a
Kleene decomposition

span(A(i)) =
s(i)⋃
l=1

span(A(il)),

where A(il) ∈ Rn×n+ are Kleene stars. Then we have that

(Pk · · ·P1)my = (A(kl(k,m)) ⊗′ . . .⊗′ A(1l(1,m)))⊗′ . . .

⊗′ (A(kl(k,1)) ⊗′ . . .⊗′ A(1l(1,1)))⊗′ y
(4.7)

for some index mappings l(i, j).
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It suffices to prove the stabilization of the sequence

B(m) ⊗ . . .⊗B(1) ⊗ y,(4.8)

where B(i) = ((A(kl(k,i)))T ⊗ . . .⊗ (A(1l(1,i)))T ). Note that the number of matrices
B(i) is also finite. Since the spans of the matrices A(1), . . . , A(k) have a point in
intersection, by Proposition 4.4 sequence (4.7) is bounded from below, and hence
(4.8) is bounded from above.

Consider a finite product B of some matrices B(i), appearing in (4.8). If λ(B) > 1,
then at least one of the matrices making this product will appear only a finite num-
ber of times. Otherwise the sequence will be unbounded, which is a contradiction.

Hence after some finite m the matrices B(i) appearing in the sequence will be such
that λ(B) ≤ 1 for any product B of no more than n of them.

After that, the finite convergence of alternating method is guaranteed by Proposi-
tion 4.6. �

4.3. Bounds on the number of iterations. Now we examine the case when
the system has no solution, i.e., when the max cones span(A(1)), . . . , span(A(k)) do
not have nontrivial intersection. Here we will need the total projective distance
between y1, . . . , yk, which is the sum of projective distances

(4.9) ρΣ(y1, . . . , yk) = ρH(y1, y2) + . . .+ ρH(yk, y1),

if y1, . . . , yk have equal supports, and +∞ otherwise. Note that

(4.10) ρΣ(y1, . . . , yk) = ρH(y1, . . . , yk) + ρH(yk, . . . , y1),

where ρH is the cyclic projective distance defined by (4.2). By analogy with (4.3),

(4.11) ρΣ(y1, . . . , yk) = log inf{
k∏
i=1

λiµi | yi ≤ λiyi+1, yi+1 ≤ µiyi, i ∈ [k]},

where yk+1 := y1. Like ρH, the total projective distance is stable under scalar
multiplication of the arguments and their cyclic permutation.

Denote Sn := {x ∈ Rn+ |
∑n
i=1 xi = 1} and consider Skn :=

k︷ ︸︸ ︷
Sn × . . .× Sn

endowed with product topology. A function φ : Skn 7→ R+ ∪ {+∞} is called lower
semicontinuous if the sublevel sets

(4.12) Skn(φ, a) = {(y1, . . . , yk) ∈ Skn | φ(y1, . . . , yk) ≤ a},
are closed for all a ∈ R+. The author gratefully acknowledges the idea of the proof
of the following proposition to Stéphane Gaubert.

Proposition 4.8. ρΣ(y1, . . . , yk) and ρH(y1, . . . , yk) are lower semicontinuous
on Skn.

Proof. Consider sequences {y(m)i, m ≥ 1} ⊆ Sn converging to yi, for i ∈ [k].
We need to show that if (y(m)1, . . . , y(m)k) ∈ Skn(ρΣ, a) (resp. if (y(m)1, . . . , y(m)k) ∈
Skn(ρH, a)) for all m ≥ 1, then (y1, . . . , yk) ∈ Skn(ρΣ, a) (resp. (y1, . . . , yk) ∈
Skn(ρH, a)). If (y(m)1, . . . , y(m)k) ∈ Skn(ρΣ, a) for all m, there exist λ(m)

i , µ
(m)
i ∈ R+

such that y(m)i ≤ λ
(m)
i y(m)i+1 and y(m)i+1 ≤ µ

(m)
i y(m)i for all i ∈ [k], and that∏k

i=1 λ
(m)
i µ

(m)
i ≤ a. As

∑n
l=1 y

(m)i
l = 1 for all m and i, and y(m)i ≤ λ

(m)
i y(m)i+1
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and y(m)i+1 ≤ µ
(m)
i y(m)i, we have that λ(m)

i ≥ 1 and µ
(m)
i ≥ 1. Using these in-

equalities and
∏k
i=1 λ

(m)
i µ

(m)
i ≤ a, we obtain that 1 ≤ λ

(m)
i ≤ a and 1 ≤ µ

(m)
i ≤ a

for all i ∈ [k]. Taking convergent subsequences if necessary, we can assume that
λ

