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In max algebra it is well known that the sequence of max algebraic

powers Ak , with A an irreducible square matrix, becomes periodic

after a finite transient time T(A), and the ultimate period γ is equal

to the cyclicity of the critical graph of A.

In this connection, we study computational complexity of the fol-

lowing problems: (1) for a given k, compute a periodic power Ar

with r ≡ k(mod γ ) and r � T(A), (2) for a given x, find the ultimate

period of {Al ⊗ x}. We show that both problems can be solved by

matrix squaring in O(n3 log n) operations. The main idea is to ap-

ply an appropriate diagonal similarity scaling A �→ X−1AX , called

visualization scaling, and to study the role of cyclic classes of the

critical graph.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Bymax algebrawe understand the analogue of linear algebra developed over themax-times semir-

ing Rmax,× which is the set of nonnegative numbers R+ equipped with the operations of “addition”

a ⊕ b:= max(a, b) and the ordinary multiplication a ⊗ b:=a × b. Zero and unity of this semiring

coincide with the usual 0 and 1. The operations of the semiring are extended to the nonnegative

matrices andvectors in the samewayas in conventional linear algebra. That is ifA = (aij),B = (bij) and
C = (cij) are matrices of compatible sizes with entries from R+, we write C = A ⊕ B if cij = aij ⊕ bij
for all i, j and C = A ⊗ B if cij = ⊕

k aikbkj = maxk(aikbkj) for all i, j. IfA is a squarematrix overR+ then

the iterated product A ⊗ A ⊗ · · · ⊗ A in which the symbol A appears k times will be denoted by Ak .

�
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The max-plus semiring Rmax,+ = (R ∪ {−∞},⊕ = max,⊗ = +), developed over the set of real

numbers R with adjoined element −∞ and the ordinary addition playing the role of multiplication,

is another isomorphic “realization” of max algebra. In particular, x �→ exp(x) yields an isomorphism

between Rmax,+ and Rmax,×. In the max-plus setting, the zero element is −∞ and the unity is 0.

Themin-plus semiring Rmin,+ = (R ∪ {+∞},⊕ = min,⊗ = +) is also isomorphic to Rmax,+ and

Rmax,×. Another well-known semiring is the max–min semiring Rmax,min = (R ∪ {−∞} ∪ {∞},
⊕ = max,⊗ = min), see [21,35,36], but it is not isomorphic to any of the semirings above. For the

basics of max algebra and its applications in scheduling and discrete event systems, see [3,12,21,22].

The current state of max algebra, idempotent analysis and related areas is represented in the recent

collection of papers [26].

Max algebraic column spans of nonnegativematrices A ∈ R
n×n+ are sets ofmax linear combinations

of columns
⊕n

i=1 αiA·i with nonnegative coefficients αi. Such column spans are max cones, meaning

that they are closed under componentwise maximum ⊕ and multiplication by nonnegative scalars.

There are important analogies and links between max cones and convex cones [11,14,37,38].

The maximum cycle geometric mean λ(A), see below for exact definition, is one of the most im-

portant characteristics of a matrix A ∈ R
n×n+ in max algebra. In particular, it is the largest eigenvalue

of the spectral problem A ⊗ x = λx. The cycles at which this maximum geometric mean is attained,

are called critical. Further, one considers the critical graph C(A) which consists of all nodes and edges

that belong to the critical cycles (such nodes and edges are also called critical). This graph is crucial

for the description of eigenvectors [3,12,22].

The well-known cyclicity theorem states that if A is irreducible, then the sequence Ak becomes

periodic after some finite transient time T(A), and that the ultimate period γ of Ak is equal to the

cyclicity of the critical graph [3,12,22]. Generalizations to reducible case, computational complexity

issues and important special cases of this result have been extensively studied in [13,20,21,27–29].

Results of this kind are studiedwith great precision in Booleanmatrix algebra, where one considers

components of imprimitivity of amatrix [5,25], or equivalently, cyclic classes of the associated digraph

[4]. In max algebra, cyclic classes of the critical graph have been considered as an important tool in

the proof of the cyclicity theorem [22, Section 3.1]. Recently, the cyclic classes appeared in max–min

algebra [35,36], where they were used to study the ultimate periods of orbits and other periodicity

problems. It was shown that such questions can be solved bymatrix squaring (A, A2, A4, A8, . . .), which

yields computational complexity O(n3 log n).
The chief aim of this paper is to study the behaviour of max algebraic powers Ak and orbits Ak ⊗ x

in the irreducible case in the periodic regime, i.e., after the periodicity is reached. One of the main

ideas is to study the periodicity of visualized matrices, meaning matrices with all entries less than or

equal to the maximum cycle geometric mean, since this provides a better connection to the theory of

Boolean matrices [5,25].

Our starting point is an observation [30] that the critical rows and columns of Al become periodic

after at most l = n2. This observation is also crucial for the O(n5) complexity result of [27]. Using the

spectral projector of [3,10], we show that the critical rows and columns of Al for l � n2 generate row

and column spans of powers in the periodic regime (i.e., for l � T(A)). If A is visualized, then these

critical rows and columns “permute” according to the structure of cyclic classes of the critical graph.

Based on these observations, we study the computational complexity of the following problems, for

irreducible A ∈ R
n×n+ : (1) for a given k, compute power Ar for r � T(A) and r ≡ k(mod γ ), (2) for a

given x ∈ Rn+, compute theultimate periodof {Ak ⊗ x}.We show that, like inmax–min algebra [35,36],

these problems can be solved by matrix squaring in O(n3 log n) time.

In the future we aim to apply this technique to attraction cones, by which we mean max cones

consisting of vectors with prescribed ultimate orbit period. See [38, Section 5] for some results in this

direction.

