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( ' o h m m s  of a mat r ix  A in the m i n i m a x  a lgebra  are cal led s t rongly l inearly independen!  if for 

some h the system of  equat ions  A ( x x =  b is uniquely  solvable  (of. [3]). This paper  presents  a con- 

d i l ion  which is necessary and sufficient for the s t rong l inear  independence  of co lumns  of a given 

mat r ix  in the m i n i m a x  a lgebra  based on a dense l inear ly  ordered  c o m m u t a t i v e  group.  In Ihe case 

of  square  matr ices  an O(n ~) m e t h o d  for checking  this proper ty  as well as {'or f inding al least one 

h such that .4 r × ) x - b  is uniquely  so lvable  is derived.  A connec t ion  with the classical  ass ignment  

p rob lem is fo rmula led .  

1. Introduction 

In the whole paper we suppose that /, - ( G ,  @, _<) is a commutat ive ,  linearly 

ordered group.  Its neutral element will be denoted by 1. Let G ° =  G tO {0} where 0 
is an adjoined element and extend @ and _< on G ° by the rules: 

0 @ a = a @ 0 - 0  for a l l a e G  °, (1) 

0 _< a for all a e G °. (2) 

Obviously,  _< is a linear ordering on G °. For a, b e  G ° the symbol a@b wilt denote 
max{a, b}. Many properties o f  @, @, _< are derived in [3] and it will be useful to 
mention here two of  them (a<b means a<_b and a*b) :  

a<_b = c@a<_c(~b for all a,b, c eG° ;  (3) 

a < h  = c ~ ) a < c ~ l b  for all a, b e G ° , c e G .  (4) 

For  a , b • G "  we denote by (a, b) the interval 

{x•C"]a<x<tq. 
The order _< on G ° is called dense if (a, b ) ~ 0  for all a, b •  G °, a < b .  The following 
assertion can easily be verified using definitions. 

Proposi t ion  1; Let <_ be dense on G ° and a, b, c, d be elements o f  G ° such that 
a < b , c < d .  Then 

(a ,b )O(c ,d ) :#O i f  and only (f a < d  and c<b.  
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We recall another  simple fact which will be used later: 

An arbitrary finite system of  intervals in a linearly ordered set has 
a nonempty  intersection whenever each pair o f  intervals o f  this system 
has a nonempty  intersection. 

(5) 

The set o f  all (m, n) matrices over G and G ° will be denoted by G(m,n )  and 

G°(rn, n), respectively. If  n = 1, then these sets will be written shortly G,,, and GII,, 
respectively and their elements will be called vectors. Properties o f  matrices have 
also been investigated in [3] and we recall the associative and distribute laws for the 
operat ions @, @ extended in the natural way on these matrices. 

In what follows we always suppose that m, n_> 1 are given integers and we denote 
by S and N t h e  sets {1,2 . . . . .  m} and {1,2 . . . . .  n},  respectively; P(n) will mean the 
set o f  all permutat ions  o f  the set N. 

If a e P(n), d I . . . . .  d n e G ° then PG(dl, ..., dn) denotes the matrix (Pc/) e G°(n, n) 
the elements o f  which satisfy the condit ions 

p i i - d  i, i f j = a ( i ) ,  

p~i-O, if j ~ a ( i )  

for all i, j e N .  If  a is, moreover,  an identity then instead o f  Po(dl . . . . .  d,,) we write 
as usual diag(d~, ... ,d,,). The matrix diag(l ,  1, ..., l) is called unity matrix. 

For A = ( a i j ) e G ° ( m , n )  and beG,, ,  we denote for a l l j e N  by Si(A,b)  the set 

t i e S [ b i  l @ a i j =  ,(~)~ s (b(  ' @a~J)/" 

Systems of  linear equations of  the form 

A @x = b (6) 

have been treated in [3] and in the case of  some special groups in [6]. 
Let us ment ion that the relation between dual variables o f  the classical t ransporta-  

t ion problem can be expressed as the system of  equat ions o f  the form (6) where ', 
is the additive group o f  reals with the inverse ordering. A more detailed explanation 
o f  this fact can be found  in [3, pp. 7 -8 ] .  

Recall two results concerning the solution o f  (6) on which the main results o f  this 
paper  are based. 

