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ALGEBRA

SERGEĬ SERGEEV

Abstract. In max algebra it is well-known that the sequence Ak, with A an irreducible
square matrix, becomes periodic at sufficiently large k. This raises a number of questions
on the periodic regime of Ak and Ak ⊗ x, for a given vector x. Also, this leads to the
concept of attraction spaces in max algebra, by which we mean spaces of vectors with
prescribed orbit period.

This paper shows that some of these questions can be solved by matrix squaring
(A,A2,A4, ...), analogously to recent findings of Semanč́ıková [37, 38] concerning the
orbit period in max-min algebra. Hence the computational complexity of such problems
is O(n3 log n). The main idea is to apply an appropriate diagonal similarity scaling
A 7→ X−1AX, called visualization scaling, and to study the role of cyclic classes of the
critical graph.

For powers of a visualized matrix in the periodic regime, we observe remarkable sym-
metry described by circulants and their rectangular generalizations. We exploit this
symmetry to derive a system of equations for attraction space, and present an algorithm
which computes the coefficients of the system.

1. Introduction

By max algebra we understand the analogue of linear algebra developed over the max-

times semiring Rmax,× which is the set of nonnegative numbers R+ equipped with the

operations of “addition” a⊕ b := max(a, b) and the ordinary multiplication a⊗ b := a× b.
Zero and unity of this semiring coincide with the usual 0 and 1. The operations of the

semiring are extended to the nonnegative matrices and vectors in the same way as in

conventional linear algebra. That is if A = (aij), B = (bij) and C = (cij) are matrices of

compatible sizes with entries from R+, we write C = A ⊕ B if cij = aij ⊕ bij for all i, j

and C = A⊗B if cij =
∑⊕

k aikbkj = maxk(aikbkj) for all i, j. If A is a square matrix over

R+ then the iterated product A⊗A⊗ ...⊗A in which the symbol A appears k times will

be denoted by Ak.
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The max-plus semiring Rmax,+ = (R ∪ {−∞},⊕ = max,⊗ = +), developed over the

set of real numbers R with adjoined element −∞ and the ordinary addition playing the

role of multiplication, is another isomorphic “realization” of max algebra. In particular,

x 7→ exp(x) yields an isomorphism between Rmax,+ and Rmax,×. In the max-plus setting,

the zero element is −∞ and the unity is 0.

The min-plus semiring Rmin,+ = (R ∪ {+∞},⊕ = min,⊗ = +) is also isomorphic to

Rmax,+ and Rmax,×. Another well-known semiring is the max-min semiring Rmax,min =

(R ∪ {−∞} ∪ {∞},⊕ = max,⊗ = min), see [24, 37, 38], but it is not isomorphic to any

of the semirings above.

Max algebraic column spans of nonnegative matrices A ∈ Rn×n
+ are sets of max linear

combinations of columns
⊕n

i=1 αiA·i with nonnegative coefficients αi. Such column spans

are max cones, meaning that they are closed under componentwise maximum ⊕ and

multiplication by nonnegative scalars. There are important analogies and links between

max cones and convex cones [13, 16, 40, 39].

The maximum cycle geometric mean λ(A), see below for exact definition, is one of

the most important charasteristics of a matrix A ∈ Rn×n
+ in max algebra. In particular,

it is the largest eigenvalue of the spectral problem A ⊗ x = λx. The cycles at which

this maximum geometric mean is attained, are called critical. Further, one consideres the

critical graph C(A) which consists of all nodes and edges that belong to the critical cycles.

This graph is crucial for the description of eigenvectors [3, 14, 25].

The well-known cyclicity theorem states that if A is irreducible, then the sequence Ak

becomes periodic after some finite transient time, and that the ultimate period of Ak is

equal to the cyclicity of the critical graph [3, 14, 25]. Generalizations to reducible case,

computational complexity issues and important special cases of this result have been

extensively studied in [15, 23, 24, 31, 32].

In this paper we study the behaviour of matrix powers and orbits Ak ⊗ x in the ir-

reducible case in the periodic regime, i.e., after the periodicity is reached. One of the

main ideas is to study the periodicity of visualized matrices, meaning matrices with all

entries less than or equal to the maximum cycle geometric mean. This study provides a

connection to the theory of Boolean matrices [6, 28].

In Boolean matrix algebra, one considers components of imprimitivity of a matrix

[6, 28], or equivalently, cyclic classes of the associated digraph [4]. In max algebra, cyclic

classes of the critical graph have been considered as an important tool in the proof of the

cyclicity theorem mentioned above, see [25] Sect. 3.1. Recently, the cyclic classes appeared

in max-min algebra [37, 38], where they were used to study the ultimate periods of orbits

and other periodicity problems. It was shown that such questions can be solved by matrix

squaring (A, A2, A4, A8, ...), which yields computational complexity O(n3 log n).
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We show that the problems of computing ultimate period and matrix powers in the

periodic regime can be solved by matrix squaring in max algebra, which yields the same

complexity bound O(n3 log n). This is achieved by exploiting visualization, and cyclic

classes of the critical graph. Further it turns out that the periodic powers of visualized

matrices have remarkable symmetry described by circulant matrices and their rectangular

generalizations. We use this symmetry to derive a system of equations for attraction cone,

meaning the max cone which consists of all vectors with prescribed orbit period. We also

present an algorithm for computing the coefficients of this system.

The contents of the paper are as follows. In Section 2 we revise two important topics

in max algebra, namely the spectral problem and Kleene stars. In Section 3, we speak of

the visualization and the connection to the theory of Boolean matrices which it provides,

see Propositions 3.1 and 3.3. In Section 4, we study basic properties of matrix powers

in the periodic regime, see Propositions 4.4 – 4.6. The problems which can be solved

by matrix squaring are described in Proposition 4.10. In Section 5 we observe circulant

symmetries of periodic powers of visualized matrices, see Proposition 5.3, derive a system

of equations for attraction space, see Proposition 5.6, and describe an algorithm which

computes the coefficients of this system. We conclude with Section 6 which is devoted to

numerical examples.

As Rmax,+ and Rmax,× are isomorphic, we use the possibility to switch between them,

but only when it is really convenient. Thus, while the theoretical results are obtained over

max-times semiring, which looks more natural in connection with diagonal matrix scaling

and boolean matrices, the examples in Section 6 are written over max-plus semiring, where

it is much easier to calculate.

We remark that some aspects of the theory of attraction spaces have been investigated

in [5, 17, 29] in certain special cases. Also, the periodicity of max algebraic powers of

matrices can be regarded from the viewpoint of max-plus semigroups as studied in [30].

2. Two topics in max algebra

2.1. Spectral problem. Let A ∈ Rn×n
+ . Consider the problem of finding λ ∈ R+ and

nonzero x ∈ Rn
+ such that

(1) A⊗ x = λx.

If for some λ there exists a nonzero x ∈ Rn
+ which satisfies (1), then λ is called a max-

algebraic eigenvalue of A, and x is a max-algebraic eigenvector of A associated with λ.

With the zero vector adjoined, the set of max-algebraic eigenvectors associated with λ

forms a max cone, which is called the eigencone associated with λ.
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The largest max-algebraic eigenvalue of A ∈ Rn×n
+ is equal to

(2) λ(A) =
n⊕
k=1

(Tr⊕A
k)1/k,

where Tr⊕ is defined by Tr⊕(A) :=
⊕n

i=1 aii for any A = (aij) ∈ Rn×n
+ . Further we explain

the graph-theoretic meaning of (2), assumed that λ(A) 6= 0.

With A = (aij) ∈ Rn×n
+ we can associate the weighted digraph DA = (N(A), E(A)),

with the set of nodes N(A) = {1, . . . , n} and the set of edges E(A) = {(i, j) | aij 6= 0}
with weights w(i, j) = aij. Suppose that π = (i1, ..., ip) is a path in DA, then the weight

of π is defined to be w(π,A) = ai1i2ai2i3 . . . aip−1ip if p > 1, and 1 if p = 1. If i1 = ip then

π is called a cycle. One can check that

λ(A) = max
σ

µ(σ,A),

where the maximization is taken over all cycles in DA and

µ(σ,A) = w(σ,A)1/k

denotes the geometric mean of the cycle σ = (i1, ..., ik, i1). Thus λ(A) is the maximum

cycle geometric mean of DA.

A ∈ Rn×n
+ is irreducible if for any nodes i and j there exists a path in DA, which begins

at i and ends at j. In this case A has a unique max-algebraic eigenvalue which equals

λ(A).

Note that λ(αA) = αλ(A) and hence λ(A/λ(A)) = 1 if λ(A) > 0. Unless we need

matrices with λ(A) = 0, we can always assume without loss of generality that λ(A) = 1.

Such matrices will be called definite.

An important relaxation of (1) is

(3) A⊗ x ≤ λx.

