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CYCLIC PROJECTORS AND SEPARATION THEOREMS
IN IDEMPOTENT CONVEX GEOMETRY

S. Gaubert and S. Sergeev UDC 512.643+512.558

Abstract. Semimodules over idempotent semirings like the max-plus or tropical semiring have much
in common with convex cones. This analogy is particularly apparent in the case of subsemimodules of
the n-fold Cartesian product of the max-plus semiring: It is known that one can separate a vector from
a closed subsemimodule that does not contain it. Here we establish a more general separation theorem,
which applies to any finite collection of closed subsemimodules with a trivial intersection. The proof of
this theorem involves specific nonlinear operators, called here cyclic projectors on idempotent semimodules.
These are analogues of the cyclic nearest-point projections known in convex analysis. We obtain a theorem
that characterizes the spectrum of cyclic projectors on idempotent semimodules in terms of a suitable
extension of Hilbert’s projective metric. We also deduce as a corollary of our main results the idempotent
analogue of Helly’s theorem.

1. Introduction

Some nonlinear problems in optimization theory and mathematical physics turn out to be linear over
semirings with an idempotent addition ⊕ [1,9,16]. We recall that the idempotency of ⊕ means a⊕ a = a
for all a, and that the role of this addition is most often played by the operations of taking maxima
or minima. The search for idempotent analogues of classical results has motivated the development of
idempotent mathematics (see the recent collection of articles [18] and also [17] for more background).

One of the most studied idempotent semirings is the max-plus semiring often denoted by Rmax. It
is the set R ∪ {−∞} equipped with the operations of addition a ⊕ b := max(a, b) and multiplication
a � b := a + b. The zero element 0 of this semiring is equal to −∞, and the semiring unity 1 is equal
to 0. Some algebraic structures that coincide with the max-plus semiring (up to isomorphism) have
appeared under other names. In particular, the min-plus or tropical semiring is obtained by replacing −∞
by +∞ and max(a, b) by min(a, b) above. Applying x �→ exp(x) to the max-plus semiring (assume that
exp(−∞) = 0), we obtain the max-times semiring, further denoted by Rmax,×. It is the set of nonnegative
numbers (R+), equipped with the operations a ⊕ b = max(a, b) and a � b = a × b. The zero and unit
elements of Rmax,× coincide with the usual 0 and 1. Our main results (see Sec. 4) will be stated over this
semiring, as it makes clearer some analogies with classical convex analysis.

We shall consider here subsemimodules of the n-fold Cartesian product Kn of a semiring K and, more
generally, of the set KI of functions from a set I to K. Further examples can be found, e.g., in [1,16,19].

In an idempotent semiring, there is a canonical order relation, for which every element is “nonnega-
tive.” Therefore, idempotent semimodules have much in common with the semimodules over the semiring
of nonnegative numbers, i.e., with convex cones [22]. One of the first results based on this idea is the
separation theorem for convex sets over “extremal algebras” proved in [24]. This theorem implies that
a point in Rn

max,×, which does not belong to a semimodule that is closed in the Euclidean topology, can
be separated from it by an idempotent analogue of a closed halfspace. Generalizations of this result were
obtained in [6,7,23]. In the special case of finitely generated semimodules, a separation theorem has also
been obtained in [11], with a strong emphasis on some combinatorial aspects of the result.

The main result of this paper, Theorem 20, shows that several closed semimodules that do not have
common nonzero points can be separated from each other. This means that for each of these semimodules,
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we can select an idempotent halfspace containing it, in such a way that these halfspaces also do not have
common nonzero points.

Even in the case of two semimodules, this statement has not been proved in the idempotent literature.
Indeed, the earlier separation theorems deal with the separation of a point from an (idempotent) convex set
or semimodule, rather than with the separation of two convex sets or semimodules. Note that unlike in the
classical case, separating two convex sets cannot be reduced to separating a point from a convex set. More
precisely, it is easily shown that two convex sets A and B can be separated if and only if the point 0 can be
separated from their Minkowski difference A − B, in classical convex geometry. In idempotent geometry,
an analogue of Minkowski difference can still be defined; consider A � B = {x | ∃ b ∈ B : x ⊕ b ∈ A}.
However, due to the idempotency of the addition, we cannot recover a halfspace separating A and B from
a halfspace separating 0 from A � B.

In order to prove the main result, Theorem 20, we use cyclic projectors on idempotent semimodules.
By these we mean finite compositions of certain nonlinear projectors on idempotent semimodules. The
continuity and homogeneity of these nonlinear projectors enables us to apply to their compositions, i.e.,
to the cyclic projectors, some results from nonlinear Perron–Frobenius theory. The main idea is to prove
the equivalence of the following three statements:

(1) that the semimodules have trivial intersection;
(2) that the separating halfspaces exist;
(3) that the spectral radius of the associated cyclic projector is strictly less than 1.

This equivalence is established in Theorems 11 and 18, which deal with the special case of Archimedean
semimodules, i.e., semimodules containing at least one positive vector. As an ingredient of the proof,
we use a nonlinear extension of Collatz–Wielandt’s theorem obtained in [21]. To derive the main sepa-
ration result, Theorem 20, we show that for any collection of trivially intersecting semimodules, there is
a collection of trivially intersecting Archimedean semimodules such that every semimodule from the first
collection is contained in an Archimedean semimodule from the second collection.

We also show in Theorems 14 and 16 that the orbit of an eigenvector of a cyclic projector maximizes
a certain objective function. We call this maximum the Hilbert value of semimodules, as it is a natural
generalization of Hilbert’s projective metric, and characterize the spectrum of cyclic projectors in terms
of these Hilbert values (Theorem 25).

The projectors on idempotent semimodules, which constitute the cyclic projectors considered here,
have been studied in [8] and [9, Chap. 8], where they appear as AA∗-products. The geometrical properties
of these projectors have been used in [6,7] to establish separation theorems. The same operators have also
been studied in [19], where idempotent analogues of several results from functional analysis, including the
analytic form of the Hahn–Banach theorem, were obtained.