The contents of this paper are as follows. In Section 2 we revise two important topics in max

algebra, namely the spectral problem and Kleene stars. In Section 3, we speak of the visualization and

the connection to the theory of Boolean matrices which it provides, see Propositions 3.1 and 3.3. In

Section 4, we start by basic observations on matrix powers in the periodic regime, see Propositions

4.4–4.7 and Eq. (33). Main results on the problems which can be solved by matrix squaring are stated
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in Theorem 4.11. We conclude with Section 5 which contains a 9 × 9 example illustrating the results

of Section 4.

AsRmax,+ andRmax,× are isomorphic,weuse thepossibility to switchbetween them,but onlywhen

it is really convenient. Thus, while the theoretical results are obtained overmax-times semiring, which

looks more natural in connection with diagonal matrix scaling and Boolean matrices, the example in

Section 6 is written over max-plus semiring, where it is usually much easier to calculate.

2. Two topics in max algebra

2.1. Spectral problem

Let A ∈ R
n×n+ . Consider the problem of finding λ ∈ R+ and nonzero x ∈ Rn+ such that

A ⊗ x = λx. (1)

If for some λ there exists a nonzero x ∈ Rn+ which satisfies (1), then λ is called a max-algebraic

eigenvalue of A, and x is a max-algebraic eigenvector of A associated with λ. With the zero vector

adjoined, the set of max-algebraic eigenvectors associated with λ forms a max cone, which is called

the eigencone associated with λ.
The largest max-algebraic eigenvalue of A ∈ R

n×n+ is equal to

λ(A) =
n⊕

k=1

(Tr⊕Ak)1/k , (2)

where Tr⊕ is defined by Tr⊕(A):= ⊕n
i=1 aii for any A = (aij) ∈ R

n×n+ [3,12,22]. Furtherwe explain the

graph-theoretic meaning of (2), assuming that λ(A) /= 0.

With A = (aij) ∈ R
n×n+ we can associate the weighted digraph DA = (N(A), E(A)), with the set of

nodes N(A) = {1, . . . , n} and the set of edges E(A) = {(i, j) | aij /= 0} with weights w(i, j) = aij . Sup-

pose that π = (i1, . . . , ip) is a path in DA, then theweight of π is defined to bew(π , A) = ai1i2ai2i3 . . .
aip−1ip if p > 1, and 1 if p = 1. If i1 = ip then π is called a cycle. One can check that

λ(A) = max
σ

μ(σ , A),

where the maximization is taken over all cycles in DA,

μ(σ , A) = w(σ , A)1/k

denotes the geometric mean of the cycleσ = (i1, . . . , ik , i1), andwe assume thatmax ∅ = 0. Thusλ(A)
is themaximum cycle geometric mean of DA.

A ∈ R
n×n+ is irreducible if for any nodes i and j there exists a path in DA, which begins at i and ends

at j. In this case A has a unique max-algebraic eigenvalue which equals λ(A) [3,12,22].
Note that λ(αA) = αλ(A) and hence λ(A/λ(A)) = 1 if λ(A) > 0. Unless we need matrices with

λ(A) = 0,we can always assumewithout loss of generality thatλ(A) = 1. Suchmatriceswill be called

definite.

An important relaxation of (1) is

A ⊗ x � λx. (3)

The nonzero vectors x ∈ Rn+ which satisfy (3) are called subeigenvectors associated with λ. With the

zero vector adjoined, they form a max cone called subeigencone. This is a conventionally convex cone,

meaning that it is closed under the ordinary addition. See [39] for more details.

The eigencone (resp. subeigencone) ofA associatedwithλ(A)will be denoted byV(A) (resp.V∗(A)).

2.2. Kleene stars

Let A ∈ R
n×n+ . Consider the formal series

A∗ = I ⊕ A ⊕ A2 ⊕ · · · , (4)
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where I denotes the identity matrix. Series (4) is a max-algebraic analogue of (I − A)−1, and it

converges to a matrix with finite entries if and only if λ(A) � 1 [3,9,12,22]. In this case

A∗ = I ⊕ A ⊕ A2 ⊕ · · · ⊕ An−1, (5)

which is called the Kleene star of A.

For any A ∈ R
n×n+ ,

A is a Kleene star ⇔ A2 = A, aii = 1, ∀i
⇔ aijajk � aik , aii = 1, ∀i, j, k. (6)

The condition λ(A) � 1 suggests that there is a strong interplay between Kleene stars and spectral

problems. To describe this in more detail, we need the following notions and notation.

A cycle σ in DA is called critical, if μ(σ , A) = λ(A). Every node and edge that belongs to a critical

cycle is called critical. The set of critical nodes is denoted byNc(A), the set of critical edges is denoted by

Ec(A). The critical digraph of A, further denoted by C(A) = (Nc(A), Ec(A)), is the digraphwhich consists

of all critical nodes and critical edges of DA. For definite A ∈ R
n×n+ , it follows that aija

∗
ji

� 1, ∀i, j [3].
Further,

(i, j) ∈ Ec(A) ⇔ aija
∗
ji = 1. (7)

Further we always assume that Nc(A) occupies the first c indices.

For definite A ∈ R
n×n+ , the relation between Kleene star, critical graph and spectral problems is

briefly as follows [3,12,39]:

V∗(A) = span(A∗) =
⎧⎨
⎩

n⊕
i=1

αiA
∗·i, αi ∈ R+

⎫⎬
⎭ , (8)

V(A) =
⎧⎨
⎩

c⊕
i=1

αiA
∗·i, αi ∈ R+

⎫⎬
⎭ , (9)

x ∈ V∗(A), (i, j) ∈ Ec(A) ⇒ aijxj = xi. (10)

Eq. (8) means that V∗(A) is the max-algebraic column span of Kleene star A∗, also called Kleene

cone. This cone is convex in conventional sense. By (9), V(A) is the max subcone of V∗(A), spanned by

the columns with critical indices. Implication (10) means that for any subeigenvector x ∈ V∗(A) and

i ∈ Nc(A), the maximum in
⊕

j aijxj is attained at j if (i, j) ∈ Ec(A). In particular, (A ⊗ x)i = xi for all

x ∈ V∗(A) and i � c.

