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Let (G, -, 5) be a radicable, linearly ordered, commutative group. Given a square matrix 
A = (a$ of order n with entries from G and a cyclic permutation o = (il. . . . , i,) of a subset of 

N=I1,2 . . . ,n} we define p(a), the mean weight of o, as (ai,iz * ai2i3 - *-a - ai,_ ,ir* ai,i,)“’ and 1(A), 
the maximum cycle mean (MCM) of A, as max,,u(o), where o ranges over all cyclic per- 
mutations of subsets of N. We study the dependence of the MCM of a matrix on the permutations 
of its rows and columns and particularly we prove an O(n*) algorithm for checking whether 
1(A) = rl(A’) holds for any matrix A’ which can be obtained from A by permuting its rows and 
columns. 

I. introductiaa 

Let (G, - , 5) be a linearly ordered, commutative group. For positive integer n we 
denote by G, the set of all square matrices of order n with elements from G. The 
letter N stands for the set (1,2, . . . , n}. Given any A = (ati) E G, and a cyclic per- 
mutation 0 = (it, . . . , , i ) of a subset of N (shortly, cycle in N), define w(b), the 
weight of 6, as 

ai, i2 -a.. ‘“‘*iZi,_,i,*ai,i,. 
12 b 

The number 1, the length of 0, will be denoted by f(a). 
Everywhere we suppose that G is radicable, i.e. for any a E G and positive integer 

t there exists bE G such that b’=a. Such an element b is unique and will be 
denoted by i/;;. Given any cycle (3, define &r), the mean weight of 0, as “*m 
and define A(A), the maximum cycle mean (MCM) of A, as max,p(a), where o 
ranges over all cycles in N. The task of finding 1(A) can be formulated using the 
graph theoretic conepts as follows: given an arc-weighted digraph G find a cycle 
in G for which the sum of its arc weights divided by their number is the maximum 
possible. This is exactly the MCM problem in the additive group of reals for the 
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associated matrix A = (au) where ati is the weight of the arc(i,j) and oii = -OO if the 
arc&j) (including loops) does not exist. 

Probably the most efficient method for computing the maximum cycle mean was 
presented in [3] (for the additive group of reals). An exhaustive investigation of this 
concept (among many other topics) was carried out in [l]. It was shown in this 
monograph, that 1(A) is the unique eigenvalue of the matrix A in the structure 
derived from (G, - ) by setting + for the maximum and extending the operations + 
and - to matrices in the same way as in conventional linear algebra. Besides, an ap- 
plication to scheduling in industrial processes was described. Another application 
devoted to ship routing problems was introduced in 121. 

The aim of this paper is to study the dependence of the MCM of a matrix with 
respect to the permutation of its rows and columns. Note that the exchange of two 
columns corresponds, in the interpretation of [l], to the exchange of the role of two 
machines in an industrial process. To investigate this dependence we denote by P, 
the set of all permutations of A? Given any 

I~,QEP, and A=(o~)EG,, 

A(n, Q) stands for the matrix B= (bu) E G,, such that bo=a,(i),,(j) for all i, jEZV. 
L(A) denotes the set {h(A(n, e)): n,e E P,}. As obvious, 

and A(i,, . . . , ik;jl, . . . , jJ denotes the matrix arising from A by deleting the rows 
with indices i r, . . . , ik and columns with indices jr, . . . , j,. 

Clearly, if rt E P,, and (i i, . . . , i,) is a cycle in N then @(ii), . . . , I) is a cycle in N 
too, yielding that the weight of a cycle with respect to A(rr, K) is equal to the weight 
of a (possibly different) cycle with respect to A. It follows then from the 
monotonicity of r (cf. [l]) that 

where due to the symmetry, in fact, equality holds. It is clear that A(n,e)=B(n, R) 

where a, ,g E P, and B = A(id, rr-’ 0 e). This indicates that every element of L(A) is 
equal to an MCM of a matrix arising from A by permuting its columns (say) only. 
Hence n! is an upper bound for the cardinality of L(A). This can be improved to 
n! - (n - l)! + 1 since there exist at least (n - l)! permutations for which the maximal 
element of A will be diagonal. 