The idempotent cyclic projectors have been introduced, in the case of two semimodules, in [10],
where these operators give rise to an efficient (pseudo-polynomial) algorithm for finding a point in the
intersection of two finitely generated subsemimodules of Rn

max,×. In convex analysis and optimization
theory, an analogous role is played by the cyclic nearest-point projections on convex sets [2].

As a corollary of Theorems 18 and 20, we deduce a max-plus analogue of Helly’s theorem. This result
has also been obtained, with a different proof, in [14].

Our main results apply to subsemimodules of Rn
max,×. Some of our results still hold in a more general

setting (see Sec. 3). However, the separation of several semimodules in such a generality remains an open
question.

The results of this paper are presented as follows. Section 2 describes the main assumptions that
are satisfied by the semimodules of the paper. In addition, it is occupied by some basic notions and
facts that will be used further. Section 3 is devoted to the results obtained in the most general setting,
with respect to the assumptions of Sec. 2. The main results for the case Rn

max,× are obtained in Sec. 4.
These results include separation of several semimodules and characterization of the spectrum of cyclic
projectors. Section 5 contains two illustrations of the separation theorems obtained in Secs. 3 and 4.
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2. Preliminary Results on Projectors and Separation

We start this section with some details concerning the role of partial order in idempotent algebraic
structures. For more background, we refer the reader to, e.g., [1, 9, 19].

The idempotent addition ⊕ defines the canonical order relation ≤⊕ on the semiring K by the rule
λ ⊕ µ = µ ⇐⇒ λ ≤⊕ µ for λ, µ ∈ K. The idempotent sum λ ⊕ µ is equal to the least upper bound
sup(λ, µ) with respect to the order ≤⊕. The idempotent sum of an arbitrary subset is defined as the
least upper bound of this subset, if this least upper bound exists. In a semimodule V, we define the order
relation ≤⊕,V in the same way. The relation λ ≤⊕ µ between λ, µ ∈ K implies λx ≤⊕,V µx for all x ∈ V.
When V = Kn and K = Rmax,×, the order ≤⊕ coincides with the usual linear order on R+, and the
order ≤⊕,V coincides with the standard pointwise order on Rn. For this reason, we will write ≤ instead
of ≤⊕ and ≤⊕,V , in the sequel.

A semiring or a semimodule will be called b-complete (see [19]), if it is closed under the sum (i.e.,
the supremum) of any subset bounded from above, and the multiplication distributes over such sums.
If the least upper bound ⊕ exists for all subsets bounded from above, then the greatest lower bound ∧
exists for all subsets bounded from below. Consequently, the greatest lower bound exists for any subset
of a b-complete semiring or a semimodule, since such a subset is bounded from below by 0.

Also note that if K is a b-complete semiring, and the set K \ {0} is a multiplicative group, then
this group is Abelian by Iwasawa’s theorem [3]. A semiring K such that the set K \ {0} is an Abelian
multiplicative group is called an idempotent semifield.

We shall consider semirings K and semimodules V over K that satisfy the following assumptions:
(A0) the semiring K is a b-complete idempotent semifield, and the semimodule V is a b-complete

semimodule over K;
(A1) for all elements x and y �= 0 from V, the set {λ ∈ K | λy ≤ x} is bounded from above.
Assumptions (A0) and (A1) imply that the operation

x/y = max{λ ∈ K | λy ≤ x} (1)

is defined for all elements x and y �= 0 from V. Operations of this kind belong to residuation theory
(see [1,4,15] for a general reference). The following can be viewed as another definition of the operation /
equivalent to (1):

λy ≤ x ⇐⇒ λ ≤ x/y. (2)
In the case V = KI , we have

x/y =
∧

i : yi �=0

xi(yi)−1, (3)

where −1 denotes the multiplicative inverse.
The operation / has the following properties (see [1, 4, 15]):( ∧

α

xα

)/
y =

∧
α

(xα/y),
(

x
/ ⊕

α

yα

)
=

∧
α

(x/yα), (4)

(λx)/y = λ(x/y) for all λ, y/(λx) = λ−1(y/x) for all λ �= 0. (5)

We also need the following lemma.

Lemma 1. Under (A0) and (A1), x/x = 1 for all nonzero vectors x ∈ V. If λx = x for a nonzero vector
x ∈ V, then λ = 1.

Proof. The inequality x ≤ x implies that x/x ≥ 1 (see (1)). On the other hand, we have that (x/x)x ≤ x.
Multiplying this by x/x, we obtain that (x/x)2x ≤ (x/x)x ≤ x, whence (x/x)2 ≤ x/x and x/x ≤ 1.
Thus, x/x = 1. If λx = x for some x �= 0, then λ(x/x) = (λx)/x = x/x and so λ = 1.

Definition 2. A subsemimodule V of V is a b-(sub)semimodule, if V is closed under the sum of any of
its subsets bounded from above in V.
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Let V be a b-subsemimodule of the semimodule V. Consider the operator PV defined by

PV (x) = max{u ∈ V | u ≤ x} (6)

for every element x ∈ V. Here we use max to indicate that the least upper bound belongs to the set. The
operator PV is a projector onto the subsemimodule V , since PV (x) ∈ V for any x ∈ V and PV (v) = v for
any v ∈ V . In principle, PV can be defined for all subsets of V, if we write sup instead of max in (6), but
then PV need not be a projector on V .

Definition 3. A subsemimodule V of V is called elementary, if V = {λy | λ ∈ K} for some y ∈ V. The
projector onto such a semimodule is also called elementary.

Assumptions (A0) and (A1) imply that elementary semimodules are b-semimodules. For the elemen-
tary semimodule V = {λy | λ ∈ K}, the projector PV is given by PV (x) = (x/y)y, and this fact can be
generalized as follows.