The nonzero vectors x ∈ Rn
+ which satisfy (3) are called subeigenvectors associated with

λ. With the zero vector adjoined, they form a max cone called subeigencone. This is a

conventionally convex cone, meaning that it is closed under the ordinary addition. See

[40] for more details.

The eigencone (resp. subeigencone) of A associated with λ(A) will be denoted by V (A)

(resp. V ∗(A)).

2.2. Kleene stars. Let A ∈ Rn×n
+ . Consider the formal series

(4) A∗ = I ⊕ A⊕ A2 ⊕ . . . ,
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where I denotes the identity matrix with entries

δij =

1, if i = j,

0, otherwise.

Series (4) is a max-algebraic analogue of (I − A)−1, and it converges to a matrix with

finite entries if and only if λ(A) ≤ 1 [3, 10]. In this case

(5) A∗ = I ⊕ A⊕ A2 ⊕ . . .⊕ An−1,

which is called the Kleene star of A.

For any A ∈ Rn×n
+ ,

(6) A is a Kleene star ⇔ A2 = A, aii = 1 ∀i.

The condition λ(A) ≤ 1 suggests that there is a strong interplay between Kleene stars

and spectral problems. To describe this in more detail, we need the following notions and

notation.

A cycle σ in DA is called critical, if µ(σ,A) = λ(A). Every node and edge that belongs

to a critical cycle is called critical. The set of critical nodes is denoted by Nc(A), the

set of critical edges is denoted by Ec(A). The critical digraph of A, further denoted by

C(A) = (Nc(A), Ec(A)), is the digraph which consists of all critical nodes and critical

edges of DA. For definite A ∈ Rn×n
+ , it follows that aija

∗
ji ≤ 1 [3]. Further,

(7) (i, j) ∈ Ec(A)⇔ aija
∗
ji = 1.

For definite A ∈ Rn×n
+ , the relation between Kleene star, critical graph and spectral

problems is briefly as follows [3, 14, 40]:

V ∗(A) = span(A∗) =

{
n⊕
i=1

αiA
∗
·i, αi ∈ R+

}
,(8)

V (A) =

 ⊕
i∈Nc(A)

αiA
∗
·i, αi ∈ R+

 ,(9)

x ∈ V ∗(A), (i, j) ∈ Ec(A)⇒ aijxj = xi.(10)

Equation (8) means that V ∗(A) is the max-algebraic column span of Kleene star A∗,

also called Kleene cone. This cone is convex in conventional sense. By (9), V (A) is the

max subcone of V ∗(A), spanned by the columns with critical indices. Implication (10)

means that for any subeigenvector x ∈ V ∗(A) and i ∈ Nc(A), the maximum in
⊕

j aijxj

is attained at j such that (i, j) ∈ Ec(A). In particular, (A ⊗ x)i = xi for all x ∈ V ∗(A)

and i ∈ Nc(A).
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Not all columns in (8) and (9) are necessary. Let C(A) have c ∈ {1, . . . , n} strongly

connected components (s.c.c.) Cµ, for µ = 1, . . . , c. It follows from the definition of C(A)

that s.c.c. Cµ are disjoint. The corresponding node sets will be denoted by Nµ. Let m

denote the number of non-critical nodes of DA. It can be shown [3, 14] that if i, j belong

to the same s.c.c. of C(A), then the columns A∗·i and A∗·j are multiples of each other. The

same holds for the rows A∗i· and A∗j·. Hence

V ∗(A) =

{⊕
i∈K

αiA
∗
·i, αi ∈ R+

}
(11)

V (A) =

 ⊕
i∈Nc(A)∩K

αiA
∗
·i, αi ∈ R+

 ,(12)

where K is any set of indices which contains all non-critical indices and for every Cµ there

is a unique index of this component in K.

Consider A∗KK , the principal submatrix of A∗ extracted from the rows and columns

with indices in K. Condition (6) implies that A∗KK is itself a Kleene star. It follows

from the maximality of Cµ that there is a unique permutation of K that has the greatest

weight with respect to A∗KK . The weight of a permutation π of {1, . . . , n} with respect to

A ∈ Rn×n
+ is defined as

∏n
i=1 aiπ(i). Thus A∗KK is strongly regular in the sense of Butkovič

[7]. From this it can be deduced that the columns of A∗ with indices in K are independent,

meaning that none of them can be expressed as a max combination of the other columns.

In other words [9], the columns of A∗ with indices in K (resp., in Nc(A)∩K) form a basis

of V ∗(A) (resp., of V (A)). This basis is essentially unique [9], meaning that any other

basis can be obtained from it by scalar multiplication.

More precisely, the strong regularity of A∗KK is equivalent to saying that this basis is

tropically independent, hence the tropical rank of A∗ is equal to c+m, see [2, 26, 27] for

definitions and further details.

3. Visualization and Boolean matrices

3.1. Visualization. Consider a positive x ∈ Rn
+ and define

(13) X = diag(x) :=

x1 . . . 0
...

. . .
...

0 . . . xn


The transformation A 7→ X−1AX is called a diagonal similarity scaling of A. Such

transformations do not change λ(A) and C(A) [20]. They commute with max-algebraic

multiplication of matrices and hence with the operation of taking the Kleene star. Ge-

ometrically, they correspond to automorphisms of Rn
+, both in the case of max algebra
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and in the case of nonnegative linear algebra. Further we define scalings which lead to

particularly convenient forms of matrices in max algebra.

A definite matrix A ∈ Rn×n
+ is called visualized, if

aij ≤ 1, ∀i, j = 1, . . . , n(14)

aij = 1, ∀(i, j) ∈ Ec(A)(15)

A visualized matrix A ∈ Rn×n
+ is called strictly visualized if

(16) aij = 1⇔ (i, j) ∈ Ec(A).

Visualization scalings were known already to Afriat [1] and Fiedler-Pták [22], and mo-

tivated extensive study of matrix scalings in nonnegative linear algebra, see e.g. [20, 21,

35, 36]. We remark that some constructions and facts related to application of visualiza-

tion scaling in max algebra have been observed in connection with max algebraic power

method [18, 19], behaviour of matrix powers [8] and max-balancing [35, 36].

Visualization scalings are described in [40] in terms of the subeigencone V ∗(A) and its

relative interior. For the convenience of the reader, we show their existence for any definite

A ∈ Rn×n
+ . In the proposition stated below, the summation in part 2. is conventional.

Proposition 3.1. Let A ∈ Rn×n
+ be definite and X = diag(x).

1. If x =
⊕n

i=1A
∗
·i then X−1AX is visualized.

2. If x =
∑n

i=1A
∗
·i then X−1AX is strictly visualized.

Proof. 1. Observe that x ∈ V ∗(A) and x is positive. Then aijxj ≤ xi for all i, j implies

x−1
i aijxj ≤ 1, and by (10) x−1

i aijxj = 1 for all (i, j) ∈ Ec(A).

2. Observe that x is positive, and that x ∈ V ∗(A) since V ∗(A) is convex. Hence X−1AX

is visualized. It remains to check that (i, j) /∈ Ec(A) implies aijxj < xi. We need to find

k such that aija
∗
jk < a∗ik. But this is true for k = i, since a∗ii = 1 and aija

∗
ji < 1 by (7).

This completes the proof. �

More precisely [40], A ∈ Rn×n
+ can be visualized by any positive vector in V ∗(A), and

it can be strictly visualized by any vector in the relative interior of V ∗(A).

3.2. Max algebra and Boolean matrices. Max algebra is related to the algebra of

Boolean matrices. The latter algebra is defined over the Boolean semiring S which is the

set {0, 1} equipped with logical operations “OR” a⊕ b := a∨ b and “AND” a⊗ b := a∧ b.
Clearly, Boolean matrices can be treated as objects of max algebra, as a very special but

crucial case.

For a strongly connected graph, its cyclicity is defined as the g.c.d. of the lengths of

all cycles (or equivalently, all simple cycles). If the cyclicity is 1 then the graph is called

primitive, otherwise it is called imprimitive. We will not distinguish between cyclicity (or
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primitivity) of a Boolean matrix A and the associated digraph DA. Further we recall an

important result of Boolean matrix theory.

Proposition 3.2 (Brualdi and Ryser [6]). Let A ∈ Sn×n be irreducible, and let γA be

the cyclicity of DA (which is strongly connected). Then for each k ≥ 1, there exists a

permutation matrix P such that P−1AkP has r irreducible diagonal blocks, where r =

gcd(k, γA), and all elements outside these blocks are zero. The cyclicity of all these blocks

is γA/r.

In max algebra, let A ∈ Rn×n
+ . Define the Boolean matrix A[C] = (a

[C]
ij ) by

(17) a
[C]
ij =

1, (i, j) ∈ Ec(A)

0, (i, j) /∈ Ec(A).