Not all columns in (8) and (9) are necessary. Let C(A) have nc ∈ {1, . . . , n} strongly connected

components (s.c.c.)Cμ, forμ = 1, . . . , nc . It follows fromthedefinitionofC(A) that s.c.c.Cμ aredisjoint.

The corresponding node sets will be denoted by Nμ. Letm denote the number of non-critical nodes of

DA. It can be shown [3,12,22] that if i, j belong to the same s.c.c. of C(A), then the columns A∗·i and A∗·j
are multiples of each other. The same holds for the rows A∗

i· and A∗
j·. Hence

V∗(A) =
⎧⎨
⎩

⊕
i∈K

αiA
∗·i, αi ∈ R+

⎫⎬
⎭ , (11)

V(A) =
⎧⎨
⎩

⊕
i � c, i∈K

αiA
∗·i, αi ∈ R+

⎫⎬
⎭ , (12)

where K is any set of indices which contains all non-critical indices and for every Cμ there is a unique

index of this component in K .

Consider A∗
KK , the principal submatrix of A∗ extracted from the rows and columns with indices

in K . Condition (6) implies that A∗
KK is itself a Kleene star. It follows from the maximality of Cμ that

there is a unique permutation of K that has the greatest weight with respect to A∗
KK . The weight of a

permutation π of {1, . . . , n} with respect to A ∈ R
n×n+ is defined as

∏n
i=1 aiπ(i). Thus A∗

KK is strongly
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regular in the sense of Butkovič [6]. From this it can be deduced that the columns of A∗ with indices

in K are independent, meaning that none of them can be expressed as a max combination of the other

columns. In other words [8], the columns of A∗ with indices in K (resp., in K and less than or equal to c)

form a basis of V∗(A) (resp., of V(A)). This basis is essentially unique [8], meaning that any other basis

can be obtained from it by scalar multiplication.

More precisely, the strong regularity of A∗
KK is equivalent to saying that this basis is tropically

independent, hence the tropical rank of A∗ is equal to nc + m, see [2,23,24] for definitions and further

details.

3. Visualization and Boolean matrices

3.1. Visualization

Consider a positive x ∈ Rn+ and define

X = diag(x):=
⎛
⎜⎜⎝
x1 · · · 0
...

. . .
...

0 . . . xn

⎞
⎟⎟⎠ . (13)

The transformation A �→ X−1AX is called a diagonal similarity scaling of A. Such transformations do not

change λ(A) and C(A) [17]. They commute with max-algebraic multiplication of matrices and hence

with the operation of taking the Kleene star. Geometrically, they correspond to automorphisms of

Rn+, both in the case of max algebra and in the case of nonnegative linear algebra. The importance of

such scalings is emphasized in [12, Chapter 28]. Further we define scalings which lead to particularly

convenient forms of matrices.

A definite matrix A ∈ R
n×n+ is called visualized, if

aij � 1, ∀i, j = 1, . . . , n, (14)

aij = 1, ∀(i, j) ∈ Ec(A). (15)

A visualized matrix A ∈ R
n×n+ is called strictly visualized if

aij = 1 ⇔ (i, j) ∈ Ec(A). (16)

Visualization scalings were known already to Afriat [1] and Fiedler–Pták [19], and motivated ex-

tensive study of matrix scalings in nonnegative linear algebra, see e.g. [17,18,32,34]. We remark that

some constructions and facts related to application of visualization scaling in max algebra have been

observed in connectionwithmax algebraic powermethod [15,16], behaviour ofmatrix powers [7] and

max-balancing [32,34].

Visualization scalings are described in [39] in terms of the subeigencone V∗(A) and its relative

interior. For the convenience of the reader, we show their existence for any definite A ∈ R
n×n+ . In the

proposition stated below, the summation in part 2 is conventional.

Proposition 3.1. Let A ∈ R
n×n+ be definite and X = diag(x).

1. If x = ⊕n
i=1 A

∗·i then X−1AX is visualized.

2. If x = ∑n
i=1 A

∗·i then X−1AX is strictly visualized.

Proof. 1. Observe that x ∈ V∗(A) and x is positive. Then aijxj � xi for all i, j implies x
−1
i aijxj � 1, and by

(10) x
−1
i aijxj = 1 for all (i, j) ∈ Ec(A).

2. Observe that x is positive, and that x ∈ V∗(A) since V∗(A) is convex. Hence X−1AX is visualized. It

remains to check that (i, j) /∈ Ec(A) implies aijxj < xi. We need to find k such that aija
∗
jk < a∗

ik . But this

is true for k = i, since a∗
ii = 1 and aija

∗
ji < 1 by (7). This completes the proof. �
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Moreprecisely [39],A ∈ R
n×n+ canbe visualizedby anypositive vector inV∗(A), and it canbe strictly

visualized by any vector in the relative interior of V∗(A).

3.2. Max algebra and Boolean matrices

Max algebra is related to the algebra of Boolean matrices. The latter algebra is defined over the

Boolean semiring S which is the set {0, 1} equipped with logical operations “OR” a ⊕ b:=a ∨ b and

“AND” a ⊗ b:=a ∧ b. Clearly, Boolean matrices can be treated as objects of max algebra, as a very

special but crucial case.

For a strongly connected graph, its cyclicity is defined as the g.c.d. of the lengths of all cycles (or

equivalently, all simple cycles). If the cyclicity is 1 then the graph is called primitive, otherwise it is

called imprimitive. Wewill not distinguish between cyclicity (or primitivity) of a Booleanmatrix A and

the associated digraph DA. Further we recall an important result of Boolean matrix theory.