Proposition 4. If V is a b-subsemimodule of V and PV (x) = λy for some λ ∈ K and x, y ∈ V, then
PV (x) = (x/y)y.

Proof. If V is a b-semimodule, then y ∈ V , and (x/y)y ≤ x implies that (x/y)y ≤ PV (x) = λy. On the
other hand, λy ≤ x implies λ ≤ x/y and hence λy ≤ (x/y)y.

Note that PV is isotone with respect to inclusion

U ⊂ V =⇒ PU (x) ≤ PV (x) for all x. (7)

It is also homogeneous and isotone:

PV (λx) = λPV (x), x ≤ y =⇒ PV (x) ≤ PV (y). (8)

We remark that the operator PV is, in general, not linear with respect to ⊕ or ∧ operations, even in the
case V = Rn

max,×.
In idempotent geometry, the role of halfspace is played by the following object.

Definition 5. A set H given by
H = {x | u/x ≥ v/x} ∪ {0} (9)

with u, v ∈ Rn
max,×, u ≤ v, will be called an (idempotent) halfspace.

Here we impose the condition u ≤ v, since only halfspaces of this kind are really important for
separation (see Theorem 6).

Properties (4) and (5) of the operation / imply that any halfspace is a semimodule. If V = KI , then
we can use (3) and then

H =
{

x
∣∣∣ ∧

i : xi �=0

uix
−1
i ≥

∧
i : xi �=0

vix
−1
i

}
∪ {0}. (10)

If V = Kn and all coordinates of u and v are nonzero, then we have that

H =
{

x
∣∣∣ ⊕

1,...,n

xiu
−1
i ≤

⊕
1,...,n

xiv
−1
i

}
. (11)

Such idempotent halfspaces formally resemble the closed homogeneous halfspaces of the finite-dimensional
convex geometry [22].

Since the operation / is isotone with respect to the first argument, we can replace the inequalities in
(9), (10), and (11) by the equalities. For instance, (9) can be rewritten as

H = {x | u/x = v/x} ∪ {0}, (12)

where u ≤ v. A semimodule defined by (12), with general u and v, is also called a max-plus hyperplane [6].
The structure of max-plus hyperplanes, for the case of Rn

max, has been studied in [20].
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The present paper is concerned with the separation of several b-semimodules, whereas the separation
theorems that have been established previously, like the ones of [6, 7], deal with the separation of one
point from a semimodule. For the convenience of the reader, we next state a theorem, which is a variant
of a separation theorem of [6]. The difference is in that we deal with b-complete semimodules rather than
with complete semimodules. Both results are closely related with the idempotent Hahn–Banach theorem
of [19].

Theorem 6 (cp. [6, Theorem 8]). Let V be a b-subsemimodule of V and let u /∈ V . Then the halfspace

H = {x | PV (u)/x ≥ u/x} ∪ {0} (13)

contains V but not u.

Proof. Take a nonzero vector x ∈ V (the case x = 0 is trivial). Since (u/x)x ≤ u, we have (u/x)x ≤ PV (u),
which is, by (2), equivalent to u/x ≤ PV (u)/x. Hence V ⊆ H.

Take x = u and assume that PV (u)/u ≥ u/u = 1. This is equivalent to u ≤ PV (u) and hence to
u = PV (u). Since V is a b-semimodule, we have that u ∈ V , which is a contradiction. Hence u /∈ H.

Definition 7. Consider the preorder relation � defined by

x � y ⇐⇒ y/x > 0. (14)

We say that x and y are comparable, and we write x ∼ y, if x � y and y � x. Equivalently,

x ∼ y ⇐⇒ (x/y)(y/x) > 0. (15)

Note that if y = λx with λ �= 0, then y ∼ x, and that the inequality x ≤ y, if x �= 0, implies that
x � y. In particular, PV (x) � x for any nonzero x ∈ V and any semimodule V , provided that PV (x) is
nonzero.

When V = Kn, comparability can be characterized in terms of supports. Recall that the support of
a vector x in Kn is defined by supp(x) = {i | xi �= 0}. It can be checked that for all x, y ∈ Kn, we have
x � y if and only if supp(x) ⊂ supp(y), and so, x ∼ y if and only if supp(x) = supp(y).

Proposition 8. Let x ∈ V be a nonzero vector and let V ⊆ V be a b-semimodule containing a nonzero
vector y. If y � x, then PV (x) is nonzero, and y � PV (x) � x. If y ∼ x, then PV (x) ∼ x.

Proof. By the definition of / and by (14), there exists α such that αy ≤ x. Then αy ≤ PV (x), whence
PV (x) is nonzero and y � PV (x).

Proposition 9. Let F be an isotone and homogeneous operator, let λ, µ be arbitrary scalars from K, and
let v and u be nonzero vectors such that v ≺ u. Suppose that one of the following is true:

(1) Fv ≥ µv and Fu = λu;
(2) Fv = µv and Fu ≤ λu.

Then µ ≤ λ.

Proof. Applying F to the inequality (u/v)v ≤ u and using any of the given conditions, we obtain that
(u/v)µv ≤ λu. If λ = 0, then µ = 0. If λ is invertible, then by (2) (u/v)µλ−1 ≤ u/v. Cancelling u/v, we
get µ ≤ λ.

Properties (4) and (5) imply that the sets {x | x � y}, {x | x � y}, and hence {x | x ∼ y} are
subsemimodules of V. For any semimodule V ⊂ V and any vector y ∈ V, we define

V y = {x ∈ V | x � y}, (16)

which is a subsemimodule of V . When V = Kn, V y is uniquely determined by the support M of y. For
this reason, for all M ⊆ {1, . . . , n}, we set

V M = {x ∈ V | supp(x) ⊂ M}. (17)
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Definition 10. A vector x ∈ V is called Archimedean, if y � x for all y ∈ V. A semimodule V ⊆ V is
called Archimedean, if it contains an Archimedean vector. A halfspace will be called Archimedean if both
vectors defining it (e.g., u and v in (9)) are Archimedean.