Let A,B ∈ Rn×n
+ . Assume that C(A) has c s.c.c. Cµ for µ = 1, . . . , c, with cyclicities γµ.

Denote by Bµν the block of B extracted from the rows with indices in Nµ and columns

with indices in Nν .

The following proposition can be seen as a corollary of Proposition 3.2. The idea of the

proof given below is due to Hans Schneider. See also [25] Section 3.1 and [8] Theorem

2.3.

Proposition 3.3. Let A ∈ Rn×n
+ and λ(A) 6= 0.

1. λ(Ak) = λk(A).

2. (A[C])k = (Ak)[C].

3. For each k ≥ 1, there exists a permutation matrix P such that (P−1AkP )
[C]
µµ , for

each µ = 1, . . . , c, has rµ := gcd(k, γµ) irreducible blocks and all elements outside

these blocks are zero. The cyclicity of all blocks in (P−1AkP )
[C]
µµ is equal to γµ/rµ.

Proof. We can assume that A is definite. Further, the diagonal similarity scaling com-

mutes with max algebraic matrix multiplication and changes neither λ(A) nor C(A) [20],

and by Proposition 3.1, part 2, there exists a strict visualization scaling. Hence we can

assume that A is strictly visualized. In this case A[C] = A[1], where A[1] = (a
[1]
ij ) is defined

by

(18) a
[1]
ij =

1, aij = 1,

0, aij < 1.

It is easily seen that (A[1])k = (Ak)[1]. As A[1] = A[C], all entries of A[1] outside the blocks

A
[1]
µµ are zero, which assures that (A[1])kµµ = (A

[1]
µµ)k.

Proposition 3.2 implies that part 3. is true for (A[1])k = (Ak)[1]. This implies that

P−1(Ak)[1]P has irreducible blocks and λ(Ak) = 1, which shows part 1. Also, P−1(Ak)[1]P
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has block structure where all diagonal blocks are irreducible and all off-diagonal blocks

are zero. This implies (Ak)[C] = (Ak)[1], and parts 2. and 3. follow immediately. �

3.3. Cyclic classes. For a path P in a digraph G = (N,E), where N = {1, . . . , n},
denote by l(P ) the length of P , i.e., the number of edges traversed by P .

Proposition 3.4 (Brualdi-Ryser [6]). Let G = (N,E) be a strongly connected digraph

with cyclicity γG. Then the lengths of any two paths connecting i ∈ N to j ∈ N (with i, j

fixed) are congruent modulo γG.

Proposition 3.4 implies that the following equivalence relation can be defined: i ∼ j if

there exists a path P from i to j such that l(P ) ≡ 0(mod γG). The equivalence classes of

G with respect to this relation are called cyclic classes [4, 37, 38]. The cyclic class of i

will be denoted by [i].

Consider the following access relations between cyclic classes: [i]→t [j] if there exists a

path P from a node in [i] to a node in [j] such that l(P ) ≡ t(mod γG). In this case, a path

P with l(P ) ≡ t(mod γG) exists between any node in [i] and any node in [j]. Further, by

Proposition 3.4 the length of any path between a node in [i] and a node in [j] is congruent

to t, so the relation [i] →t [j] is well-defined. Classes [i] and [j] will be called adjacent if

[i]→1 [j].

Cyclic classes can be computed in O(|E|) time by Balcer-Veinott digraph condensation,

where |E| denotes the number of edges in G. At each step of this algorithm, we look for

all edges which issue from a certain node i, and condense all end nodes of these edges

into a single node. A precise description of this method can be found in [4, 6]. We give

an example of its work, see Figures 1 and 2.

1

2

3

4

5

6

3

24 5

61

3524

61 1 246 35

Figure 1. Balcer-Veinott algorithm

In this example, see Figure 1 at the left, we start by condensing nodes 2 and 4, which

are “next to” node 1, into the node 24. Further we proceed with condensing nodes 3 and

5 into the node 35. In the end, see Figure 2 at the left, there are just two nodes 135 and

246. They correspond to two cyclic classes {1, 3, 5} and {2, 4, 6} of the initial graph, see

Figure 2 at the right.
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135 246

II II

II

I

II

Figure 2. Result of the algorithm (left) and cyclic classes (right)

The notion of cyclic classes and access relations can be generalized to the case when

G has c disjoint components Gµ with cyclicities γµ, for µ = 1, . . . , c (just like the critical

graph in max algebra). In this case we write i ∼ j if i, j belong to the same component

and there exists a path P from i to j such that l(P ) ≡ 0(mod γµ). If l(P ) ≡ t(mod γµ),

then we write [i]→t [j]. In this case the cyclicity of G is γ := lcm γµ, µ = 1, . . . , c.

We will be interested in the cyclic classes of critical graphs, and below we also give

an explanation of these, in terms of the Boolean matrix A[C]. Let A ∈ Rn×n
+ . Following

Brualdi and Ryser [6] we can find such ordering of the indices that any submatrix A
[C]
µµ ,

which corresponds to an imprimitive component Cµ of C(A), will be of the form

(19)


0 A

[C]
s1s2 0 · · · 0

0 0 A
[C]
s2s3 · · · 0

...
...

...
. . .

...

0 0 0 · · · A
[C]
sk−1sk

A
[C]
sks1 0 0 · · · 0

 ,

where k is the number of cyclic classes in Cµ. Indices si and si+1 for i = 1, . . . , k − 1,

and sk and s1 correspond to adjacent cyclic classes. By Proposition 3.3 part 2, when A

is raised to power k, A[C] is also raised to the same power over the Boolean algebra. Any

power of A[C] has a similar block-permutation form. In particular, (Aγµ)
[C]
µµ looks like

(20)


(Aγµ)

[C]
s1s1 0 0 · · · 0

0 (Aγµ)
[C]
s2s2 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · (Aγµ)
[C]
sksk


Theorem 5.4.11 of [28] implies that the sequence (Ak)[C] = (A[C])k becomes periodic

after k ≤ (n− 1)2 + 1, with period γ = lcm(γµ), µ = 1, . . . , c. In the periodic regime, all

entries of nonzero blocks are equal to 1.
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4. Periodicity and complexity

4.1. Spectral projector and matrix periodicity. For a definite and irreducible A,

consider the matrix Q(A) with entries

(21) qij =
⊕

k∈Nc(A)

a∗ika
∗
kj, i, j = 1, . . . , n.

The max-linear operator whose matrix is Q(A), is a max-linear spectral projector associ-

ated with A, in the sense that it projects Rn
+ on the eigencone V (A) [3].

This operator is closely related to the periodicity questions, as the following fact sug-

gests.

Theorem 4.1 (Baccelli et al. [3], Theorem 3.109). Let A ∈ Rn×n
+ be irreducible and

definite, and let all s.c.c. of C(A) be primitive. Then there is an integer T (A) such that

Ar = Q(A) for all r ≥ T (A).

We will also need the following property of Q(A) which follows directly from (21).

Proposition 4.2. For A ∈ Rn×n
+ irreducible and definite, any critical column (or row) of

Q(A) is equal to the corresponding column (or row) of A∗.

We also note that Q(A) is important for the policy iteration algorithm of [12].

When C(A) has imprimitive components, it follows from Proposition 3.3 part 3 that

all components of C(Aγ) are primitive, where γ is the cyclicity of C(A). Hence, for any

r great enough which is a multiple of γ, Ar is the matrix of the spectral projector onto

the eigencone of Aγ. This also implies that for large enough r we have Ar = Ar+γ. The

number r, after which this starts, is called the transient of {Ar}. It will be denoted by

T (A). Also, it is well-known that γ is the ultimate period of {Ar}, i.e., it is the least

integer α such that Ar+α = Ar for all r ≥ T (A).

It is also important that the entries a
(r)
ij , where i or j are critical, become periodic much

faster than the non-critical part of A. The following proposition is a known result, which

is proved here for convenience of the reader. We recall that Nc(A) denotes the set of

critical nodes.

Proposition 4.3 (Nachtigall [33]). Let A ∈ Rn×n
+ be a definite irreducible matrix. Critical

rows and columns of Ar become periodic for r ≥ n2.

Proof. We prove the claim for rows, and for columns everything is analogous. Let i ∈
Nc(A). Then there is a critical cycle of length lc to which i belongs. Hence a

(klc)
ii = 1 for

k ≥ 1. Since for all m < k and any t = 1, . . . , n we have

a
(mlc)
is = a

((k−m)lc)
ii a

(mlc)
is ≤ a

(klc)
is ,
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it follows that

(22) a
(klc)
is =

k⊕
m=1

a
(mlc)
is .

Entries a
(klc)
is are maximal weights of paths of length k with respect to the matrix Alc .