(m)
i → λi and µ

(m)
i → µi for i ∈ [k]. Then we have yi ≤ λiyi+1 and yi+1 ≤ µiyi

for all i ∈ [k], and
∏k
i=1 λiµi ≤ a, which yields (y1, . . . , yk) ∈ Skn(ρΣ, a). The proof

for the case of ρΣ is complete, the case of ρH is treated analogously. �

By analogy with (4.4), the total projective distance between closed max cones
V 1, . . . , V k is defined by

ρΣ(V 1, . . . , V k) = ρH(V 1, V 2) + . . .+ ρH(V k, V 1) =

= min
y1∈V 1,...,yk∈V k

ρΣ(y1, . . . , yk).(4.13)

Observe that ρΣ(y1, . . . , yk) = 0 if and only if y1, . . . , yk are multiples of each other.
This is generalised in the following proposition.

Proposition 4.9. Let V 1, . . . , V k ⊆ Rn+ be closed max cones. Then
ρΣ(V 1, . . . , V k) = 0 (equivalently, ρH(V 1, . . . , V k) = 0) if and only if the inter-
section of V 1, . . . , V k is nontrivial.

Proof. We show the “only if” part. The intersections of V i and Sn are closed
sets. Let the sequences {y(m)i, m ≥ 1}, for i ∈ [k] and y(m)i ∈ V i∩Sn, be such that
limm→∞ ρΣ(y(m)1, . . . , y(m)k) = 0 (or limm→∞ ρH(y(m)1, . . . , y(m)k) = 0). As Sn is
compact, we can assume that y(m)i → yi for i ∈ [k], where yi ∈ V i∩Sn as V i∩Sn is
closed. Proposition 4.8 implies that ρΣ(y1, . . . , yk) = 0 (resp. ρH(y1, . . . , yk) = 0).
Hence yi, for i ∈ [k], are proportional vectors contained in V 1∩ . . .∩V k. The proof
of the “only if” part is complete. The “if” part is obvious. �

Let vector y and matrix A have finite entries. Denote

(4.14) ||y|| = log
⊕
i,j

yiy
−1
j , ||A|| = log

⊕
i,j,k

aika
−1
jk .

A vector y =
∧n
i=1 λiA·i, where λi > 0 for all i ∈ [n], and ∧ denotes the componen-

twise minimum, will be called a min combination of the columns of A.

Proposition 4.10. Let A ∈ Rn×m+ and y ∈ Rn+ have all entries positive. If y
is a max combination or a min combination of the columns of A, then ||y|| ≤ ||A||.

Proof. Let y =
⊕

j λjA·j , or let y =
∧
j λjA·j with all λj 6= 0. Then

exp(||y||) =
⊕
i,j

yiy
−1
j =

⊕
i,j

(
⊕
k

λkaik) · (
∧

l:λl 6=0

λ−1
l a−1

jl ) =

=
⊕
i,j,k

λkaik · (
∧

l:λl 6=0

λ−1
l a−1

jl ) ≤
⊕

i,j,k:λk 6=0

aika
−1
jk ≤ exp(||A||), or

exp(||y||) =
⊕
i,j

yiy
−1
j =

⊕
i,j

(
∧
k

λkaik) · (
⊕
l

λ−1
l a−1

jl ) =

=
⊕
i,j,l

λ−1
l a−1

jl · (
∧
k

λkaik) ≤
⊕
i,j,l

aila
−1
jl ≤ exp(||A||),

respectively. The claim follows by the monotonicity of the logarithm. �
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Proposition 4.11. Let u ∈ Rn+ be a positive vector, let V ⊆ Rn+ be a closed
max cone and let v = PV (u). Then

∑n
i=1(log ui − log vi) ≥ ρH(u, v).

Proof. As v ≤ u and uk = vk for some k, we have that ρH(u, v) =
maxni=1(log ui − log vi). As any sum of nonnegative numbers is greater than or
equal to any of its terms, the claim follows.