Thus, a semimodule is Archimedean if it contains an Archimedean vector y, i.e., a vector with the
property that for any other vector x ∈ V there exists λ > 0 such that λx ≤ y.

Of course, Definition 10 makes sense only in the case where V satisfies the following assumption:
(A2) the semimodule V has an Archimedean vector.
This assumption is satisfied by the semimodules V = Kn (we are also assuming (A0), (A1)). In this

case, Archimedean halfspaces have been written explicitly in (11).

3. Cyclic Projectors and Separation Theorems: General Results

In this section, we study cyclic projectors, i.e., compositions of projectors

PVk
· · ·PV1 , (18)

where V1, . . . , Vk are always assumed to be b-subsemimodules of V. We assume (A0) and (A1), which
means, in particular, that K is an idempotent semifield, and state general results concerning cyclic pro-
jectors and separation properties. For the notational convenience, we will write Pt instead of PVt . We will
also adopt a convention of cyclic numbering of indices of projectors and semimodules, so that Pl+k = Pl

and Vl+k = Vl for all l.
First we prove the following separation theorem, where the main role is played by cyclic projectors.

Here we assume the existence of Archimedean vectors (A2). See Sec. 5 for an illustration.

Theorem 11. Suppose that Pk · · ·P1 has an Archimedean eigenvector y with nonzero eigenvalue λ. The
following are equivalent :

(1) there exist an Archimedean vector x and a scalar µ < 1 such that Pk · · ·P1x ≤ µx;
(2) for all i = 1, . . . , k, there exist Archimedean halfspaces Hi such that Vi ⊆ Hi and H1 ∩ · · · ∩Hk =

{0};
(3) V1 ∩ · · · ∩ Vk = {0};
(4) λ < 1.

Proof. (1) =⇒ (2). Denote x0 = x and xi = Pi · · ·P1x
0. Note that all the xi are also Archimedean by

Proposition 8. For all i = 1, . . . , k, we have that

Vi ⊆ {u : xi−1/u = xi/u} = Hi. (19)

Indeed, if xi−1 = xi, then Hi coincides with the whole V. If xi−1 �= xi, which means that xi /∈ Vi−1, then
the inclusion in (19) follows from Theorem 6. Assume that there exists a nonzero vector u that belongs
to every Hi. Then xk/u = x/u. But xk/u ≤ (µx)/u ≤ x/u, whence µ(x/u) = (µx)/u = x/u. Cancelling
x/u, we get µ = 1, which contradicts (1). Thus, the halfspaces Hi can intersect only trivially. Also note
that, as all xi are Archimedean, the halfspaces Hi are Archimedean. The implication is proved.

(2) =⇒ (3). Immediate.
(3) =⇒ (4). By the conditions of this theorem, Pk · · ·P1 has an eigenvector y with eigenvalue λ. As

any vector is greater than or equal to its image by the projector Pi, we have that λ ≤ 1. Assume that
λ = 1. Then the inequalities

Pk · · ·P1y ≤ Pk−1 · · ·P1y ≤ · · · ≤ y

turn into equalities, and hence y is a common vector of V1, . . . , Vk, which contradicts (3).
(4) =⇒ (1). Take x = y.

Theorem 11 has the condition that Pk · · ·P1 has an Archimedean eigenvector with nonzero eigenvalue.
This implies that the semimodules V1, . . . , Vk are Archimedean, but the converse implication is not true.
To see this, consider two subsemimodules of R4

max,×: V1 generated by a1 = (1, 1, 0, 0) and a2 = (0, 0, 1, 1)
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and V2 generated by b1 = (1, 2, 0, 0) and b2 = (0, 0, 1, 3). Any eigenvector of P1P2 belongs to V1, whence
it has the form (λ, λ, µ, µ). The action of P1P2 takes this vector to

(
1
2λ, 1

2λ, 1
3µ, 1

3µ
)
, which shows that

P1P2 does not have Archimedean eigenvectors. The condition of the theorem can be relaxed in the case
V = Rn

max,× as will be shown in the next section (see Theorems 18 and 20).
Theorem 11 invokes some interest in spectral properties of cyclic projectors. Below we will prove

some results on these properties. First, let us give the following definition.

Definition 12. Let x1, . . . , xk be nonzero elements of V. The value

dH(x1, . . . , xk) = (x1/x2)(x2/x3) · · · (xk/x1) (20)

will be called the Hilbert value of x1, . . . , xk.

It follows from Definition 7 that dH(x1, . . . , xk) �= 0 if and only if all vectors x1, . . . , xk are comparable.
One can show that dH(x1, . . . , xk) ≤ 1. This inequality is an equality if and only if x1, . . . , xk differ from
each other only by scalar multiples. The Hilbert value is invariant under multiplication of any of its
arguments by an invertible scalar, and under cyclic permutation of its arguments.

The Hilbert value of two vectors x1 and x2 was studied in [6]. For two comparable vectors in Rn
max,×,

i.e., for two vectors with common support M it is given by

dH(x1, x2) = min
i,j∈M

(x1
i (x

2
i )

−1x2
j (x

1
j )

−1), (21)

so that − log
(
dH(x1, x2)

)
coincides with Hilbert’s projective metric

δH(x1, x2) = log
(

max
i,j∈M

(x1
i (x

2
i )

−1x2
j (x

1
j )

−1)
)

= − log
(
dH(x1, x2)

)
. (22)

Definition 13. The Hilbert value of k subsemimodules V1, . . . , Vk of V is defined by

dH(V1, . . . , Vk) = sup
x1∈V1,...,xk∈Vk

dH(x1, . . . , xk). (23)

Theorem 14. Suppose that the operator Pk · · ·P1 has an eigenvector y with eigenvalue λ. Then

λ = max
x1∈V y

1 ,...,xk∈V y
k

dH(x1, . . . , xk) = dH(x̄1, . . . , x̄k), (24)

where x̄i = Pi · · ·P1y.