Since the weights of all cycles are less than or equal to 1 and all paths of length n are not

simple, the maximum is achieved at k ≤ n. Using (22) we obtain that a
((t+1)lc)
is = a

(tlc)
is

for all t ≥ n. Further,

a
(tlc+d)
is =

⊕
k

a
(tlc)
ik a

(d)
ks ,

and it follows that a
((t+1)lc+d)
is = a

(tlc+d)
is for all t ≥ n and 0 ≤ d ≤ lc − 1. Hence a

(k)
is

is periodic for k ≥ nlc, and all these sequences, for any i ∈ Nc(A) and any s, become

periodic for k ≥ n2. �

4.2. The ultimate spans of matrices. Max algebraic powers in the periodic regime

have the following properties.

Proposition 4.4. Let A ∈ Rn×n
+ be a definite and irreducible matrix, and let t ≥ 0 be

such that tγ ≥ T (A). Then for every integer l ≥ 0

(23) Atγ+lk· =
c⊕
i=1

a
(tγ)
ki A

tγ+l
i· , Atγ+l·k =

c⊕
i=1

a
(tγ)
ik Atγ+l·i , 1 ≤ k ≤ n.

Proof. Due to Proposition 4.1, for B = Aγ and any r ≥ T (B) we have

(24) b
(r)
kj =

c⊕
i=1

b∗kib
∗
ij, 1 ≤ k, j ≤ n.

By Propositions 4.1 and 4.2, we have b∗ki = b
(r)
ki = a

(tγ)
ki and b∗ij = b

(r)
ij = a

(tγ)
ij for all

r ≥ T (B) or equivalently tγ ≥ T (A), and any i ≤ c. Hence

(25) a
(tγ)
kj =

c⊕
i=1

a
(tγ)
ki a

(tγ)
ij , 1 ≤ k, j ≤ n.

In the matrix notation, this is equivalent to:

(26) Atγk· =
c⊕
i=1

a
(tγ)
ki A

tγ
i· , A

tγ
·k =

c⊕
i=1

a
(tγ)
ik Atγ·i , 1 ≤ k ≤ n.

Multiplying (26) by any power Al, we obtain (23). �

In the proof of the next proposition we will use the following simple principle

(27) a
(r)
ij a

(s)
jk ≤ a

(r+s)
ik , ∀i, j, k, r, s,

which holds for the matrix powers in max algebra.
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Proposition 4.5. Let A ∈ Rn×n
+ be a definite and irreducible matrix, and let i, j ∈ Nc(A)

be such that [i]→l [j], for some 0 ≤ l < γ.

1. For any r ≥ n2, there exists t1 ≥ 0 such that

(28) a
(t1γ+l)
ij Ar·i = A

(r+l)
·j , a

(t1γ+l)
ij Arj· = Ar+li· .

2. If A is visualized, then for all r ≥ n2

(29) Ar·i = Ar+l·j , Arj· = Ar+li· .

Proof. If [i] →l [j] then [j] →s [i] where l + s = γ. By the definition of access relations

there exists a critical path of length t1γ + l connecting i to j, and a critical path of

length t2γ + s connecting j to i. Hence a
(t1γ+l)
ij a

(t2γ+s)
ji = 1, and in the visualized case

a
(t1γ+l)
ij = a

(t2γ+s)
ji = 1. Combining this with (27) we obtain

Ar·i = Ar·ia
(t1γ+l)
ij a

(t2γ+s)
ji ≤ Ar+t1γ+l·j a

(t2γ+s)
ji ≤ A

r+(t1+t2+1)γ
·i ,

Arj· = Arj·a
(t1γ+l)
ij a

(t2γ+s)
ji ≤ Ar+t1γ+li· a

(t2γ+s)
ji ≤ A

r+(t1+t2+1)γ
j· .

(30)

Since r ≥ n2, by Proposition 4.3 Ar·i = A
r+(t1+t2+1)γ
·i and Arj· = A

r+(t1+t2+1)γ
j· , hence all

inequalities (30) are equalities. Multiplying them by a
(t1γ+l)
ij we obtain (28), which is (29)

in the visualized case. �

Proposition 4.5 says that in any power Ar for r ≥ n2, the critical columns (or rows)

can be obtained from the critical columns (or rows) of the spectral projector Q(Aγ) via a

permutation whose cycles are determined by the cyclic classes of C(A). Proposition 4.4

adds to this that all non-critical columns (or rows) of any periodic power are in the max

cone spanned by the critical columns (or rows). From this we conclude the following.

Proposition 4.6. All powers Ar for r ≥ T (A) have the same column span, which is the

eigencone V (Aγ).

Proposition 4.6 enables us to say that V (Aγ) is the ultimate column span of A. Similarly,

we have the ultimate row span which is V ((AT )γ). These cones are generated by critical

columns (or rows) of the Kleene star (Aγ)∗. For a basis of this cone, we can take any set

of columns (Aγ)∗ (equivalently Q(Aγ) or Ar for r ≥ T (A)), whose indices form a minimal

set of representatives of all cyclic classes of C(A). This basis is tropically independent in

the sense of [2, 27, 26].

4.3. Solving periodicity problems by square multiplication. Let A ∈ Rn×n
+ and

λ(A) = 1. The t-attraction cone Attr(A, t) is the max cone which consists of all vectors

x, for which there exists an integer r such that Ar ⊗ x = Ar+t ⊗ x, and hence this is also

true for all integers greater than or equal to r. Actually we may speak of any r ≥ T (A),

due to the following observation.
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Proposition 4.7. Let A be irreducible and definite. The systems Ar ⊗ x = Ar+t ⊗ x are

equivalent for all r ≥ T (A).

Proof. Let x satisfy As⊗x = As+t⊗x for some s ≥ T (A), then it also satisfies this system

for all greater s. Due to the periodicity, for all k from T (A) ≤ k ≤ s there exists l > s

such that Ak = Al. Hence Ak ⊗ x = Ak+t ⊗ x also hold for T (A) ≤ k ≤ s. �

Corollary 4.8. Attr(A, t) = Attr(At, 1).

Proof. By Proposition 4.7, Attr(A, t) is solution set to the system Ar ⊗ x = Ar+t ⊗ x for

any r ≥ T (A) which is a multiple of t, which proves the statement. �

A component (that is, equation) of Ar ⊗ x = Ar+t ⊗ x with index in Nc(A) will be

called critical, and the subsystem of components with indices in Nc(A) will be called the

critical subsystem.

Proposition 4.9. Let A be irreducible and definite and let r ≥ T (A). Then Ar ⊗ x =

Ar+t ⊗ x is equivalent to its critical subsystem.

Proof. Consider a non-critical component Ark·⊗x = Ar+tk· ⊗x. Using (23) it can be written

as

(31)
⊕

i∈Nc(A)

a
(r)
ki A

r
i· ⊗ x =

⊕
i∈Nc(A)

a
(r)
ki A

r+t
i· ⊗ x,

hence it is a max combination of equations in the critical subsystem. �

Next we give a bound on the computational complexity of deciding whether x ∈
Attr(A, t), as well as other related problems which we formulate below.

P1. For a given x, decide whether x ∈ Attr(A, t).

P2. For a given k : 0 ≤ k < γ, compute periodic power Ar where r ≡ k(mod γ).

P3. For a given x compute the ultimate period of {Ar ⊗ x, r ≥ 0}, meaning the least

integer α such that Ar+α ⊗ x = Ar ⊗ x for all r ≥ T (A).

The following proposition is analogous to the results of Semanč́ıková [37, 38].

Proposition 4.10. For any irreducible matrix A ∈ Rn×n
+ , the problems P1-P3 can be

solved in O(n3 log n) time.

Proof. First note that we can compute both λ(A) and a subeigenvector, and identify all

critical nodes in no more than O(n3) operations, which is done essentially by Karp and

Floyd-Warshall algorithms [34]. Further we can identify all cyclic classes of C(A) by

Balcer-Veinott condensation in O(n2) operations.

By Proposition 4.3 the critical rows and columns become periodic for r ≥ n2. To

know the critical rows and columns of a given power r′ ≥ T (A), it suffices to compute
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Ar for arbitrary r ≥ n2 which can be done in O(log n) matrix squaring (A, A2, A4, ...)

and takes O(n3 log n) time, and to apply the corresponding permutation on cyclic classes

which takes O(n2) overrides. By Proposition 4.9 we readily solve P1 by the verification of

the critical subsystem of Ar
′ ⊗ x = Ar

′+t ⊗ x which takes O(n2) operations. Using linear

dependence (23) the remaining non-critical submatrix of Ar, for any r ≥ T (A) such that

r ≡ k(mod γ), can be computed in O(n3) time. This solves P2.