�

Proposition 4.12. Suppose that A ∈ Rn×m+ , and suppose that x1, x2 ∈ Rm+
and y1, y2 ∈ Rn+ are positive and such that y1 ≥ y2 with strict inequalities in at
most n′ coordinates, x1 ≥ x2 and A⊗ x1 = y1, A⊗ x2 = y2. Then

1. there exists k such that x1
k(x2

k)−1 ≥ maxs y1
s(y2

s)−1;
2. the inequality

∑m
k=1(log x1

k − log x2
k) ≥ 1

n′

∑n
i=1(log y1

i − log y2
i ) holds.

Proof. Let t be such that maxs y1
s(y2

s)−1 = y1
t (y2

t )−1 and define k such that
maxs(atsx1

s) = atkx
1
k = y1

t . The inequalities atk 6= 0 and atkx
2
k ≤ y2

t imply part 1.
To obtain part 2. we recall that any sum of nonnegative numbers is greater than
or equal to any of its terms, and that the maximum is always greater than or equal
to the arithmetic mean. �

Now we obtain a bound for the number of iterations of the alternating method.
For brevity, we denote ρΣ(A(1), . . . , A(k)) := ρΣ(span(A(1)), . . . , span(A(k))).

Theorem 4.13. Suppose that A(1) ∈ Rn×m1
+ , . . . , A(k) ∈ Rn×mk

+ , that A(k) has
all entries positive, and that span(A(1)) ∩ . . . ∩ span(A(k)) = {0}. Then after no
more than

(4.15) 2(n− 1) min(||A(k)||, (mk − 1)||A(k)T ||)/ρΣ(A(1), . . . , A(k))

iterations the alternating method will terminate.

Proof. Let the sequences {y(l)s, l ≥ 1} and {x(l)s, l ≥ 1}, for s ∈ [k], be as in
the formulation of the alternating method. Using Proposition 4.11, we obtain the
following lower bound for the total sum of logarithmic coordinate losses of y(l) at
each iteration:

n∑
i=1

(log y(l+1)
i − log y(l)

i ) =
k−1∑
s=0

n∑
is=1

(log y(l)s+1
is

− log y(l)s
is

) ≥

≥ ρΣ(y(l)1, . . . , y(l)k) ≥ ρΣ(A(1), . . . , A(k)).

(4.16)

Using Proposition 4.12, we also obtain that
n∑
i=1

(log x(l+1)
i − log x(l)

i ) ≥ 1
n− 1

n∑
i=1

(log y(l+1)
i − log y(l)

i ) ≥

≥ 1
n− 1

ρΣ(A(1), . . . , A(k)).

(4.17)

Let j be a temporary sleeper for {x(l)} and let i be a temporary sleeper for {y(l)}.
The existence of temporary sleepers was shown in Proposition 4.4. Thus the to-
tal sum of all logarithmic coordinate losses of y(l) at each iteration is at least
ρΣ(A(1), . . . , A(k)), while the ith coordinate of y(l) is a sleeper, and the total sum of
all logarithmic coordinate losses of x(l) is at least 1

n−1ρΣ(A(1), . . . , A(k)) while the
jth coordinate of x(l) is a sleeper. This will stop the alternating method. Indeed,
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we repeatedly apply Pk · · ·P1 and stop when all coordinates of y(l) decrease with
respect to that of y(0). As y(l), for l ≥ 1, is a max combination of the columns of
A(k), by Proposition 4.10 we have that log y(1)

t − log y(1)
i ≤ ||y(1)|| ≤ ||Ak|| for all

t ∈ [n]. Lower bound (4.16) for the total sum of logarithmic coordinate losses of
y(l) at each iteration implies that after at most 2(n − 1)||A(k)||/ρΣ(A(1), . . . , A(k))
iterations there will be t such that log y(l)

i − log y(l)
t > ||A(k)||, if the method does

not stop, and this contradicts Proposition 4.10. Hence, after at most that number
of iterations all coordinates will have to fall in value with respect to the coordi-
nates of the initial vector. Now, as x(l), for l ≥ 1, is a min combination of the
columns of A(k), by Proposition 4.10 we have that log x(1)

t − log x(1)
i ≤ ||x(1)|| ≤

||A(k)T || for all t ∈ [mk] (note that ||A|| = ||AT || for any positive matrix A).
Using (4.17) instead of (4.16) and arguing as above, we obtain the upper bound
2(mk − 1)||A(k)T ||/( 1

n−1ρΣ(A(1), . . . , A(k))) on the number of iterations, and this
proves the claim. �

If there is more than one matrix with all entries positive, then bound (4.15)
can be improved.