Proof. Note that x̄i, for any i, is an eigenvector of Pi+k · · ·Pi+1 and that all these vectors are comparable
with y. Further, let x1, . . . , xk be arbitrary elements of V y

1 , . . . , V y
k , respectively, and let α1, . . . , αk be

scalars such that
α1x

2 ≤ P2x
1,

...

αk−1x
k ≤ Pkx

k−1,

αkx
1 ≤ P1x

k.

(25)

Take the last inequality. Applying P2 to both sides and using the first inequality, we have that α1αkx
2 ≤

P2P1x
k. Further, we apply P3 to this inequality and use the inequality α2x

3 ≤ P3x
2. Proceeding in the

same manner, we finally obtain
α1 · · ·αkx

k ≤ Pk · · ·P1x
k. (26)

It follows from Proposition 9 that α1 · · ·αk ≤ λ. We take αi = xi/xi+1 for i = 1, . . . , k−1, and αk = xk/x1.
This leads to

dH(V y
1 , . . . , V k

y ) ≤ λ. (27)
Note that this inequality is true if V1, . . . , Vk are not b-semimodules. Applying Proposition 4 we have that
λy = dH(x̄1, . . . , x̄k)y. By Lemma 1, we can cancel y, and the observation that x̄i ∈ V y

i for all i yields the
desired equality.
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The situation where Pk · · ·P1 has an eigenvector with nonzero eigenvalue occurs, if at least one of the
semimodules V1, . . . , Vk is elementary, i.e., generated by a single vector xi, and if all other semimodules
have vectors comparable with xi. In this case, Pk · · ·Pi+1x

i is the only eigenvector of Pk · · ·P1 with
nonzero eigenvalue.

To obtain the following lemma, we use Proposition 8.

Lemma 15. Let x1 ∈ V1 and xi = Pix
i−1 for i = 2, . . . , k. Then, the Hilbert value dH(x1, . . . , xk) is not

equal to 0 if and only if V2, . . . , Vk have vectors comparable with x1.

Theorem 16. Suppose that the vectors xi, i = 1, . . . , are such that x1 ∈ V1 and xi = Pix
i−1 for i = 2, . . . .

Then dH(xl+1, . . . , xl+k) is nondecreasing with l so that the following inequalities hold for all l:

dH(x1, . . . , xk) ≤ dH(x2, . . . , xk+1) ≤ · · · ≤ 1. (28)

Proof. As Vi are b-semimodules, xi ∈ Vi for all i. If the Hilbert value is 0 for all l, then there is nothing to
prove. Thus, we assume that there exists a least l = lmin for which the Hilbert value dH(xl, . . . , xl+k−1) is
nonzero. As it is nonzero, by Lemma 15, all xl, . . . , xl+k−1 are comparable. By Proposition 8, xl+k is also
comparable with them, and the same is true about the rest of the sequence, whence dH(xl, . . . , xl+k−1) is
nonzero for all l ≥ lmin. Now we take any l ≥ lmin and consider the composition

Pl+kP
′
l+k−1 · · ·P ′

l+1, (29)

where P ′
i , for i = l + 1, . . . , l + k − 1, are elementary projectors onto the semimodules generated by xi.

The operator (29) has an eigenvector xl+k. By Theorem 14,

dH(xl, . . . , xl+k−1) ≤ max
y∈Vl, y�xl+k

dH(xl+1, . . . , xl+k−1, y) = dH(xl+1, . . . , xl+k) (30)

for all l = 1, . . . .

4. Cyclic Projectors and Separation Theorems in Rn
max,×

In Rn
max,×, it is natural to consider semimodules that are closed in the Euclidean topology. One can

easily show that such semimodules are b-semimodules. From [7, Theorem 3.11] it follows that projectors
onto closed subsemimodules of Rn

max,× are continuous.
In order to relax the assumption concerning Archimedean vectors in Theorem 11, we shall use some

results from nonlinear spectral theory, that we next recall. By Brouwer’s fixed point theorem, a continuous
homogeneous operator x �→ Fx that maps Rn

+ to itself has a nonzero eigenvector. This allows us to define
the nonlinear spectral radius of F :

ρ(F ) = max{λ ∈ R+ | ∃x ∈ (Rn
+) \ 0, Fx = λx}. (31)

Suppose, in addition, that F is isotone. Then it can be shown (or deduced from Proposition 9) that if
Fx = λx, Fy = µy, and x and y are comparable, then λ = µ. It follows that the number of eigenvalues
of F is bounded by the number of nonempty supports of vectors of Rn

+, i.e., by 2n − 1. This implies, in
particular, that the maximum is attained in (31). We shall need the following nonlinear generalization of
the Collatz–Wielandt formula for the spectral radius of a nonnegative matrix.

Theorem 17 (R. D. Nussbaum, [21, Theorem 3.1]). For any isotone, homogeneous, and continuous
map F from Rn

+ to itself, we have

ρ(F ) = inf
x∈(R+\{0})n

max
1≤i≤n

[F (x)]ix−1
i . (32)

As the projectors on subsemimodules of Rn
max,× are isotone, homogeneous, and continuous, so are

their compositions, i.e., cyclic projectors. Consequently, we can apply Theorem 17 to them. The following
results refine Theorem 11, which is a separation result obtained under assumptions (A0)–(A2).

Theorem 18. Suppose that V1, . . . , Vk are closed Archimedean subsemimodules of Rn
max,×. The following

are equivalent :
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(1) there exist a positive vector x and a number λ < 1 such that Pk · · ·P1x ≤ λx;
(2) there exist Archimedean halfspaces Hi that contain Vi and are such that H1 ∩ · · · ∩ Hk = {0};
(3) V1 ∩ · · · ∩ Vk = {0};
(4) ρ(Pk · · ·P1) < 1.