As the non-critical rows of A are generated by the critical rows, the ultimate period of

{Ar ⊗ x} is determined by the critical components. For visualized matrix we know that

Ar+ti· = Arj· for all i, j such that [i]→t [j]. This implies (Ar+t⊗x)i = (Ar⊗x)j for [i]→t [j],

meaning that, to determine the period we need only the critical subvector of Ar⊗x for any

fixed r ≥ n2. Indeed, for any i ∈ Nc(A) and r ≥ n2 the sequence {(Ar+t⊗x)i, t ≥ 0} can

be represented as a sequence of critical coordinates of Ar⊗x determined by a permutation

on γµ cyclic classes of the s.c.c. to which i belongs. To compute the period, we take a

sample of γµ numbers appearing consecutively in the sequence, and check all possible

periods, which takes no more than γ2
µ operations. The period of Ar ⊗ x appears as the

l.c.m. of these periods. It remains to note that all operations above do not require more

than O(n3) time. This solves P3. �

5. Circulants and attraction cones

5.1. Rectangular circulants. Matrix A ∈ Rn×n
+ is called a circulant if there exist scalars

α1, . . . , αn such that aij = αd whenever j − i = d(mod n). This looks like

(32) A =


α1 α2 α3 · · · αn
αn α1 α2 · · · αn−1

αn−1 αn α1 · · · αn−2

...
. . . . . . . . .

...

α2 α3 . . . . . . α1


We also consider the following generalizations of this notion.

Matrix A ∈ Rm×n
+ will be called a rectangular circulant when aij = aps if (p−i) mod m =

(s− j) mod n.

Matrix A ∈ Rm×n
+ will be called a block circulant when there exist scalars α1, . . . , αk and

a block decomposition A = (Aij), i, j = 1, . . . , k such that Aij = αdEij if j−i = d(mod k),

where all entries of blocks Eij are equal to 1.

A rectangular circulant A ∈ Rm×n
+ is called d-periodic when aij = ais if (s− j) modn is

a multiple of d.

Proposition 5.1. Let A ∈ Rm×n
+ be a k-periodic rectangular circulant, for any integer

k = k1, . . . , kl, and let d = g.c.d.(k1, . . . , kl,m, n).
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1. A is d-periodic.

2. There exist permutation matrices P and Q such that PAQ is block d×d circulant.

Proof. 1. There are integers (t1, . . . , tl, tm, tn) such that d = t1k1 + . . .+ tlkl + tmm+ tnn.

Using the definitions we obtain that aij = ais for s − j = t1k1(modn). Proceeding with

t2k2 and other terms we obtain aij = ais for s− j = d(modn).

2. Both m and n can be divided into d classes in such a way that aij = ais if j and s

are in the same class and aij = apj if i and p are in the same class. To obtain a block

circulant form, it amounts to find such permutations P and Q which put the elements of

these classes together. �

Corollary 5.2. Let A ∈ Rm×n
+ be a rectangular circulant and let d := g.c.d.(m,n).

1. A is d-periodic.

2. There are permutation matrices P and Q such that PAQ is block d× d circulant.

Proof. Observe that any rectangular circulant is both m- and n-periodic. �

We give an example of 6× 9 rectangular circulant A and the corresponding 3× 3 block

form B:

A =



0 1 2 0 1 2 0 1 2

2 0 1 2 0 1 2 0 1

1 2 0 1 2 0 1 2 0

0 1 2 0 1 2 0 1 2

2 0 1 2 0 1 2 0 1

1 2 0 1 2 0 1 2 0


,

B =



0 0 0 1 1 1 2 2 2

0 0 0 1 1 1 2 2 2

2 2 2 0 0 0 1 1 1

2 2 2 0 0 0 1 1 1

1 1 1 2 2 2 0 0 0

1 1 1 2 2 2 0 0 0


5.2. The block structure of periodic powers. Let A ∈ Rn×n

+ and C(A) consist of c

s.c.c. Cµ with cyclicities γµ, for µ = 1, . . . , c. Let γ = lcm γµ and m be the number of

non-critical nodes. Further it will be convenient (though artificial) to consider, together

with these components, also “non-critical components” Cµ for µ = c+1, . . . , c+m, whose

node sets Nµ consist of just one non-critical node, whose set of edges is empty.

Consider the block decomposition Ar = (A
(r)
µν ), µ, ν = 1, . . . , c + m, where each block

A
(r)
µν is extracted from the rows with indices in Nµ and the columns with indices in Nν .
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Applying a similarity scaling P−1AP with a permutation matrix P if necesasary, we can

assume that A
(r)
µν has a block structure

(33) A(r)
µν =

A
(r)
s1t1 · · · A

(r)
s1tl

...
. . .

...

A
(r)
skt1

· · · A
(r)
sktl

 ,

where k = γµ and l = γν , and the indices

si =
∑
ρ<µ

γρ + i,

tj =
∑
ρ<ν

γρ + j.

correspond to cyclic classes [ui] of Cµ and, respectively, to cyclic classes [vj] of Cν numbered

so that

[u1]→1 [u2]→1 . . .→1 [uk]→1 [u1],

[v1]→1 [v2]→1 . . .→1 [vl]→1 [v1].

In the case of non-critical µ (resp. ν) we have (33) with k = 1 (resp. l = 1).

Taking r ≥ T (A) and t = 0 in (29), we obtain that all rows of Ar with indices in the

same cyclic class coincide, as well as all columns of Ar with indices in the same cyclic class.

In terms of block decomposition (33), we obtain A
(r)
sitj = ã

(r)
sitjEsitj , where ã

(r)
sitj are scalars

and Esitj are matrices, which are of the same dimension as A
(r)
sitj and have all entries equal

to 1. This observation can be found in [18, 19].

We define the matrix Ã(r) ∈ Rp×p
+ , where p is the total number of cyclic classes plus

the number of non-critical nodes, as the matrix with entries ã
(r)
sitj . It has blocks Ã

(r)
µν , the

entries of which correspond to cyclic classes in Cµ and Cν , and namely:

(34) Ã(r)
µν =

ã
(r)
s1t1 · · · ã

(r)
s1tm

...
. . .

...

ã
(r)
skt1

· · · ã
(r)
sktm

 .

Proposition 5.3. Let A ∈ Rn×n
+ be a visualized matrix which admits block decomposition

(33), and r ≥ T (A). Let Cµ, Cν be two (possibly equal) components of C(A), and d =

g.c.d.(γµ, γν).

1. Ã
(r)
µν is a rectangular circulant.

2. For any critical µ and ν, there is a permutation P such that (P T ÃP )
(r)
µν is a block

d× d circulant matrix.

3. If r is a multiple of γ, then Ã
(r)
µµ are circulant strongly regular Kleene stars.
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Proof. 1.: Using Eqn. (29) we see that for all (i, j) and (k, l) such that k = i+ t(mod γµ)

and l = j + t(mod γν),

ã
(r)
sktl

= ã
(r+t)
sitl

= ã
(r)
sitj .

2.: Follows from Corollary 5.2.

3.: If r ≥ T (A) and r is a multiple of γ then the critical submatrix of Ar coincides with the

same submatrix of (Aγ)∗. Hence the critical submatrices of both Ar and Ã(r) are Kleene

stars. The critical submatrix of Ã(r) can be viewed as a submatrix of Ar, and hence of

(Aγ)∗, extracted from rows and columns whose indices form a minimal representing family

of cyclic classes of C(A). As the cyclic classes are the node sets of strongly connected

components of C(Aγ), the critical submatrix of Ã(r) is strongly regular. Thus Ã
(r)
µµ are

strongly regular Kleene stars. Part 1. adds to this that they are circulants. �

We note that the circulant Kleene stars which appear in Proposition 5.3 can be defined

for any irreducible matrix. Indeed, for any subeigenvector x of A and any indices i, j in

the same Nµ, the ratio xix
−1
j is equal to w(π,A) = ai1i2 . . . aik−1ik for any critical path

π = (i1, . . . , ik) with i1 = i and ik = j. Hence the (i, j) entries of (X−1AX)r, for i, j ∈ Nµ

do not depend on the choice of the visualization scaling X = diag(x). Therefore, for any

irreducible matrix A we can introduce the set of its principal circulants, as the circulant

Kleene stars of Proposition 5.3 part 3, for any visualized form of A.

For any visualized A ∈ Rn×n
+ , we can define the corresponding core matrix AC =

(αµν), µ, ν = 1, . . . , c+m by

(35) αµν = max{aij | i ∈ Nµ, j ∈ Nν}.

The entries of (AC)∗ will be denoted by α∗µν . Their role is investigated in the next

proposition.

Proposition 5.4. Let A ∈ Rn×n
+ be a visualized matrix and r ≥ T (A). Let µ, ν =

1, . . . , c+m be such that at least one of these indices is critical. Then the maximal entry

of the block A
(r)
µν (or Ã

(r)
µν ) is equal to α∗µν.