Theorem 4.14. Suppose that A(1) ∈ Rn×m1
+ , . . . , A(k) ∈ Rn×mk

+ , that
A(r1), . . . , A(rs) have all entries positive, and that span(A(1)) ∩ . . . ∩ span(A(k)) =
{0}. Then after no more than

(4.18) 2(n− 1)
s

min
i=1

min(||A(ri)||, (mri
− 1)||A(ri)T ||)/ρΣ(A(1), . . . , A(k))

iterations the alternating method will terminate.

Proof. Applying the argument of Theorem 4.13 and using the fact that ρΣ,
like ρH, is stable under the cyclic permutations of its arguments, we obtain that for
any t = 1, . . . , s, after at most

(4.19) l = 2(n− 1) min(||A(rt)||, (mrt
− 1)||A(rt)T ||)/ρΣ(A(1), . . . , A(k)))

iterations all coordinates of y(l) rt have to fall with respect to the coordinates of
y(1) rt . This means that there is a µ < 1 such that y(l) rt ≤ µy(1) rt . As all projectors
are homogeneous and order preserving, we also have that y(l) ≤ µy(1). Therefore
all the coordinates of y(l) decrease with respect to that of y(1), and hence to that
of y(0), and the alternating method stops with negative answer. So the number
of iterations does not exceed (4.19) for each rt, and hence it does not exceed the
minimum of these, which is (4.18). �

Now we show that the techniques developed above apply to the case of integer
matrices over the max-plus semiring Rmax,+ = (R ∪ {−∞},⊕ = max,⊗ = +)
investigated by Cuninghame-Green and Butkovič [20]. In what follows, we switch
to the matrix algebra over the max-plus semiring and to the alternating method
formulated over that semiring.

First note that if y ∈ Rn is a max-plus or min-plus combination of columns of
a matrix A ∈ Rn×m with real entries, then ||y|| ≤ ||A||, where like in (4.14) but
without logarithm, the norms are defined by

(4.20) ||y|| = max
i,j

(yi − yj), ||A|| = max
i,j,k

(aik − ajk).
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Theorem 4.15. Suppose that A(1) ∈ Rn×m1 , . . . , A(k) ∈ Rn×mk have all entries
integer. Then after no more than

(4.21) 2
k

min
i=1

min((n− 1)
k − 1
k
||A(i)||, (mi − 1)||A(i)T ||)

iterations the alternating method will terminate.

Proof. We are in almost the same situation as in Theorem 4.14: for all x(l)s

and y(l)s there exist temporary sleepers, the norms ||y(l)s|| do not exceed ||A(s)||
and the norms ||x(l)s|| do not exceed ||A(s)T ||. It remains to give bounds for the
total sum of coordinate losses for x(l)s and y(l)s at each iteration. As everything
is integer, the total sum of losses for both x(l)s and y(l)s is not less than 1. The
multiple k−1

k at ||A(i)||, which may be important only if k is small, is due to the
observation that if we apply P1, . . . , Pk−1 to y(l) ∈ A(k) and do not see any fall
in coordinates, then y(l) is in the intersection and the method immediately stops,
hence during the run of the algorithm, after at most k− 1 actions (not k but k− 1)
of the sole projectors at least one coordinate of y has to fall. The claim now follows
by the same argument as in Theorems 4.13 and 4.14. �

The bounds on number of iterations in [20], obtained in the case k = 2, are
in the same vein as (4.21). The only bound on number of iterations in [20] which
does not depend on the choice of initial vector would read in our terms essentially
as 2 minkl=1((ml−1) maxi,j(|a(l)

ij |)), where | · | denotes the modulus of an entry. The
bound of (4.21) is expressed in terms of projective norms of rows and columns of
the matrices, which makes it more precise.
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