Proof. The implications (1) =⇒ (2), (2) =⇒ (3), and (3) =⇒ (4) are proved in Theorem 11. The
implication (4) =⇒ (1) follows from Eq. (32).

Proposition 19. Suppose that Vi, i = 1, . . . , k, are closed semimodules in Rn
max,× with zero intersection.

Then there exist closed Archimedean semimodules V ′
i , i = 1, . . . , k, with zero intersection and such that

each V ′
i contains Vi.

Proof. In every semimodule Vi, we find a vector yi such that ‖yi‖ = max(yi
1, . . . , y

i
n) = 1. For all scalars

δ > 0, define
zi(δ) = yi ⊕ δ

⊕
j /∈supp(yi)

ej (33)

and the semimodules
Vi(δ) = {x | x = v ⊕ λzi(δ), v ∈ Vi, λ ∈ R+}. (34)

These semimodules are closed, as all arithmetical operations are continuous (see also [5, Proposition 24]).
We show that for δ > 0 small enough these semimodules have zero intersection. Assume by contradiction
that for all δ > 0, there exists a nonzero vector u(δ) in the intersection V1(δ)∩· · ·∩Vk(δ). After normalizing
u(δ), we may assume that ‖u(δ)‖ = 1. For any i = 1, . . . , k and any δ, we have that

u(δ) = vi(δ) ⊕ λi(δ)yi ⊕ λi(δ)δ
⊕

j /∈supp(yi)

ej , (35)

where vi(δ) is a vector from Vi and λi(δ) is a scalar. As ‖u(δ)‖ = 1 and ‖yi‖ = 1, we have that λi(δ) ≤ 1.
Thus, there exists a sequence (δm)m≥1 converging to 0 such that for all 1 ≤ i ≤ k, both λi(δm) and vi(δm)
converge to some limits as m tends to infinity. Then

w := lim
m→∞u(δm) = lim

m→∞ vi(δm) ⊕ λi(δm)yi

for all i. As Vi are closed, w belongs to Vi at all i. Since ‖w‖ = 1, w is not equal to 0, which is
a contradiction. Thus, there exists δ such that V1(δ)∩· · ·∩Vk(δ) = {0}. The semimodules V1(δ), . . . , Vk(δ)
have all desired properties, since they are Archimedean and contain V1, . . . , Vk.

The following is an immediate corollary of Theorem 18 and Proposition 19 (see Sec. 5 for an illustration
of this theorem).

Theorem 20 (separation theorem). If Vi, i = 1, . . . , k, are closed semimodules with zero intersection,
then there exist Archimedean halfspaces Hi, i = 1, . . . , k, that contain the corresponding semimodules Vi

and have zero intersection.

The following separation theorem for two closed semimodules is a corollary of Theorem 20.

Theorem 21. If U and V are two closed semimodules with zero intersection, then there exists a closed
halfspace HU that contains U and has zero intersection with V , and there exists a closed halfspace HV

that contains V and has zero intersection with U .

As a consequence of Theorem 20, we further deduce a separation theorem for convex subsets of Rn
max,×.

We recall here some definitions from idempotent convex geometry (see, e.g., [13]). A subset C ⊂ Rn
max,×

is (idempotently) convex if λu ⊕ µv ∈ C for all u, v ∈ C and λ, µ ∈ Rmax,× such that λ ⊕ µ = 1. In what
follows, we call such subsets convex, as the traditional convexity is not used in this paper.

The recession cone of a convex set C, rec(C), is the set of vectors u such that v ⊕ λu ∈ C for all
λ ∈ Rmax,×, where v is an arbitrary vector of C. As shown in [13, Proposition 2.6], if C is closed, then
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the recession cone is independent of the choice of v. Observe that when C is compact, its recession cone
is zero.

A set Haff given by
Haff = {x | u/x ∧ α ≥ v/x ∧ γ} (36)

with u, v ∈ Rn
max,×, u ≤ v, α, γ ∈ Rmax,×, and α ≤ γ, will be called (idempotent) affine halfspace. It is

called Archimedean, if u, v, α, and γ are positive.
For a convex set C ⊂ Rn

max,×, define V (C) ⊂ Rn+1
max,× as the semimodule of vectors of the form

(x1λ, . . . , xnλ, λ) with x = (x1, . . . , xn) ∈ C and λ ∈ Rmax,×.

Theorem 22 (separation of convex sets). Let C1, . . . , Ck be closed convex subsets of Rn
max,× with empty

intersection, and assume that the intersection of the recession cones of C1, . . . , Ck is zero. Then there exist
affine Archimedean halfspaces Haff

1 , . . . , Haff
k that contain the corresponding convex sets Ci, i = 1, . . . , k,

and have empty intersection.

Proof. From [13, Proposition 2.16] we know that the closure of V (Ci), V (Ci), is equal to V (Ci) ∪
(rec(Ci) × {0}). Hence, the assumptions imply that the intersection of V (Ci), i = 1, . . . , k, is zero.
By Theorem 20, we can find Archimedean halfspaces Hi ⊃ V (Ci) with zero intersection. Every Hi can
be written as

Hi = {(x1, . . . , xn, µ) | ui/x ∧ αi µ−1 ≥ vi/x ∧ γi µ−1} ∪ {0} (37)

with ui ≤ vi and αi ≤ γi, understanding that x := (x1, . . . , xn) and that the terms with µ−1 disappear
if µ = 0. Observe that for all x ∈ Ci, (x, 1) ∈ V (Ci) ⊂ Hi. We deduce that the affine Archimedean
halfspace

Haff
i = {x | ui/x ∧ αi ≥ vi/x ∧ γi}

contains Ci. Since the intersection of the halfspaces Hi is zero, the intersection of the affine halfspaces Haff
i

must be empty.