Proposition 2. Let A e G(m, n), b e Gm. Then: 
(a) The system (6) is solvable i f  and only i f  

USj(A, b)=S, (7) 

i.e. the system {S/(A, b ) I j e  N} is a covering o f  S. 
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(b) The svstem (6) is uniquely solvable i f  and only i f  (7) and the implication 

N ' c N ,  N ' ~ N  = U S i ( A , b ) : / : S  

hold, i.e. the O,stem {Si(A, b ) ] j e  N} is a minimal covering o f  S. 

Recall  that  if / - { S / ( A , b ) [ j e N }  is a min imal  covering o f  N, then 

S~(A, b) . . . . .  S,,(A, b) are pairwise  dis joint  one-e lement  sets. To see this realize that  

for  every k e n  there  must exist i k e S k ( A , b ) - U i ~  ,,~ISj(A,b) for,  o therwise  

/ - {Sk(A,  b)} would  be a covering of  N, too.  As a consequence ,  for m - n  (6) is 

uniquely  solvable  if  and only if Sj (A ,b)  . . . . .  Sn(A,b) are pairwise d is jo int  one-  

element  sets. 

It has been shown in [3] that  cer ta in  job - schedu l ing  p rob lems  can be fo rmula t ed  

as p rob lems  of  solving the system (6) for m = n in the addi t ive  group  of  reals.  Here  

b plays the role o f  prescr ibed  t e rmina t ion  t imes o f  the work  on m machines  af ter  

a cer ta in  finite number  o f  cycles and x i are  s tar t ing t imes we want  to know.  In 

many  cases the componen t s  of  x can move in an interval  wi thout  any change of  the 

fact that  x is a solut ion o f  (6) but  a na tura l  quest ion arises: can it happen  for some 

b that  (6) will have exact ly  one solution'?. It turns  out  that  there exists a class o f  

matr ices  for which the answer is posi t ive.  

Let A e G(m, n). The set 

Jr(A) = {b e G,,, I there  exists a unique x e  G,, such thai A ~<)x = b} 

is called i r reducibi l i ty  set o f  the matr ix  A .  We say that  the co lumns  of  A are s t rongly  

l inearly independent  (cf. [3]) or,  shor t ly  SLI ,  if J r ( A ) . 0 .  [n the case m = n  we say 

that  A is s t rongly regular .  

In the light of  what  has been said above  matr ix  A is s t rongly  regular  if and only 

if there exists a vector  b such that  SI(A, b) . . . . .  S,,(A, b) are pairwise dis joint  one- 
elernent sets. 

Example 1. Let ', be the mul t ip l ica t ive  group  o f  posi t ive reals with the obvious  

o rder ing .  The  co lumns  o f  A are SLI where 

A 4 

1 
3 

because  for  b = (2 ,1 ,1 ,  4, 2) T we get S l ( A , b ) = { 1 , 3 , 4 } ,  S2(A,b) {2,3}, 

S~(A,b) {1,3 ,5}  yielding that  these sets form a min imal  cover ing of  the set 

S {1,2,  3, 4, 5}. Hence,  the system A @ x = b  has a unique solut ion and b e i r ( A ) .  

Example 2. For  tile same /, consider  
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A =  1 . 

4 

W e  will not be succesful in f inding some b e R 3  ~ such that  the system A @ x = b  

would  be uniquely  solvable .  Theo rem 3 will show that  such a b in fact does not  exist.  

Let A = (aij) ~ G°(n,  n ), ¢7 e P(n  ). The produc t  

ak ~(1) (~) a2, c~{2) (~) • • • (~) an. c~(,0 

will be deno ted  by w(A,  ~) and the sum @ ~ p ~ )  w(A,  ~) by per (A)  (and called per- 

manen t  o f  A) .  If,  moreover ,  j j ,  . . . , j t 6 N ,  t>_2, then the p roduc t  

aJl.ie @ aj: i, @""  (~ a j, , j ,  

will be deno ted  by A(j" 1 . . . . .  Jr). A pe rmu ta t i on  ¢ r e P ( n )  is called maximal  with 

respect  to A if per (A)  = w(A,  a).  We say that  A has a s t rong pe rmanen t  if there ex- 

ists jus t  one p e r m u t a t i o n  max imal  with respect to A.  

The  aim of  this paper  is 

(i) to show that  s t rongly  regular  matr ices  are exact ly  those with s t rong pe rmanen t  
whenever  _< is dense,  and 

(ii) to derive a me thod  for checking this p rope r ty  as well as for  f inding at least 

one b e Jr(A). 