We intend to present some more information concerning L(A). The first deals 
with bounds for elements of L(A). Further we characterize those matrices A for 
which L(A) is a one element set and moreover, an 0(n2) algorithm for checking 
this property will be proved. Matrices possessing this property, i.e. L(A(n,e)) = It(A) 

for all ;n, e E P, will be called stationary. 
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Any cycle in a subset of N is also a cycle in N. This 
monotonicity of TIeads to 
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simple fact and the 

Proposition 1.1. MCM of a principal submatrix of A is less than or equal 1(A). 

2. Bounds for L(A) 

For A = (ati) E G, the symbol d(A) will denote maxkjeN aii. The case of the least 
upper bound is easy: since 

~x~=max(x,, . . ..xk) 

for x r, . . . ,xk E G and positive integer k, we have that every cycle mean and hence 
also A(A) is less than or equal to A (A); moreover using any permutation of columns 
(say) after which the maximal element will belong to the diagonal, we achieve the 
equality. Thus we have proved the following proposition: 

Proposition 2.1. max L(A) =d(A). 

On the other hand the case of the greatest lower bound is more complicated and 
can be shown to be NP-complete (see [4]). Nevertheless we derive a lower bound 
which is the best in some cases and will be useful later. For this purpose denote for 
A=(aii)eGn: 

C’(A)= (ieN: ag?&(Aj), 

C(A), respectively R(A), denotes the set of column and row indices of A, respec- 
tively. 

Proposition 2.2. min L(A) 1 max(Gc(A), &(A)). 

Proof. Due to the symmetry it suffices to prove only &(A) 5 min L(A). Without 
loss of generality we suppose that 1(A) = min L(A), since &(A) =&(A@,@)) for 
all 7r,e E P,. Let 

U C’JA)={i,,...,ik) 
ieCW 

and put 

Construct A* from Al and further A3, Ad, . . . in the same way. Put A. = A. Clearly, 
6,-(A,)r6c(Ar_1) for t=l,2,... . Since C’(A,)#0 for all t=l,2,...andjEC(A,), 
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an index p with property 

(1) 

(and hence Ap=Ap+r =.-.) exists. It is a well known combinatorial property that 
in a finite digraph a cycle exists whenever the outdegree of each vertex is nonzero. 
In other words, if each row of a matrix contains at least one element possessing a 
(fixed) property then a cycle containing only such elements exists. Thus, a cycle 
0 = (i, , . . . , is) satisfying 

iqECiqL,(Ap) for q=l,..., S-l 
and 

i, E Ci, (A,) 

exists. Hence aiqiq+, r &(A,) for all q = 1, . . . ,s- 1 and aiSi, z&(A,). Therefore 

L(A) z/&r) L 6&l,) z &(A). 0 

It is not difficult to find matrices for which the lower bound in Proposition 2.2 
is the greatest. Fcr instance, consider 

in the additive group of reals. Evidently, the greatest diagonal element of A(rr,e) 
is 1 or 2 for any rr, e E P, and hence min L(A) = S&l) = S&l) = 1. On the other 
hand, the following matrix shows that this is not the case in general: 

Here min L(A) = 3, &(A) = S,(A) = 0. 

3. Stationary matrices 

Given A = (ad) E G,,, d E G we say that the kth row (the Ith column) of A is d- 
triangular if 

akj<d for all j= 1,2, . . ..k 

(a,y<d for all i=l,f+ l,..., n). 

Furthermore, A will be called d-triangular if all its rows (and hence also columns) 
are d-triangular: a row or column of A is said to be d-weak if all its elements are 
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less than d. The prefix d will be omitted in the case when d=A(A). Hence the first 
column and the last row of any triangular matrix are weak. 

Two matrices are said to be equivalent if one can be obtained from the other by 
permuting its rows and columns only. The set of matrices in G, equivalent to a 
triangular matrix will be denoted by T,. 

It follows from Proposition 2.1 that for the stationary matrix A the equality 
rt(A(n,,g)) = A (A) holds for all rr, Q E P’. Furthermore, the condition 

m=@&)dR(&)=&l) 

is sufficient for A to be stationary by Proposition 2.2. (Note that it is not necessary 
since e.g. the matrix 

0 1 1 

A= i 

0 1 1 
0 0 0 1 

is stationary but &(A)=&(A)=0 and A(A) = 1.) Clearly, for any triangular 
matrix A we have L(A)<A(A). Hence we see immediately that all matrices in T, 
are not stationary. Our main result shows that the converse implication is also 
true. 

Theorem 3.1. A E G,, is stationary if and only if A $ T,. 