In convex analysis, there is an analogous separation theorem for several compact convex sets (see
[12, pp. 39–40].

We now deduce an idempotent analogue of the classical Helly’s theorem. As observed in [14], there
is another proof of this theorem, which is based on the direct idempotent analogue of Radon’s argument
(see [12]).

Theorem 23 (Helly’s theorem). Suppose that Vi, i = 1, . . . , m, is a collection of m ≥ n semimodules in
Rn

max,×. If any n semimodules intersect nontrivially, then the whole collection has a nontrivial intersec-
tion.

Proof. It suffices to consider the case where the semimodules Vi are all closed. Indeed, the assumption
implies that for all j := (j1, . . . , jn) ∈ {1, . . . , m}n, we can choose a nonzero element zj in the intersection
Vj1∩· · ·∩Vjn . Let V ′

i denote the semimodule generated by the elements zj that belong to Vi. The collection
of semimodules V ′

i , i = 1, . . . , m, still has the property that any n semimodules intersect nontrivially.
Moreover, V ′

i is closed, because it is finitely generated (see, e.g., [13, Lemma 2.20] or [5, Corollary 27]).
Hence, if the conclusion of the theorem holds for closed semimodules, then we deduce that the whole
collection V ′

i , i = 1, . . . , m, has a nontrivial intersection, and, since Vi ⊃ V ′
i , the conclusion of the theorem

also holds without any closure assumption.
In the discussions that follow, the semimodules Vi are all closed. We argue by contradiction, assuming

that the whole collection has zero intersection. By Theorem 19, we can also assume that the semimod-
ules Vi are Archimedean. For some number k < m, any k semimodules intersect nontrivially, but there are
k + 1 semimodules, say V1, . . . , Vk+1, that have zero intersection. By Theorem 18, there exist a positive
vector y = y0 and a scalar λ < 1 such that

Pk+1 · · ·P1y ≤ λy.
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For all i, we denote yi = Pi · · ·P1y
0, where projectors are indexed modulo (k + 1). By the homogeneity

and isotonicity of projectors, we have that

Pl+k+1 · · ·Pl+1y
l ≤ λyl (38)

for all l = 1, . . . . Consider the vectors
zl = Pl+k · · ·Pl+1y

l

for l = 1, . . . , k + 1. Since any k semimodules intersect nontrivially, the vector zl must have at least one
coordinate equal to that of yl, for otherwise yl would satisfy the first condition of Theorem 18, giving
a contradiction. As k ≥ n, there are at least two numbers l and at least one number i such that zl has
the same ith coordinate as yl. If we take the smallest of these two l numbers, then

(Pl+k+1 · · ·Pl+1y
l)i = yl

i.

But this contradicts (38). Hence any k +1 semimodules intersect nontrivially, which is again a contradic-
tion. The theorem is proved.

There is also an affine version of this theorem.

Theorem 24. Suppose that Ci, i = 1, . . . , m, is a collection of m ≥ n + 1 convex subsets of Rn
max,×. If

any n + 1 of these convex sets have a nonempty intersection, then the whole collection has a nonempty
intersection.

Proof. Consider the semimodules V (C1), . . . , V (Cm) defined above and apply Theorem 23 to them.

Now we come to the study of spectral properties of cyclic projectors. As a corollary to the Col-
latz–Wielandt formula for spectral radius (32), we have that the spectral radius of cyclic projectors is
isotone: if F and G are two cyclic projectors and F (x) ≤ G(x) for any x ∈ Rn

+, then ρ(F ) ≤ ρ(G). This
implies that if V ′

i , i = 1, . . . , k, and Vi, i = 1, . . . , k, are closed semimodules in Rn
max,× and such that

V ′
i ⊆ Vi, i = 1, . . . , k, then

ρ(P ′
k · · ·P ′

1) ≤ ρ(Pk · · ·P1), (39)
since the projectors are isotone with respect to inclusion (7). In the following theorem, this observation
helps us to characterize the spectrum of cyclic projectors in terms of Hilbert values.

Theorem 25. Let Vi, i = 1, . . . , k, be closed semimodules in Rn
+. Then the Hilbert value dH(V1, . . . , Vk)

is the spectral radius of Pk · · ·P1. The spectrum of Pk · · ·P1 is the set of Hilbert values dH(V M
1 , . . . , V M

k ),
where M ranges over all nonempty subsets of {1, . . . , n}.
Proof. First, we prove that the Hilbert value dH(V1, . . . , Vk) is the spectral radius of the cyclic projector,
and hence an eigenvalue. We take k elementary subsemimodules spanned by xi ∈ Vi, i = 1, . . . , k, and
consider elementary projectors P ′

i onto them. Observe that

ρ(P ′
k · · ·P ′

1) = dH(x1, . . . , xk).

Denote by x̄0 an eigenvector of Pk · · ·P1 associated with the spectral radius, and let x̄i = Pi · · ·P1x̄
0.

Then
ρ(Pk · · ·P1) = dH(x̄1, . . . , x̄k).

By (39), it follows that ρ(Pk · · ·P1) ≥ ρ(P ′
k · · ·P ′

1), i.e.,

dH(x̄1, . . . , x̄k) ≥ dH(x1, . . . , xk)

for any x1 ∈ V1, . . . , x
k ∈ V k. Thus, the Hilbert value of V1, . . . , Vk is the spectral radius of Pk · · ·P1.