Proof. The entry α∗µν is the maximal weight over paths from µ to ν, with respect to the

matrix AC . We take such a path (µ1, . . . , µl) with maximal weight, where µ1 := µ and

µl = ν. To this path we can associate a path π defined by π = τ1 ◦ σ1 ◦ τ2 ◦ . . . ◦ σl−1 ◦ τl,
where τi are critical paths which entirely belong to the components Cµi , and σi are edges

with maximal weight connecting Cµi to Cµi+1
. Such a path exists since any two nodes in

the same component Cµ can be connected to each other by critical paths if µ is critical,

and if µ is non-critical then Cµ consists just of one node. The weights of τi are equal to 1,

hence the weight of π is equal to α∗µν . It follows from the definition of αµν and α∗µν that
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this weight is maximal over all paths which connect nodes in Cµ to nodes in Cν . As at

least one of the indices µ, ν is critical, there is freedom in the choice of the paths τ1 or τl
which can be of arbitrary length. Hence, for any r ≥ T (A), any block A

(r)
µν with µ or ν

critical, contains an entry equal to α∗µν which is the greatest entry of the block. �

5.3. A system for attraction cone. Next we show how the specific circulant structure

of Ar at r ≥ T (A) can be exploited, to derive a more concise system of equations for the

attraction cone Attr(A, 1). Due to Proposition 5.4 the core matrix AC = {αµν | µ, ν =

1, . . . , c}, and its Kleene star (AC)∗ = {α∗µν | µ, ν = 1, . . . , c} will be of special importance.

We introduce the notation

S(r)
µν (i) = {j ∈ Nν | a(r)

ij = α∗µν}, ∀i ∈ Nµ, ∀ν : Cν 6= Cµ,

T (r)
µ (i) = {t /∈ Nc(A) | a(r)

it = α∗µν(t)}, ∀i ∈ Nµ,
(36)

where Cµ and Cν are s.c.c. of C(A), Nµ and Nν are their node sets, and ν(t) in the second

definition denotes the index of the non-critical component which consists of the node t.

The results of Subsect. 5.2 lead to the following properties of S
(r)
µν and T

(r)
µ (i).

Proposition 5.5. Let r ≥ T (A).

1. If [i]→t [j] and i, j ∈ Nµ then S
(r+t)
µν (i) = S

(r)
µν (j) and T

(r+t)
µ (i) = T

(r)
µ (j).

2. S
(r)
µν (i) are composed of cyclic classes of Cν.

3. Let d = g.c.d.(γµ, γν). Then, if [p] ∈ S(r)
µν (i) and [p]→d [s] then [s] ∈ S(r)

µν (i).

4. Let i, j ∈ Nµ and p, s ∈ Nν. Let [i] →t [j] and [p] →t [s]. Then p ∈ S(r)
µν (i) if and

only if s ∈ S(r)
µν (j).

Next we recall some max-algebraic cancellation rules which will enable us to write out

a concise system of equations for the attraction cone Attr(A, 1).

If a < c, then

(37) ax⊕ b = cx⊕ d⇔ b = cx⊕ d.

Now consider a system of equations over max algebra:

(38)
n⊕
i=1

a1ixi ⊕ c1 =
n⊕
i=1

a2ixi ⊕ c2 = . . . =
n⊕
i=1

anixi ⊕ cn.

Suppose that α1, . . . , αn ∈ R+ are such that ali ≤ αi for all l and i, and Sl = {i | ali = αi}
for l = 1, . . . , n. Let Sl be such that

⋃n
l=1 Sl = {1, . . . , n}. Repeatedly applying the

elementary cancellation law described above, we obtain that (38) is equivalent to

(39)
⊕
i∈S1

αixi ⊕ c1 =
⊕
i∈S2

αixi ⊕ c2 = . . . =
⊕
i∈Sn

αixi ⊕ cn.

We will refer to the equivalence between (38) and (39), which we acknowledge to Dokka

[17], as to (multisided) cancellation.
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Using notation (36) and Proposition 5.5 we can formulate the following.

Proposition 5.6. Let A ∈ Rn×n
+ be a visualized matrix and and r ≥ T (A) be a multiple

of γ. Then the system Ar ⊗ x = Ar+1 ⊗ x is equivalent to

⊕
k∈[i]

xk ⊕
⊕
Cν 6=Cµ

α∗µν

 ⊕
k∈S(r)

µν (i)

xk

⊕ ⊕
t∈T (r)

µ (i)

α∗µν(t)xt =

=
⊕
k∈[j]

xk ⊕
⊕
Cν 6=Cµ

α∗µν

 ⊕
k∈S(r)

µν (j)

xk

⊕ ⊕
t∈T (r)

µ (j)

α∗µν(t)xt,

(40)

where Cµ is the component of C(A) which contains both [i] and [j], and [i] and [j] range

over all pairs of cyclic classes such that [i]→1 [j].

Proof. By Proposition 4.9 Ar ⊗ x = Ar+1 ⊗ x is equivalent to its critical subsystem.

Consider a critical component of Ar ⊗ x = Ar+1 ⊗ x:

(41)
⊕
k

a
(r)
ik xk =

⊕
k

a
(r+1)
ik xk, i ∈ Nc(A).

Consider j such that [i]→1 [j]. Then by Proposition 4.5, a
(r+1)
ik = a

(r)
jk , hence the critical

subsystem of Ar ⊗ x = Ar+1 ⊗ x is as follows:

(42)
⊕
k

a
(r)
ik xk =

⊕
k

a
(r)
jk xk, ∀i, j : [i]→1 [j].

Proposition 5.3, part 3, implies that, after applying an appropriate permutation scaling,

all principal submatrices of Ar extracted from critical components have a circulant block

structure. In this structure, all entries of the diagonal blocks are equal to 1, and the entries

of all off-diagonal blocks are strictly less than 1. Hence we can apply the cancellation

(equivalence between (38) and (39)) and obtain the first terms on both sides of (40). By

Proposition 5.4 each block Aµν contains an entry equal to α∗µν . For a non-critical ν(t),

this readily implies that the corresponding “subcolumn” Aµν(t) contains an entry α∗µν(t).

Applying the cancellation we obtain the last terms on both sides of (40). Due to the block

circulant structure of Aµν with both µ and ν critical, see Proposition 5.3 and Proposition

5.5, we see that each column of such block also contains an entry equal to α∗µν . Applying

the cancellation we obtain the remaining terms in (40). �

As Attr(A, t) = Attr(At, 1), system (40) also describes more general attraction cones,

it only amounts to substitute C(At) for C(A) and the entries of ((At)C)∗ for α∗µν(the

dimension of this matrix is different, in general, see Proposition 3.3 part 3).
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5.4. When C(A) is strongly connected. Coefficients of the system of equations which

defines attraction cone are determined by the entries of (AC)∗ which can be found inO(m3)

operations. However it remains to find the places where these coefficients appear, i.e., the

sets S
(r)
µν (i) and Tν(i). Defining this, we can get a polynomial method for computing the

coefficients of (40) which requires O(m3) operations with real numbers.

Here we restrict our attention to the case when C(A) is strongly connected. In this case

there are no second terms on both sides of (40) and we need only T
(r)
ν (i). The digraph

D(AC) associated with the matrix AC consists of one critical node which corresponds to

the whole C(A) and will be denoted by µ, and m non-critical nodes ν(t), for t /∈ Nc(A).

The cyclicity of C(A) is γ. The entries of AC are given by

αµµ = 1,

αµν(t) = max
k∈Nc(A)

akt, αν(t)µ = max
k∈Nc(A)

atk, t /∈ Nc(A),

αν(s)ν(t) = ast, s /∈ Nc(A), t /∈ Nc(A).

(43)

C(A) has γ cyclic classes [s1], . . . , [sγ], which we assume to be numbered in such a way

that [si]→1 [si+1]. We also put [si+l] = [sk] where k = i+ l(mod γ). For each t /∈ Nc(A),

we initialize boolean γ-vectors Pt by

(44) Pt(i) =

1, if [si−1] ∩ arg maxk∈Nc(A) akt 6= ∅
0, otherwise.

Initialized in this way, Pt contain information on starting cyclic classes of paths with

maximal weights among those, which connect the nodes in Nc(A) directly to node t and

whose length is a multiple of γ. By saying “directly” we mean that only the end node of

the path is non-critical.

Further we compute the Kleene star of the non-critical submatrix B := AMM , where

M denotes the set of non-critical nodes, and store the information on the lengths of paths

with maximal weight in boolean m-vectors Ust associated to each entry of B. We recall

the max-algebraic version of Schur complement [10], which computes

(45) (AC)∗ =

(
1 hT

g B

)∗
=

(
1 hTB∗

B∗g B∗ ⊕B∗ghTB∗

)
,

where h, g ∈ Rm
+ . Note that all information that we need for system (40), is the entries of

hT ⊗B∗ and the indices of equations of the system where the entries of hT ⊗B∗ appear.