Proposition 3.2 [5, Theorem 3.4.5]. Let S ∈ Sn×n be irreducible, and let γA be the cyclicity of DA (which

is strongly connected). Then for each k � 1, there exists a permutation matrix P such that P−1AkP has

r irreducible diagonal blocks, where r = gcd(k, γA), and all elements outside these blocks are zero. The
cyclicity of all these blocks is γA/r.

In max algebra, let A ∈ R
n×n+ . Define the critical matrix A[C] = (a

[C]
ij ) ∈ Sc×c and the matrix A[1] =

(a
[1]
ij ) ∈ Sc×c associated with A by

a
[C]
ij =

{
1, (i, j) ∈ Ec(A),
0, (i, j) /∈ Ec(A),

i, j � c, (17)

a
[1]
ij =

{
1, aij = 1,

0, aij /= 1,
i, j � c. (18)

Let A, B ∈ R
n×n+ . Assume that C(A) has nc s.c.c. Cμ forμ = 1, . . . , nc , with cyclicities γμ. Denote by Bμν

the block of B extracted from the rows with indices in Cμ and columns with indices in Cν .

The following proposition can be seen as a corollary of Proposition 3.2. The idea of the proof given

below is due to Schneider [33]. See also [7, Theorem 2.3], [22, Section 3.1].

Proposition 3.3. Let A ∈ R
n×n+ and λ(A) /= 0.

1. λ(Ak) = λk(A).
2. (A[C])k = (Ak)[C].
3. For each k � 1, there exists a permutation matrix P such that (P−1AkP)[C]

μμ, for each μ = 1, . . . , nc ,

has rμ := gcd(k, γμ) irreducible blocks and all elements outside these blocks are zero. The cyclicity

of all blocks in (P−1AkP)[C]
μμ is equal to γμ/rμ.

Proof. We can assume that A is definite. Further, the diagonal similarity scaling commutes with max

algebraic matrix multiplication and changes neither λ(A) nor C(A) [17], and by Proposition 3.1, part

2, there exists a strict visualization scaling. Hence we can assume that A is strictly visualized. In this

case A[C] = A[1] and it is easily seen that (A[1])k = (Ak)[1]. As A[1] = A[C], all entries of A[1] outside
the blocks A[1]

μμ are zero, which assures that (A[1])kμμ = (A[1]
μμ)k .

Proposition 3.2 implies that part 3 is true for (A[1])k = (Ak)[1]. This implies that P−1(Ak)[1]P has

irreducible blocks and λ(Ak) = 1, which shows part 1. Also, P−1(Ak)[1]P has block structure where all

diagonal blocks are irreducible and all off-diagonal blocks are zero. This implies (Ak)[C] = (Ak)[1], and
parts 2 and 3 follow immediately. �
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Fig. 1. Balcer–Veinott algorithm.

Fig. 2. Result of the algorithm (left) and cyclic classes (right).

3.3. Cyclic classes

For a path P in a digraph G = (N, E), where N = {1, . . . , n}, denote by l(P) the length of P, i.e., the

number of edges traversed by P.

Proposition 3.4 [5]. Let G = (N, E) be a strongly connected digraph with cyclicity γG. Then the lengths of

any two paths connecting i ∈ N to j ∈ N (with i, j fixed) are congruent modulo γG.

Proposition 3.4 implies that the following equivalence relation can be defined: i ∼ j if there exists a

path P from i to j such that l(P) ≡ 0(mod γG). The equivalence classes of Gwith respect to this relation

are called cyclic classes [4,35,36]. The cyclic class of i will be denoted by [i].
Consider the following access relationsbetween cyclic classes: [i] →t [j] if there exists a path P from

a node in [i] to a node in [j] such that l(P) ≡ t(mod γG). In this case, a path P with l(P) ≡ t(mod γG)
exists between any node in [i] and any node in [j]. Further, by Proposition 3.4 the length of any path

between a node in [i] and a node in [j] is congruent to t, so the relation [i] →t [j] is well-defined.

Classes [i] and [j] will be called adjacent if [i] →1 [j].
Cyclic classes can be computed in O(|E|) time by Balcer–Veinott digraph condensation, where |E|

denotes the number of edges inG. At each step of this algorithm,we look for all edgeswhich issue from

a certain node i, and condense all end nodes of these edges into a single node. A precise description of

this method can be found in [4,5]. We give an example of its work, see Figs. 1 and 2.

In this example, see Fig. 1 at the left, we start by condensing nodes 2 and 4, which are “next to”

node 1, into the node 24. Further we proceed with condensing nodes 3 and 5 into the node 35. In the

end, see Fig. 2 at the left, there are just two nodes 135 and 246. They correspond to two cyclic classes

{1,3,5} and {2,4,6} of the initial graph, see Fig. 2 at the right.

Thenotionof cyclic classes and access relations canbe generalized to the casewhenG hasnc disjoint

components Gμ with cyclicities γμ, for μ = 1, . . . , nc (just like the critical graph in max algebra). In

this case we write i ∼ j if i, j belong to the same component and there exists a path P from i to j such

that l(P) ≡ 0(mod γμ). If l(P) ≡ t(mod γμ), then we write [i] →t [j]. In this case the cyclicity of G is

γ := lcm γμ, μ = 1, . . . , nc .
We will be interested in the cyclic classes of critical graphs, and below we interpret these in terms

of the Booleanmatrix A[C]. Let A ∈ R
n×n+ . Following Brualdi and Ryser [5] we can find such ordering of

the indices that any submatrix A[C]
μμ, which corresponds to an imprimitive component Cμ of C(A), will

be of the form
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 A[C]
s1s2

0 · · · 0

0 0 A[C]
s2s3

· · · 0

...
...