Now consider dH(V M
1 , . . . , V M

k ) for arbitrary M ⊆ {1, . . . , n}. Note that the semimodules V M
1 , . . . , V M

k

are closed, and denote by PM
1 , . . . , PM

k the projectors onto these. It is easy to see that PM
i (y) = Pi(y) for

all i and all y with supp(y) ⊆ M . It follows that dH(V M
1 , . . . , V M

k ) is the spectral radius of PM
k · · ·PM

1

and also an eigenvalue of Pk · · ·P1.
We have proved that any Hilbert value dH(V M

1 , . . . , V M
k ) is an eigenvalue of Pk · · ·P1. The converse

statement follows from Theorem 14.
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5. Illustrations

In this section, we give graphical illustrations of Theorems 11 and 20.
To illustrate Theorem 11, consider the matrices

A =


0 0 0 −∞

1 2 −∞ 1
0 −1 2 3


 , B =


 3 2 2

0 0 0
−∞ 0 −1


 .

Let ai and bi denote the ith column of A and B, respectively. For all vectors x = (x1, . . . , xn) and
β > 0, we denote by exp(βx) the vector of the same size with entries exp(βxj). We define V1 (V2) as the
subsemimodule of R3

max,× generated by the vectors exp(βai) for 1 ≤ i ≤ 4 (respectively, exp(βbi) for 1 ≤
i ≤ 3). The discussions that follow are independent of the choice of the scaling parameter β > 0, which is
adjusted to make Fig. 1 readable (we took β = 2/3). The two semimodules V1 and V2 and their generators
are represented as follows at the left of the figure. Here a nonzero vector w = (w1, w2, w3) ∈ R3

max,× is
represented by the point of the two dimensional simplex that is the barycenter with weights wj of the three
vertices of this simplex. The generators ai and bi correspond to the bold dots. For instance, a1 corresponds
to the barycenter of the vertices of the simplex with weights (1, exp(β), 1). The semimodules V1 and V2

correspond to the two medium grey regions, together with the bold broken segments joining the generators
to each of these regions.

x1 x2

x3

a3 a4

b3
b2 = x0V2

V1

x1

b1
a2

a1

x1 x2

x3

H2

H1

Fig. 1. Two semimodules (left) with separating halfspaces (right).

Since the entries of x0 := b2 = exp(β(2, 0, 0)) ∈ V2 are nonzero, the vector x0 is Archimedean, and
one can check, using the explicit formula of the projector (see [6, Theorem 5]), that x0 is an eigenvector
of P2P1. Indeed,

x1 := P1x
0 = exp

(
β(−1, 0, 0)

)
and

x2 := P2x
1 = exp

(
β(−1,−3,−3)

)
= exp(−3β)x0.

The halfspaces constructed in the proof of Theorem 11 are given by

H1 = {u | x0/u = x1/u}
= {u | min(exp(2β)/u1, 1/u2, 1/u3) = min(exp(−β)/u1, 1/u2, 1/u3)}
= {u | max(u2, u3) ≥ exp(β)u1}

and

H2 = {u | x1/u = x2/u}
= {u | min(exp(−β)/u1, 1/u2, 1/u3) = min(exp(−β)/u1, exp(−3β)/u2, exp(−3β)/u3)}
= {u | u1 ≥ exp(2β) max(u2, u3)}.
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x1 x2

x3

V3

V1

V2
z3

z2

z1

x1 x2

x3

H3

H1

H2

Fig. 2. Separation of three semimodules one of which is not Archimedean.

These two halfspaces are represented by the zones in light grey (right). The proof of Theorem 11 shows
that their intersection is zero (meaning that it is reduced to the zero vector).

To illustrate Theorem 20, consider the matrices

A1 =


 0 2 −∞
−∞ −∞ 3
0 0 0


 , A2 =


 1 −∞ 0

0 0 0
−∞ 2 0.5


 , A3 =


−∞ −∞

5 0
0 5


 .

As in the previous example, we define Vi as the semimodule generated by the vectors exp(βy), where y
is a column of the matrix Ai. The three semimodules are represented at the left of Fig. 2, with the same
conventions as above. The semimodule V3, which does not contain Archimedean vectors, is represented
by the bold segment included in the edge [x2, x3] of the simplex. The grey zone containing this segment
represents the semimodule generated by the vectors exp(βy), where y is a column of the matrix

A′
3 =


−∞ −∞ 1

5 0 0
0 5 5


 .

This semimodule, further denoted by V ′
3 , is Archimedean and such that V3 ⊂ V ′

3 and V1 ∩ V2 ∩ V ′
3 = {0}.

Its construction follows the proof of Proposition 19: we join the generators of V3 with a new vector of
the form y ⊕ δe1, where y = exp

(
β(−∞, 0, 5)

)
is a vector from V3, and δ = exp(β) is sufficiently small to

make V1 ∩ V2 ∩ V ′
3 = {0}.

We denote by Pi the projector on Vi, for i = 1, 2, and by P ′
3 the projector on V ′

3 . The cyclic projector
P ′

3P2P1 has an Archimedean eigenvector with eigenvalue λ < 1. Indeed, let

z0 := exp
(
β(−3.5, 0, 0.5)T

)
,

z1 := P1z
0 = exp

(
β(−3.5, 0,−3)T

)
,

z2 := P2z
1 = exp

(
β(−3.5,−3.5,−3)T

)
.

It can be checked that
z3 := P ′

3z
2 = P ′

3P2P1z
0 = λz0

with λ = exp(−3.5β). The points z0, z1, and z2 are the vertices of the triangle with dotted edges on
the left-hand side of the figure. These dotted edges indicate the action of the projectors P1, P2, and P ′

3.
Using Theorem 11, we get the following halfspaces:

H1 = {u | exp(3β)u3 ≤ max(exp(3.5β)u1, u2)},
H2 = {u | exp(3.5β)u2 ≤ max(exp(3.5β)u1, exp(3β)u3)},
H3 = {u | exp(7β)u1 ≤ max(exp(3.5β)u2, exp(3β)u3)}.
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We have Hi ⊃ Vi and H1∩H2∩H3 = {0}. The boundary of the halfspaces H1, H2, and H3 is represented
by bold dashed broken lines on the right-hand side of the figure. Each of these lines divides the main
simplex into two parts, and the corresponding halfspace is the part indicated by the hatched region.
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