Computing (hT ⊗B∗)i means in particular obtaining the “winning” indices

(46) Wt = arg max
s∈M

hsb
∗
st.
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After that, the idea is to combine Pp with Upt for all p ∈ Wt and unite the obtained indices

in P 1
t . More precisely, for each number m stored in Upt we define the shifted set P→mp by

(47) j ∈ P→mp ⇔ i ∈ Pp and j − i = m(mod γ).

The set P 1
t is computed by

(48) P 1
t :=

⋃
p∈Wt

⋃
m∈Upt

P→mp .

This set encodes information on starting cyclic classes of the paths whose weight is max-

imal among those, which connect the nodes in Nc(A) to t and whose length is a multiple

of γ. These paths are absolute winners, with no restriction on non-critical nodes that

they pass through. Therefore, the sets T
(r)
i defined by (36) with r ≥ T (A), can now be

computed by

(49) t ∈ T (r)
i ⇔ ∃k ∈ P 1

µν(t) s.t. [i] = [sk].

Summarizing above said, we have the following algorithm for computing the coefficients

of (40) in the case when C(A) is strongly connected. Recall that in this case there is no

second term on both sides of (40). The computation of coefficients of the third term

includes the computation of hTB∗ and the sets P 1
t for each t /∈ Nc(A).

ALGORITHMCompute the coefficients of (40) if C(A) is strongly connected.

Input. Visualized matrix A, critical graph C(A) which is strongly connected and the

cyclic classes of C(A).

1. Compute h and initialize Pt for t ∈ M . This takes m(n − m) operations both with

real numbers and integers.

2. Compute B∗ and initialize the boolean vectors Ust for all s, t ∈ M . It takes O(m3)

operations both with real numbers and integers.

3. Compute hT ⊗ B∗ and initialize P 1
t for t ∈ M , by (46), (47) and (48). Computation

of hT ⊗ B∗ and Wt by (46) requires m2 operations both with real numbers and integers,

computation of shifted vectors Pp requires γm2 operations with integers and booleans,

and the union (48) takes γm3 operations with booleans.

4. Compute T
(r)
i by (49). This requires m(n−m) operations with booleans.

We conclude the following.

Theorem 5.7. Let A ∈ Rn×n
+ be visualized, C(A) be strongly connected, m be the num-

ber of non-critical nodes, and suppose we know C(A) and all γ cyclic classes. Then

there is algorithm which decides, whether or not a given vector belongs to Attr(A, 1), in
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O(m3) + O(n2) operations with real numbers and up to O(m3γ) operations with integers

and booleans.

It is also important that the eigenvalue and an eigenvector of irreducible matrix can

be computed by the policy iteration algorithm of [11], which is experimentally very fast.

After that, C(A) and the cyclic classes can be computed in O(n2) time. Thus we are led

to an efficient method of solving the reachability problem in the case when A is irreducible

and C(A) is strongly connected, especially in the case when the number of non-critical

nodes is small. Note that the case of irreducible A and strongly connected C(A) is generic

when matrices A are real and generated at random. Also, in this generic case it almost

never happens that maxima in blocks or among the weights of paths are achieved twice,

which means that we do not need to assign boolean vectors to each entry, and reduces

the total number of operations after the visualization, both with integers and with reals,

to O(m3) +O(n2), where m is the number of non-critical nodes.

6. Examples

6.1. Matrix squaring. In this subsection we will examine the problems that can be

solved by matrix squaring on 9× 9 real matrix over the max-plus semiring:

A =



−1 0 −1 −1 −9 −7 −10 −4 −8

0 −1 0 −1 −10 −1 −10 −9 −4

−1 −1 −1 0 −2 −3 −2 −6 −6

0 −1 −1 −1 −10 −6 −10 −6 −1

−10 −2 −8 −1 −1 0 −1 −10 −1

−5 −5 −10 −9 −1 −1 0 −3 −6

−9 −10 −7 −10 0 −1 −1 −8 −8

−75 −80 −77 −83 −80 −77 −82 −2 −0.5

−84 −81 −77 −80 −78 −77 −78 −0.5 −2


The corresponding max-times example is obtained by, e.g., taking exponents of the

entries.

The critical graph of A, see Figure 3, has two s.c.c.: C1 with nodes N1 = {1, 2, 3, 4}
and C2 with nodes N2 = {5, 6, 7}. The cyclicity of C1 is γ1 = 2 and the cyclicity of C2 is

γ2 = 3, so the cyclicity of C(A) is γ = lcm(2, 3) = 2× 3 = 6.

The matrix can be decomposed into blocks

A =

A11 A12 A1M

A21 A22 A2M

AM1 AM1 AMM

 ,
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1 2 3 4 5

6

7

Figure 3. The critical graph of A

where the submatrices A11 and A22 correspond to two s.c.c. C1 and C2 of C(A), see Figure

3. They equal

A11 =


−1 0 −1 −1

0 −1 0 −1

−1 −1 −1 0

0 −1 −1 −1

 , A22 =

−1 0 −1

−1 −1 0

0 −1 −1

 ,

and AMM is the non-critical principal submatrix

AMM =

(
−2 −0.5

−0.5 −2

)
.

The submatrices A12, A21, A1M and A2M are composed of randomly taken numbers from

−1 to −10, and AM1 and AM2 are composed of randomly taken numbers from −75 to

−85.

It can be checked that the powers of A become periodic after T (A) = 154.

We will consider the following instances of problems P2 and P3.

P2. Compute Ar for r ≥ T (A) and r ≡ 2(mod 6).

P3. For given x ∈ R9
+, find ultimate orbit period of Ak ⊗ x.

Solving P2. Using the idea of Proposition 4.10, we perform 7 squarings A,A2, A4, . . .

to raise A to the power 128 > 9× 9. This brings us to the matrix

A128 =


A

(128)
11 A

(128)
12 A

(128)
1M

A
(128)
21 A

(128)
22 A

(128)
2M

A
(128)
M1 A

(128)
M2 A

(128)
MM

 ,

where

A
(128)
11 =


0 −1 0 −1

−1 0 −1 0

0 −1 0 −1

−1 0 −1 0

 , A
(128)
22 =

−1 −1 0

0 −1 −1

−1 0 −1

 ,

all entries of A
(128)
12 and A

(128)
21 are −1 and
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A
(128)
1M =


−2.5 −1

−1.5 −2

−2.5 −1

−1.5 −2

 , A
(128)
2M =

−1.5 −2

−2.5 −2

−2.5 −1



A
(128)
M1 =


−76 −75.5

−75 −76.5

−76 −75.5

−75 −76.5


T

, A
(128)
M2 =

−76 −76.5

−76 −76.5

−76 −76.5


T

We are lucky since 128 ≡ 2(mod 6), as we already have true critical columns and rows

of Ar. However, the non-critical principal submatrix of A128 is

A
(128)
MM =

(
−64 −65.5

−65.5 −64

)
.

It can be checked that this is not the non-critical submatrix of Ar that we seek (recall that

T (A) = 154). Hence, it remains to compute the principal non-critical submatrix A
(r)
MM .

We note that A132 has critical rows and columns of the spectral projector Q(A), since

132 is a multiple of γ = 6. In A132, the critical rows and columns 1 − 4 (in C1) are the

same as that of A128, since γ1 = 2 and both 128 and 132 are even. The critical rows 5− 7

(in C2) can be computed from those of A128 by cyclic permutation (5, 6, 7)→ (7, 5, 6), and

the critical rows 5 − 7 can be computed by the inverse permutation (5, 6, 7) → (6, 7, 5).

This implies that all blocks in A132 are the same as in A128 above (in the analogous block

decomposition of A132), except for

A
(132)
22 =

 0 −1 −1

−1 0 −1

−1 −1 0

 , A
(132)
2M =

−2.5 −2

−2.5 −1

−1.5 −2

 .

Now the remaining non-critical submatrix of Ar can be computed using linear depen-

dence (23), which specifies to

A
(r)
·k =

7⊕
i=1

a
(132)
ik A

(128)
·i , k = 8, 9.

This yields

A
(r)
MM =

(
−76.5 −77

−78 −76.5

)
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Solving P3 We examine the orbit period of Akx for x = x1, x2, x3, x4, where

x1 = [1 2 3 4 5 6 7 8 9],

x2 = [1 2 3 4 0 0 0 0 0],

x3 = [0 0 1 1 0 0 1 1 1],

x4 = [0 0 1 1 0 0 0 0 0].