...
. . .

...

0 0 0 · · · A[C]
sk−1sk

A[C]
sks1

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (19)

where k is the number of cyclic classes in Cμ. Indices si and si+1 for i = 1, . . . , k − 1, and sk and s1

correspond to adjacent cyclic classes. By Proposition 3.3, part 2, when A is raised to power k, A[C] is also
raised to the same power over the Boolean algebra. Any power of A[C] has a similar block-permutation

form. In particular, (Aγμ)[C]
μμ looks like⎛

⎜⎜⎜⎜⎜⎝

(Aγμ)[C]
s1s1

0 0 · · · 0

0 (Aγμ)[C]
s2s2

0 · · · 0

...
...

...
. . .

...

0 0 0 · · · (Aγμ)[C]
sksk

⎞
⎟⎟⎟⎟⎟⎠

(20)

Theorem 5.4.11 of [25] implies that the sequence (Ak)[C] = (A[C])k becomes periodic after k =
(n − 1)2 + 1, with period γ = lcm(γμ), μ = 1, . . . , nc . This period, which is equal to the cyclicity of

C(A), will be denoted by γ everywhere in the sequel.

In the periodic regime, all entries of nonzero blocks of (A[C])k are equal to 1. In particular, it means

the following.

Proposition 3.5. Let A ∈ R
n×n+ be definite and let t � 0 be such that tγ � n2. Let i, j � c be such that

[i] →l [j], l � γ , hence also [j] →s [i] where l + s = γ.

1. If A is visualized, then a
(tγ+l)
ij = a

(tγ+s)
ji = 1.

2. In the general case, a
(tγ+l)
ij a

(tγ+s)
ji = 1.

Proof. Part 1. follows from the theory of Boolean matrices [5,25]. To obtain part 2, we apply to A a

visualization scaling, which does not change the value of a
(tγ+l)
ij a

(tγ+s)
ji . �

4. Periodicity and complexity

4.1. Spectral projector and matrix periodicity

For a definite and irreducible A ∈ R
n×n+ , consider the matrix Q(A) with entries

qij =
c⊕

k=1

a∗
ika

∗
kj , i, j = 1, . . . , n. (21)

The max-linear operator whose matrix is Q(A), is a max-linear spectral projector associated with A, in

the sense that it projects Rn+ on the eigencone V(A) [3].
This operator is closely related to the periodicity questions, as the following fact suggests. Under

more restrictive conditions, it appears in [12, Section 27.3], where Q(A) is called the orbital matrix.

Proposition 4.1 [3, Theorem 3.109]. Let A ∈ R
n×n+ be irreducible and definite, and let all s.c.c. of C(A) be

primitive. Then there is an integer T(A) such that Ar = Q(A) for all r � T(A).

We will also need the following property of Q(A) which follows directly from (21).
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Proposition 4.2. For A ∈ R
n×n+ irreducible and definite, any critical column (or row) of Q(A) is equal to

the corresponding column (or row) of A∗.
We also note that Q(A) is important for the policy iteration algorithm of [10].

When C(A) has imprimitive components, it follows fromProposition 3.3, part 3 that all components

ofC(Aγ ) areprimitive,whereγ is the cyclicity ofC(A). Hence, for any r great enoughwhich is amultiple

of γ , Ar is the matrix of the spectral projector onto the eigencone of Aγ . This also implies that for large

enough r we have Ar = Ar+γ . The number r, after which this starts, is called the transient of {Ar}. It
will be denoted by T(A). Also, it is well known that γ is the ultimate period of {Ar}, i.e., it is the least

integer α such that Ar+α = Ar for all r � T(A).

It is also important that the entries a
(r)
ij , where i or j are critical, become periodic much faster

than the non-critical part of A. The following proposition is a known result, which is proved here for

convenience of the reader.

Proposition4.3 [30]. Let A ∈ R
n×n+ be adefinite irreduciblematrix.Critical rows and columns of Ar become

periodic for r � n2.

Proof. We prove the claim for rows, and for columns everything is analogous. Let i � c, Then there is

a critical cycle of length li to which i belongs. Hence a
(kli)
ii = 1 for k � 1. Since for all m < k and any

t = 1, . . . , nwe have

a
(mli)
is = a

((k−m)li)
ii a

(mli)
is

� a
(kli)
is ,

it follows that

a
(kli)
is =

k⊕
m=1

a
(mli)
is . (22)

Entries a
(kli)
is are maximal weights of paths of length kwith respect to the matrix Ali . Since the weights

of all cycles are less than or equal to 1 and all paths of length n are not simple, themaximum is achieved

at k � n. Using (22) we obtain that a
((t+1)li)
is = a

(tli)
is for all t � n. Further,

a
(tli+d)
is = ⊕

p

a
(tli)
ip a(d)

ps

and it follows that a
((t+1)li+d)
is = a

(tli+d)
is for all t � n and 0� d � li − 1. Hence a

(k)
is is periodic for k � nli,

and all these sequences, for any i � c and any s, become periodic for k � n2. �

4.2. Properties of periodic powers

Periodic powers of definite and irreducible matrices are described by the following propositions.

Proposition 4.4. Let A ∈ R
n×n+ be a definite and irreducible matrix, and let t � 0 be such that tγ � T(A).