2. Auxiliary results 

The  fol lowing two assert ions show that  pe rmu ta t i ons  o f  the rows and co lumns  of  

a mat r ix  A as well as mul t ip ly ing  them by non-zero  cons tants  do not  inf luence the 

s t rong regular i ty  o f  A as well as the fact that  A has a s t rong pe rmanen t .  

Proposition 3. Let  ~, r e P ( n ) ,  Sl, ...,Sn, t 1 . . . .  ,tnEG. 
(a) A e G°(n, n) has a strong permanen t  i f  and only i f  the matrix B = Po(sl . . . . .  s,,) 

@ A  @P~(tl . . . . .  tn) has a strong permanent ,  and 

(b) per(B) = s j  @ ... @ s n @ t l  @. . .  ~ ) t ~ ) p e r ( A ) .  

Proof. One can easily verify that  the p roduc t  

p~(s 1 . . . . .  s,z)(~po l(Sc ~ 1,11) . . . . .  so 1 ,,)) 

gives as result  the uni ty  matr ix .  Because o f  this fact it suffices to prove only  the 

necessi ty in (a) since 

A = P  o ~(s~ J,(l) . . . . .  s~ I,(,,))(~)B(~)P~ ~(t~ ~(1) . . . . .  t~ I(,,)). 

Let B '  - (b~) = P,(sl  . . . . .  s , , )@A.  Since 
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b~'/= (0 . . . . .  0, s,, 0 . . . . .  0)@(a~:, .... a , J =  s, @a~il,j ,  
t . _ _ _ y ~  

for all ~o e P(n)  we have 

w(B' ,  O) = sl @a~ll).o(il @s2@a~21.L,121@ ... @s,,@a~l,).~,i,,) 
I 

- s l @ . . .  @s,,@al.,.. ,il)@... @a,,.,,,i,) where w = o o  

Hence, denoting s l @ . . .  @ s , , e G  by s we get 

w ( B ' , o ) = s @ w ( A , ~ o a  1) 

for all ~ P ( n )  and thus p e r ( B ' ) = s @ p e r ( A ) .  Moreover ,  o '~Lo implies 
~o'a i ~ o a  1. From this fact we get that  w(B' ,&)  per(B')  and o ' 6 P ( n ) - { ~ o }  

imply w(B' ,  O ' ) <  w(B' ,  ~o) for,  otherwise we would have 

w(A,~o'a I ) = s  l @ w ( B ' , Q ' ) = s  l @ w ( B ' , ~ ) = w ( A , o a  l ) - p e r ( A ) ,  

a contradict ion.  
The product  B'@P~( t i  . . . . .  t,,) can be treated similarly. ET] 

Propos i t ion  4. Let ~7~P(m),  v ~ P ( n ) ,  sl . . . . .  s .... tl . . . . .  t , , eG .  Co lumns  c4f 

A e G(m,  n) are Ski  ( f  and  only ( f  co lumns  o f  

P~(sl . . . . .  s,,,)@ A @ P~(tl . . . . .  t,,) 

are SLI. 

P roo f .  We prove only the necessity o f  the condit ion for the same reasons as in the 

foregoing proof .  
l~et B ' - P ~ ( s ~  . . . .  ,s,,,)(~)A. If x is the unique solution of  

A ( ~ j x -  b, (8) 

then x is also the unique solution o f  

B'  ~×~ x - b '  (8')  

where b ' -  P~(sl . . . . .  s,, ,)@b e G,,, because 

A - P~ ,(s~ 1,(i ~ . . . . .  s~ I,(,,))@B' 

(cf. the foregoing proof)  and the existence o f  another  solution of  (8'),  say y, would 

yield that y solves (8), too.  
Let B"-A(×')P~(t i  . . . . .  t,,), r e P ( n )  and (8) be uniquely solvable. Clearly, 

B " ~ G ( m , n )  and S ~ I j ) ( B " , b ) - S i ( A , b )  for all j ~ N  and thus the system 
{SI(B", b) . . . . .  S,,(B", b)} is the same covering of  S as {SI(A,  b) . . . . .  S,,(A, b)} which 

is minimal.  I 
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A square matrix A over G is said to be normal  if all its diagonal  elements as \~cll 

as per(A) are I. 

Proposition 5. Let  A - (a O) • G(n, n) and <7 c P(n)  be nmximal  with reapecl to A. 

Then the matrix 

B = (bo) = Pa ' (a~ l i ( i ) ,  i . . . . .  a a  I'(n). n ) ( X ) A  

is normal. 