Proof. It remains to prove the “if” part. Without loss of generality suppose that 
L(A) = min L(A) c A(A) and n > 2 (note that the case n = 1 is trivial since Tt =0 and 
the case n = 2 can be easily verified). We find the triangular matrix equivalent to A 
by the construction of a finite sequence of matrices &, AI,B1,A2, . . . ,A, possessing 
the following properties for all j= 0,1,2, . . . : 

(a) Bi is equivalent to A and the first j columns and the last j rows of Bj are 
triangular; 

(b) Aj+l is a principal submatrix of A and can be obtained from LJj by deleting 
the j first and j’ (j’lj) last columns and the j’ first and j last rows. 

For this purpose we put &=A, AI=A and suppose that BO,A,,B1,...,A, are 
already defined. 

(i) If A(A,)<A(A) then (sr2 and) B,_ I is triangular; the theorem follows. 
Note that this case covers all matrices A, of order 1 since then A, =(a) for some 
aEG and A(AS)=a=A(AS)rl(A)<A(A). 

(ii) Suppose A(A,) = A(A) and the order of A, to be 2. Then by Proposition 1.1 
we have d(A,) I L(A) < A(A) = A(A,) and A, contains exactly one element equal to 
A(A) since it has (by Proposition 2.2) a weak (and hence also a A(A)-weak) column 
and row. Thus, A, is equivalent to a triangular matrix and hence B5_ I E Tn. 

(iii) Suppose A(AJ = A(A) and the order of A, to be at least 3. Then by the same 
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arguments as in (ii) A, contains a d(A)-weak column (say kth) and row (say Ith). 
Suppose they are contained in the column k’ and row I’ of B,_ , and that A, can be 
obtained from I$_, by deleting the first s’ - 1 (s’(s) and last s- 1 rows and the 
first s- 1 and last s’ - 1 columns. Clearly, 

and 
s’cEI’5n-s+ 1 

ssk’sn-s’+ 1. 

In the rest of this proof we denote for i,jr~ N, i<j by o(i,j), respectively 7&j) 

the permutations 

and 
(l)(2)...@- 1)(&i+ 1, . . . . j)(j+ l)...(n) 

(1)(2)...(i- l)(j,j- 1, . . . . i)(j+ l)...(n), 

respectively. If k= 1 then we put B,= B,_ ,(z,Q) where II = @(I’, n -s+ 1) and 
Q = 7(s, k’) and A,, I = A,& k). For treating the case k f 1 we denote by k” the index 
of that row of B,_ 1 which contains the kth row of A, and let I” be the index of the 
column of B,_, containing the Ith column of A,. If k<Z then obviously 

and 
s’:k”cl’rn-s+ 1 

s~k’<I”sn-s’+l. 

We put 

and 
x=a(l’,n-s+ l)or(s’,k”) 

,g = 7(s, k’) 0 c~(l”, n -s’+ 1). 

If k>l then 

ssl”<k’sn-s’+ 1 and s’ll’<k”zSn-s+ 1. 

We put 

and 
x=c(l’,n-s+ l)or(s’,k”-1) 

e = T(S, k’) 0 a(2 “, n - s’ + 1). 

In both cases we take B,= B,_ ,(z, e) and A,, , = A,(k, I; k, I). Hence A,, 1 as a prin- 
cipal submatrix of A, is aIso a principal submatrix of A. The order of A, decreases 
in (iii) always by 1 or 2 and thus the procedure will stop after a finite number of 
steps by (i) or (ii). Cl 

Theorem 3.1 turns in fact the problem of stationarity to the question of whether 
the given matrix is equivalent to a triangular one. We show now that this question 
can be answered by a simple O(d) algorithm. It is based on the fact that the se- 
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cond column of the triangular matrix A =&) is either weak or contains at most 
one element equal to d(A). Its element (1r2 will be called the leader. 

If we look for the permutations of rows and columns of a matrix transforming 
it to the triangular form then the following elements of A can become the leader 
only: 

(a) any element equal to d(A) belonging to the column all other elements of which 
are less than d(A); 

(b) any element of a weak column, if in A at least two weak columns exist. 