Then for every integer l � 0

A
tγ+l

k· =
c⊕

i=1

a
(tγ )
ki A

tγ+l

i· , A
tγ+l

·k =
c⊕

i=1

a
(tγ )
ik A

tγ+l

·i , 1� k � n. (23)

Proof. Due to Proposition 4.1, for B = Aγ and any t � T(B) we have

b
(r)
kj =

c⊕
i=1

b∗
kib

∗
ij , 1� k, j � n. (24)

By Propositions 4.1 and 4.2, we have b∗
ki = b

(t)
ki = a

(tγ )
ki and b∗

ij = b
(t)
ij = a

(tγ )
ij for all t � T(B) or equiv-

alently tγ � T(A), and any i � c. Hence
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a
(tγ )
kj =

c⊕
i=1

a
(tγ )
ki a

(tγ )
ij , 1� k, j � n. (25)

In the matrix notation, this is equivalent to:

A
tγ
k· =

c⊕
i=1

a
(tγ )
ki A

tγ
i· , A

tγ
·k =

c⊕
i=1

a
(tγ )
ik A

tγ
·i , 1� k � n. (26)

Multiplying (26) by any power Al , we obtain (23). �

In the proof of the next proposition we will use the following simple principle

a
(r)
ij a

(s)
jk

� a
(r+s)
ik , ∀i, j, k, r, s, (27)

which holds for the matrix powers in max algebra.

Proposition 4.5. Let A ∈ R
n×n+ be a definite and irreducible matrix, and let i, j ∈ Nc(A) be such that

[i] →l [j], for some 0� l < γ.

1. There exists t such that for any r � n2

a
(tγ+l)
ij Ar·i = A

r+l
·j , a

(tγ+l)
ij Ar

j· = A
r+l
i· . (28)

2. If A is visualized, then for all r � n2

Ar·i = A
r+l
·j , Ar

j· = A
r+l
i· . (29)

Proof. Let s = γ − l. By Proposition 3.5 there exists t such that a
(tγ+l)
ij a

(tγ+s)
ji = 1. Combining this

with (27) we obtain

Ar·i = Ar·ia
(tγ+l)
ij a

(tγ+s)
ji

� A
r+tγ+l

·j a
(tγ+s)
ji

� A
r+(2t+1)γ
·i ,

Ar
j· = Ar

j·a
(tγ+l)
ij a

(tγ+s)
ji

� A
r+tγ+l

i· a
(tγ+s)
ji

� A
r+(2t+1)γ
j· .

(30)

By Proposition 4.3, Ar·i = A
r+tγ
·i and Ar

j· = A
r+tγ
j· for all t � 0 and r � n2, hence all inequalities in (30)

are equalities. Multiplying them by a
(tγ+l)
ij we obtain (28), from the equalities between the first and

the third terms. In the visualized case a
(tγ+l)
ij = a

(tγ+s)
ji = 1, hence (29). �

Letting l = 0 in Proposition 4.5 we obtain the following.

Corollary 4.6. Let A ∈ R
n×n+ and r � n2. All rows of Ar with indices in the same cyclic class are equal to

each other, and the same statement holds for the columns.

Proposition 4.5 says that in any power Ar for r � n2, the critical columns (or rows) can be obtained

from the critical columns (or rows) of the spectral projector Q(Aγ ) by permuting the sets of columns

(or rows)which correspond to the cyclic classes of C(A). Proposition 4.4 adds to this that all non-critical

columns (or rows) of any periodic power are in themax cone spanned by the critical columns (or rows).

From this we conclude the following.

Proposition 4.7. All powers Ar for r � T(A) have the same column span, which is the eigencone V(Aγ ).

Proposition 4.7 enables us to say that V(Aγ ) is the ultimate column span of A. Similarly, we have the

ultimate row span which is V((AT )γ ). These cones are generated by critical columns (or rows) of the

Kleene star (Aγ )∗. For a basis of this cone, we can take any set of columns (Aγ )∗ (equivalently Q(Aγ )
or Atγ for tγ � T(A)), whose indices form a minimal set of representatives of all cyclic classes of C(A).
This basis is tropically independent in the sense of [2,23,24].
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Propositions 4.5 and 4.4 also admit the following nice matrix formulation which follows an idea of

[33]. Take tγ � T(A). For any l � 0, let C(l) ∈ R
n×c+ , or resp. R(l) ∈ R

c×n+ , be thematrices extracted from

the critical columns of Atγ+l , or resp. from the critical rows of Atγ+l . Let C :=C(0), R :=R(0). With this

notation and from Propositions 4.4 and 4.5 respectively, we conclude that for an irreducible visualized

A ∈ R
n×n+
Atγ+l = C(l) ⊗ R = C ⊗ R(l), (31)

C(l) = C ⊗ (A[C])l , R(l) = (A[C])l ⊗ R. (32)

Indeed, (31) is evidently equivalent to (23). Further observe that [i] →l [j] if and only if there exist

indices p ∈ [i] and s ∈ [j] such that the (p, s)-entry of (A[C])l is 1, and that all rows of R (or columns of

C)with indices in the same cyclic class are equal to each other, by Corollary 4.6. Hence (32) is equivalent

to (29). Note that the role of A[C] in (32) can be played by any other Booleanmatrix that corresponds to

a graph with the same cyclic classes as C(A). In particular, we can take the block-permutation matrix

which has all entries equal to 1 in all nonzero blocks of (19).

Combining (31) with (32) we obtain

Atγ+l = C ⊗ (A[C])l ⊗ R, (33)

a concise matrix expression of Propositions 4.4 and 4.5.

Note that if A is not necessarily visualized but just definite irreducible, then equations (32) and

(33) can be also written. Indeed, let B = X−1AX be visualised. Applying the inverse scaling XBX−1

to (33) (where B is substituted for A), we obtain equation of the same form, where C and R are the

matrices extracted from the critical columns, resp. rows, of Atγ , and A[C] is replaced by the matrix

A(C) = (a
(C)
ij ) ∈ R

c×c+ defined by

a
(C)
ij =

{
aij , if (i, j) ∈ Ec(A),
0, if (i, j) /∈ Ec(A),

i, j � c.