We compute y = A128x for x = x1, x2, x3, x4:

y1 = A128 ⊗ x1 = [8 7 8 7 7 7 8 × ×],

y2 = A128 ⊗ x2 = [3 4 3 4 3 3 3 × ×],

y3 = A128 ⊗ x3 = [1 1 1 1 1 0 0 × ×],

y4 = A128 ⊗ x4 = [1 1 1 1 0 0 0 × ×].

Here× correspond to non-critical entries which we do not need. The cyclic classes of C1 are

{1, 3}, {2, 4}, and the cyclic classes of C2 are {5}, {6} and {7}. From the considerations

of Proposition 4.10, it follows that the coordinate sequences {(Arx)i, r ≥ T (A)} are

y1, y2, y1, y2, . . . , for i = 1, 2, 3, 4,

y5, y6, y7, y5, y6, y7, . . . , for i = 5, 6, 7.

Looking at y1, . . . , y4 above, we conclude that the orbit of x1 is of the largest possible

period 6, the orbit of x2 is of the period 2 (in other words, x2 ∈ Attr(A, 2)), the orbit of

x3 is of the period 3 (i.e., x3 ∈ Attr(A, 3)), and the orbit of x4 is of the period 1 (i.e.,

x1 ∈ Attr(A, 1)).

6.2. Circulants. Here we consider another 9× 9 example

(50) A =



−8 0 −1 −8 −8 −9 −4 −5 −1

−4 −5 0 −2 −6 0 −7 −3 −9

−7 −9 −8 0 −8 −4 −6 −9 −10

−8 −8 −10 −7 0 −4 −6 −10 −1

−2 −8 −7 −4 −8 0 −3 −1 −10

0 −1 −2 −7 −10 −6 −3 −6 −1

−10 −7 −7 −7 −6 −1 −5 0 −9

−8 −3 −6 −8 −6 −8 −5 −10 0

−4 −3 −5 −6 −6 −10 0 −6 −9


The critical graph of this matrix consists of two s.c.c. comprising 6 and 3 nodes respec-

tively. They are shown in Figures 4 and 5, together with their cyclic classes.
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1

2 3

4

56

7

8

9

Figure 4. Critical graph of (50)

I I

II

II

III

III

IV

V

V I

Figure 5. Cyclic classes of the critical graph

The components of C(A) induce block decomposition

(51) A =

(
A11 A12

A21 A22

)
,

where

(52) A11 =



−8 0 −1 −8 −8 −9

−4 −5 0 −2 −6 0

−7 −9 −8 0 −8 −4

−8 −8 −10 −7 0 −4

−2 −8 −7 −4 −8 0

0 −1 −2 −7 −10 −6


, A22 =

−5 0 −9

−5 −10 0

0 −6 −9



The core matrix and its Kleene star are equal to

(53) AC = (AC)∗ =

(
0 −1

−1 0

)
.
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The powers of A become periodic after T (A) = 6. With the block decomposition of A6

analogous to (51),

A
(6)
11 =



0 −1 −2 0 −1 −2

−2 0 −1 −2 0 −1

−1 −2 0 −1 −2 0

0 −1 −2 0 −1 −2

−2 0 −1 −2 0 −1

−1 −2 0 −1 −2 0


, A

(6)
12 =



−2 −1 −1

−1 −2 −1

−1 −1 −2

−2 −1 −1

−1 −2 −1

−1 −1 −2


,

A
(6)
21 =

−3 −1 −2 −3 −1 −2

−2 −3 −1 −2 −3 −1

−1 −2 −3 −1 −2 −3

 , A
(6)
22 =

 0 −3 −2

−2 0 −3

−3 −2 0

 .

(54)

The corresponding blocks of “reduced” power Ã(6) are

Ã
(6)
11 =

 0 −1 −2

−2 0 −1

−1 −2 0

 , Ã
(6)
12 =

−2 −1 −1

−1 −2 −1

−1 −1 −2

 ,

Ã
(6)
21 =

−3 −1 −2

−2 −3 −1

−1 −2 −3

 , Ã
(6)
22 =

 0 −3 −2

−2 0 −3

−3 −2 0

 .

(55)

All blocks in these decompositions are circulants. Note that Ã
(6)
11 and Ã

(6)
22 are strongly

regular Kleene stars, which we called the principal circulants associated with A.

Specializing system (40) to our case, we see that this system of equations for the

attraction cone Attr(A, 1) consists of two chains of equations, namely

x1 ⊕ x4 ⊕ (x8 − 1)⊕ (x9 − 1) =

= x2 ⊕ x5 ⊕ (x7 − 1)⊕ (x9 − 1) = x3 ⊕ x6 ⊕ (x7 − 1)⊕ (x8 − 1),

(x2 − 1)⊕ (x5 − 1)⊕ x7 =

= (x3 − 1)⊕ (x6 − 1)⊕ x8 = (x1 − 1)⊕ (x4 − 1)⊕ x9.

(56)

Note that only the coefficients of (AC)∗ (which is equal to AC in our example) appear

in this system.
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6.3. Algorithm for the strongly connected case. Here we consider a 6× 6 max-plus

example

(57) A =



−3 0 −1 −19 −7 −3

−3 −4 0 −10 −19 −16

0 −3 −1 −10 −8 −8

−1 −4 −4 −1 −1 −3

−1 −1 −4 −2 −4 −1

−4 −2 −4 −1 −4 −1


,

and apply to it the algorithm described in Subsect. 5.4. The critical graph of this matrix

consists just of one cycle of length 3, and there are 3 non-critical nodes.

1

2

3

4 5 6

Figure 6. Critical graph and non-critical nodes of (57)

The core matrix in this case is equal to

AC =


0 −10 −7 −3

−1 −1 −1 −3

−1 −2 −4 −1

−2 −1 −4 −1


Vector h = (−10 − 7 − 3)T , whose components are computed by

(58) hi =
3⊕

k=1

aki, for i = 4, 5, 6,

comprises 2, 3, 4-components of the first row of AC . The arguments of maxima in (58)

give, after the cyclic shift by one position, the boolean vectors

(59) P4 = (1 0 1), P5 = (0 1 0), P6 = (0 1 0).

This vectors encode, for the corresponding non-critical nodes t = 4, 5, 6, the starting cyclic

classes (here, just critical nodes!) of paths which go from C(A) directly to t and whose

length is 3.
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The non-critical principal submatrix of A and its Kleene star are equal to

B =

−1 −1 −3

−2 −4 −1

−1 −4 −1

 , B∗ =

 0 −1 −2

−2 0 −1

−1 −2 0


The lengths of optimal non-critical paths (whose weights are entries of B∗) can be written

in the matrix

(60) U =

 0 1 2

{1, 2} 0 1

1 2 0


Further we compute

hT ⊗B∗ = (−10 − 7 − 3)⊗

 0 −1 −2

−2 0 −1

−1 −2 0

 = (−4 − 5 − 3)

The maxima in
⊕

t htb
∗
ti for all i are achieved only at t = 6, so W4 = W5 = W6 = {6}.

Hence P 1
4 , P 1

5 and P 1
6 are shifted P6 and the shift is determined by the components in the

last row of U which is (1 2 0). From P6 = (0 1 0) we conclude that

P 1
4 = (0 0 1), P 1

5 = (1 0 0), P 1
6 = (0 1 0).

Using this information and the vector of coefficients hT ⊗ B∗ = (−4 − 5 − 3), we can

write out the system for attraction cone

(61) x1 ⊕ (x5 − 5) = x2 ⊕ (x6 − 3) = x3 ⊕ (x4 − 4).

On the other hand, in our case T (A) = 8 and

A8 =



−1 −1 0 −4 −6 −4

0 −1 −1 −5 −5 −4

−1 0 −1 −5 −6 −3

−2 −1 −2 −6 −1 −4

−2 −1 −1 −5 −7 −4

−2 −3 −2 −6 −7 −6



A9 =



0 −1 −1 −5 −5 −4

−1 0 −1 −5 −6 −3

−1 −1 0 −4 −6 −4

−2 −2 −1 −5 −7 −5

−1 −2 −1 −5 −6 −5

−2 −2 −3 −7 −7 −5


Applying cancellation to the critical subsystem of A8 ⊗ x = A9 ⊗ x, we obtain (61).
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[32] M. Molnárová and J. Pribǐs. Matrix period in max-algebra. Discrete Appl. Math., 103:167–175, 2000.
[33] K. Nachtigall. Powers of matrices over an extremal algebra with applications to periodic graphs.

Mathematical Methods of Operations Research, 46:87–102, 1997.
[34] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Pren-

tice Hall, New Jersey, 1982.
[35] U.G. Rothblum, H. Schneider, and M.H. Schneider. Scaling matrices to prescribed row and column

maxima. SIAM J. Matrix Anal. Appl., 15:1–14, 1994.
[36] H. Schneider and M.H. Schneider. Max-balancing weighted directed graphs. Math. Oper. Res.,

16:208–222, 1991.
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