We shall refer to any element of A satisfying (a) or (b) as to the candidate for 
‘he leader (or shortly, candidate). If A =&)E G, is equivalent to a triangular 
matrix in which akl is the leader then obviously B =A(k;l) is equivalent to a d(A)- 
triangular matrix. Conversely, if ok/ is a candidate and B is equivalent to a d(A)- 
triangular matrix then A has this property too. Hence, if in A a unique candidate 
would exist then our question could be reduced to the d(&triangularity of 13. In 
the first insight it is probably not clear whether in the case of more candidates it 
is possible to take anyone to carry out this reduction. The last assertion shows that 
this is true. 

Proposition 3.2. If A = (au) E 7” and ak[ is an arbitrary candidate, then the columns 
and rows can be permuted in such a way that we get as the result a triangular matrix 
in which akl will become the leader. 

Proof. Without loss of generality suppose A to be triangular. Take a candidate, say 
a&. We construct a triangular matrix equivalent to A in which akl will become the 
leader. 

At first suppose that aM is of the type (a) (thus kc I). Exchange the fth and 
(k+ 1)st column. The obtained matrix, say B= (bU), is evidently triangular too. 
Continue by exchanging the columns k and k+ 1 and the rows k- 1 and k. The 
triangularity is again not touched since bk_,k,,<d(A). Our candidate is now in 
the row k - 1 and column k. Using the analogue of the last exchange we can translate 
the candidate along the main diagonal until it becomes the leader. 

Suppose now the Ith column to be weak (Z> I). One can easily verify that the 
matrix A@,@) where 

n=(k,k-l,..., l)(k+l)...(n), 

@=(1)(41-l ,..., 2)(1+1)...(n) 

is triangular and az(lxp(2)=akl. q 

The last proposition enables to immediately compile an 0(n3) algorithm for 
checking the equivalence to a triangular matrix consisting of the repeated choice of 
any candidate @I (in 0(n2) steps) and reduction (at most n - 2 times) of the pro- 
blem to the submatrix obtained by deleting the row k and column 1. A little more 
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careful approach will, however, lead to an essential decrease of the computational 
complexity. For this purpose, given any A = (au) E G,, we denote for all HEN by mj 
the number of elements in the jth column equal to d(A) and define for all i, j E N: 

if aii=d(A), 
otherwise. 

In what follows we suppose without loss of generality that the first column and last 
row of A are weak. Hence to find a candidate means to look for an index j E N, j# 1 
satisfying mj< 1. If it does not exist, we stop with the negative answer. Otherwise 
we take any j with this property (say the first). If mj=O then we take for the can- 
didate any element of the jth column (say the first); if mi= 1, then the candidate 
will be its (unique) maximal element. The algorithm then proceeds in the same way 
for the matrix arising by deleting the candidate’s row and column, until the matrix 
of order 2 is obtained. The new values of mj, say rnj, can be recomputed easily by 
the formula 

mi=mj-pkj for all jeN, 

where k is the index of the deleted row. Thus in each iteration the number of opera- 
tions for finding the candidate is O(n) (for finding j with mjS 1) + O(n) (for finding 
the candidate in the jth column)=O(n), instead of O(n2) in the original version. 

At last we offer a more formal description of the algorithm written in 
PIDGIN-ALGOL: 

Algorithm TRIANGULARITY 
Input. A = (au) E G,, n 2 2, 

Output. z,e EP, such that A&e) is triangular and ‘yes’ in variable tr if A E T,; 
‘no’ in tr otherwise. 

begin 
~(A):=EIII~Q, tr:=‘no’, r:=2; 

. 
n(n) := n, e(l) := 1; 
fr(n) := ‘no’, fc(1) := ‘no’; 
for all i= 1,5 . . ..n-1 do fr(i):=‘yes’; 
for all j=2,3,...,n do fc(j):=‘yes’,rnj:=ti 
for all i,jeN do 

if c~e=d(A) then mj:=mj+ 1, pii:= 1 else pd:=O; 
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stage: 
if r=n then goto last; 
find min{mj: fc(j) = ‘yes’}, say ml; 
if mp 1 then stop; 
if ml = 1 then k := (unique) i E N satisfying fr(i) = ‘yes’ and ai, = A (A); 
if ml=0 then k:=min{iEN: fr(i)= ‘yes’}; 
a@- 1):=k, ,o(r):=h 

fr(k) := ‘no’, fc(f) := ‘no’; 
r:=r+ 1, got0 stage; 

last: 
a(n - 1) := (unique) i with fr(i) = ‘yes’; 
e(n) := (unique) j with fr(j) = ‘yes’; 
tr := ‘yes’ 

end 
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