4.3. Solving periodicity problems by square multiplication

Let A ∈ R
n×n+ and λ(A) = 1. The t-attraction cone Attr(A, t) is the max cone which consists of all

vectors x, for which there exists an integer r such that Ar ⊗ x = Ar+t ⊗ x, and hence this is also true

for all integers greater than or equal to r. Actually we may speak of any r � T(A), due to the following

observation.

Proposition 4.8. Let A be irreducible and definite. The systems Ar ⊗ x = Ar+t ⊗ x are equivalent for all

r � T(A).

Proof. Let x satisfy As ⊗ x = As+t ⊗ x for some s� T(A), then it also satisfies this system for all greater

s. Due to the periodicity, for all k from T(A) � k � s there exists l > s such that Ak = Al . Hence Ak ⊗ x =
Ak+t ⊗ x also hold for T(A) � k � s. �

Corollary 4.9. Attr(A, t) = Attr(At , 1).

Proof. By Proposition 4.8, Attr(A, t) is solution set to the system Ar ⊗ x = Ar+t ⊗ x for any r � T(A)
which is a multiple of t, hence the statement. �

A component (that is, equation) of Ar ⊗ x = Ar+t ⊗ x with index in Nc(A) = {1, . . . , c} will be

called critical, and the subsystemof componentswith these indiceswill be called the critical subsystem.

Lemma 4.10. Let A be irreducible and definite and let r � T(A). Then Ar ⊗ x = Ar+t ⊗ x is equivalent to

its critical subsystem.
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Proof. Consider a non-critical component Ar
k· ⊗ x = A

r+t
k· ⊗ x. Using (23) it can be written as

c⊕
i=1

a
(r)
ki A

r
i· ⊗ x =

c⊕
i=1

a
(r)
ki A

r+t
i· ⊗ x, (34)

hence it is a max combination of equations in the critical subsystem. �

Next we give a bound on the computational complexity of deciding whether x ∈ Attr(A, t), as well

as other related problems which we formulate below.

P1. For a given x, decide whether x ∈ Attr(A, t).
P2. For a given k : 0� k < γ , compute periodic power Ar where r ≡ k(mod γ ).
P3. For a given x compute the ultimate period of {Ar ⊗ x, r � 0}, meaning the least integer α such

that Ar+α ⊗ x = Ar ⊗ x for all r � T(A).

Theorem 4.11. For any irreducible matrix A ∈ R
n×n+ , the problems P1–P3 can be solved in O(n3 log n)

time.

Proof. First note thatwe can compute bothλ(A) and a subeigenvector, and identify all critical nodes in

nomore thanO(n3) operations, which is done essentially by Karp and Floyd–Warshall algorithms [31].

Further we can identify all cyclic classes of C(A) by Balcer–Veinott condensation in O(n2) operations.
By Proposition 4.3 the critical rows and columns become periodic for r � n2. To know the critical

rows and columns of a given power r′ � T(A), it suffices to compute Ar for arbitrary r � n2 which can

be done in O(log n) matrix squaring (A, A2, A4, …) and takes O(n3 log n) time, and following (29), to

apply the corresponding permutation on cyclic classes which takes O(n2) overrides. By Lemma 4.10

we readily solve P1 by the verification of the critical subsystem of Ar′ ⊗ x = Ar′+t ⊗ x which takes

O(n2) operations. Using linear dependence (23) the remaining non-critical submatrix of Ar , for any

r � T(A) such that r ≡ k(mod γ ), can be computed in O(n3) time. This solves P2.

As the non-critical rows of A are generated by the critical rows, the ultimate period of {Ar ⊗ x}
is determined by the critical components. For visualized matrix we know that A

r+t
i· = Ar

j· for all i, j
such that [i] →t [j]. This implies (Ar+t ⊗ x)i = (Ar ⊗ x)j for [i] →t [j], meaning that, to determine

the period we need only the critical subvector of Ar ⊗ x for any fixed r � n2. Indeed, for any i � c and

r � n2 the sequence {(Ar+t ⊗ x)i, t � 0} can be represented as a sequence of critical coordinates of

Ar ⊗ x determined by a permutation on γμ cyclic classes of the s.c.c. to which i belongs. To compute

the period, we take a sample of γμ numbers appearing consecutively in the sequence, and check all

possible periods, which takes no more than γ 2
μ operations. The period of Ar ⊗ x appears as the l.c.m.

of these periods. It remains to note that all operations above do not requiremore than O(n3) time. This

solves P3. �

5. Example

In this section we will examine the problems that can be solved by square multiplication on 9 × 9

real matrix over themax-plus semiring:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 −1 −1 −9 −7 −10 −4 −8

0 −1 0 −1 −10 −1 −10 −9 −4

−1 −1 −1 0 −2 −3 −2 −6 −6

0 −1 −1 −1 −10 −6 −10 −6 −1

−10 −2 −8 −1 −1 0 −1 −10 −1

−5 −5 −10 −9 −1 −1 0 −3 −6

−9 −10 −7 −10 0 −1 −1 −8 −8

−75 −80 −77 −83 −80 −77 −82 −2 −0.5
−84 −81 −77 −80 −78 −77 −78 −0.5 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Fig. 3. The critical graph of A.

The corresponding max-times example is obtained by, e.g., taking exponents of the entries.

The critical graph of A, see Fig. 3, has two s.c.c.: C1 with nodes N1 = {1, 2, 3, 4} and C2 with nodes

N2 = {5, 6, 7}. The cyclicity of C1 is γ1 = 2 and the cyclicity of C2 is γ2 = 3, so the cyclicity of C(A) is
γ = lcm(2, 3) = 2 × 3 = 6.

The matrix can be decomposed into blocks

A =
⎛
⎝A11 A12 A1M

A21 A22 A2M

AM1 AM1 AMM

⎞
⎠ ,

where the submatrices A11 and A22 correspond to two s.c.c. C1 and C2 of C(A), see Fig. 3. They equal

A11 =
⎛
⎜⎜⎝
−1 0 −1 −1

0 −1 0 −1

−1 −1 −1 0

0 −1 −1 −1

⎞
⎟⎟⎠ , A22 =

⎛
⎝−1 0 −1

−1 −1 0

0 −1 −1

⎞
⎠ ,

and AMM is the non-critical principal submatrix

AMM =
( −2 −0.5
−0.5 −2

)
.

The submatrices A12, A21, A1M and A2M are composed of randomly taken numbers from −1 to −10,

and AM1 and AM2 are composed of randomly taken numbers from −75 to −85.

It can be checked that the powers of A become periodic after T(A) = 154.

We will consider the following instances of problems P2 and P3.

P2. Compute Ar for r � T(A) and r ≡ 2(mod 6).
P3. For given x ∈ R9+, find ultimate orbit period of Ak ⊗ x.

Solving P2. Using the idea of Proposition 4.11, we perform 7 squarings A, A2, A4, . . . to raise A to the

power 128 > 9 × 9. This brings us to the matrix

A128 =

⎛
⎜⎜⎜⎝
A
(128)
11 A

(128)
12 A

(128)
1M

A
(128)
21 A

(128)
22 A

(128)
2M

A
(128)
M1 A

(128)
M2 A

(128)
MM

⎞
⎟⎟⎟⎠ ,

where

A
(128)
11 =

⎛
⎜⎜⎝

0 −1 0 −1

−1 0 −1 0

0 −1 0 −1

−1 0 −1 0

⎞
⎟⎟⎠ , A

(128)
22 =

⎛
⎝−1 −1 0

0 −1 −1

−1 0 −1

⎞
⎠ ,

all entries of A
(128)
12 and A

(128)
21 are −1 and

A
(128)
1M =

⎛
⎜⎜⎝
−2.5 −1

−1.5 −2

−2.5 −1

−1.5 −2

⎞
⎟⎟⎠ , A

(128)
2M =

⎛
⎝−1.5 −2

−2.5 −2

−2.5 −1

⎞
⎠
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A
(128)
M1 =

⎛
⎜⎜⎝

−76 −75.5
−75 −76.5
−76 −75.5
−75 −76.5

⎞
⎟⎟⎠

T

, A
(128)
M2 =

⎛
⎝−76 −76.5
−76 −76.5
−76 −76.5

⎞
⎠

T

.

We are lucky since 128 ≡ 2(mod 6), as we already have true critical columns and rows of Ar .

However, the non-critical principal submatrix of A128 is

A
(128)
MM =

( −64 −65.5
−65.5 −64

)
.

It can be checked that this is not the non-critical submatrix of Ar that we seek (recall that T(A) = 154).

Hence, it remains to compute the principal non-critical submatrix A
(r)
MM .

We note that A132 has critical rows and columns of the spectral projector Q(A), since 132 is a

multiple of γ = 6. In A132, the critical rows and columns 1–4 (in C1) are the same as that of A128, since

γ1 = 2 and both 128 and 132 are even. The critical rows 5–7 (in C2) can be computed from those of

A128 by cyclic permutation (5, 6, 7) → (7, 5, 6), and the critical columns 5–7 can be computed by the

inverse permutation (5, 6, 7) → (6, 7, 5). We conclude that all blocks in A132 are the same as in A128

above (in the analogous block decomposition of A132), except for

A
(132)
22 =

⎛
⎝ 0 −1 −1

−1 0 −1

−1 −1 0

⎞
⎠ , A

(132)
2M =

⎛
⎝−2.5 −2

−2.5 −1

−1.5 −2

⎞
⎠ .

Now the remaining non-critical submatrix of Ar can be computed using linear dependence (23), which

specifies to

A
(r)
·k =

7⊕
i=1

a
(132)
ik A

(128)
·i , k = 8, 9.

This yields

A
(r)
MM =

(−76.5 −77

−78 −76.5

)

Solving P3.We examine the orbit period of Akx for x = x1, x2, x3, x4, where

x1 = [1 2 3 4 5 6 7 8 9],
x2 = [1 2 3 4 0 0 0 0 0],
x3 = [0 0 1 1 0 0 1 1 1],
x4 = [0 0 1 1 0 0 0 0 0].

We compute y = A128x for x = x1, x2, x3, x4:

y1 = A128 ⊗ x1 = [8 7 8 7 7 7 8 × ×],
y2 = A128 ⊗ x2 = [3 4 3 4 3 3 3 × ×],
y3 = A128 ⊗ x3 = [1 1 1 1 1 0 0 × ×],
y4 = A128 ⊗ x4 = [1 1 1 1 0 0 0 × ×].

Here × correspond to non-critical entries which we do not need. The cyclic classes of C1 are {1, 3},
{2, 4}, and the cyclic classes of C2 are {5}, {6} and {7}. From the considerations of Proposition 4.11, it

follows that the coordinate sequences {(Arx)i, r � T(A)} are
y1, y2, y1, y2, . . . , for i = 1, 2, 3, 4,

y5, y6, y7, y5, y6, y7, . . . , for i = 5, 6, 7.

Looking at y1, . . . , y4 above, we conclude that the orbit of x1 is of the largest possible period 6, the

orbit of x2 is of the period 2 (in other words, x2 ∈ Attr(A, 2)), the orbit of x3 is of the period 3 (i.e.,

x3 ∈ Attr(A, 3)), and the orbit of x4 is of the period 1 (i.e., x1 ∈ Attr(A, 1)).
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[35] B. Semančíková, Orbits in max–min algebra, Linear Algebra Appl. 414 (2006) 38–63.
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