Proof. Denote a o_ I by d i for all i o N  and d l@ @.)d,, by d. It follows from (~), i " ' "  - 

Proposi t ion  3(b) thai 

per(B) d @ w ( A , a )  1. 

Moreover ,  taking an arbi t rary i e N we obtain 

bii = (0 . . . . .  O, di, 0 . . . . .  0)(~{)(al, . . . . .  a,,i ) 1 = di@ao ~(i !, i = 1. 

<~ I(l ) 

3. Every strongly regular matrix has a strong permanent 

Theorem 1. Let A • G(n, n) be strongly regular. Then A has a strong permanent.  

Proof. Suppose that b = (bj . . . . .  b,,)n • G,, is such that the system { S/(A, b) j.,/• N } 
is a minimal covering of  N and let B=(b(i)  diag(bl I . . . . .  b ,  ~)@A. Then 

SI(A,  b) . . . . .  S , (A ,  b) are disjoint one-element sets. According to Proposi t ion 4 we 
may assume without  any loss o f  generality that 

S / ( A , b )  {j} for a l l j • N  (9) 

and due to Propos i t ion  3 it is sufficient to prove that B has a strong permanent .  But 
(9) yields that b j j>bq  for all j • N  and s • N -  {j}.  Tha t ' s  why we get (using (4)) 
per(B) = bll @.-.  @ b,,,, > w(B, a) for ever}, a e P(n) different f rom the identity, i 

4. Every matrix with strong permanent is strongly regular 

Theorem 2. Let the ordering ~ be dense and A • G(n, n) be normal. I f  A has a 

strong permanent ,  then A is strongly regular. 

Theorem 2 will be proved in Section 6. 

Theorem 3. Let the ordering <_ be dense. I f  A ~ G(n, n) has a strong permanent ,  

then A is strongly regular. 
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Proof .  Suppose that A =(aii ) • G(n ,  n)  has a strong permanent .  According to Pro- 

position 5 there exist cl n . . . . .  d,, • G and a •  P ( n )  such that 

P~(dl ,  d2 . . . . .  d,~)@A 

is normal.  This fact ensures using Proposi t ions  3, 4 and Theorem 2 that A is strongly 

regular. 2i 

Theorems 1 and 3 give a condit ion being necessary and sufficient for the strong 
regularity of  an arbi t rary square matrix over a dense linearly ordered commutat ive  

group.  

Example 2 (continued). For the matrix A we can now easily check the strong 
regularity. Its permanent  is 

9 @ 2 @ 1 2 @ 6 @ 1 2 @ 3 = 1 2  

and thus equals w(A ,  c7) for two permutat ions  a •  P(3). 

Hence we conclude that A has no strong permanent  and according to Theorem 

1 it is not strongly regular. 

Example 3. For the same ', and matrix 

A 3 
3 

p e r ( A ) = 1 8 @ 2 0 @ 3 0 @ 3 0 @ 9 @ 4 0 ,  i.e. A has a strong permanent  and thus 
(Theorem 3) it is strongly regular. 

The problem of  finding some b • i r ( A )  will be solved at the end of  the paper and 
the method will be illustrated at this matrix. 

Remark. Theorem 3 does not hold, in general, without tile assumption that _< is 
dense. To demonstra te  this fact consider matrix A (I t ~) over the additive group of  
integers. In this case A has a strong permanent  (3@2) but obviously A is not 
strongly regular. 

5. The case of reclangular malrices 

We say that a matrix A ¢ G(m, n) has rank k (written r ( A ) - k )  if k is the greatest 
natural  number  for which there exists a strongly regular submatrix B e  G(k ,  k)  of  A. 

Theorem 4. Let  A • G ( m ,  n). Then  the c o l u m n s  q f  A are SL1 tlf and  on ly  i f  r (A)  - n. 
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P r o o f .  We note at first that  accord ing  to P ropos i t ion  2, m < n  would yield i r ( A ) - 0 .  

Suppose  that b e i r l A ) .  Hence the system 

{s,(A, b)Ije,'vl 

is a minimal covering of S and rims for each k 6 N  there exists some 
i~ eSk(A ,b )  U , ~  I~,, Si (A ,b ) .  Choosing rows with indices il . . . . .  i. from .4 we 
get a matrix A '  ~ G(n, n) we are looking for because denoting by b'  the subvector 
o f  b co r re spond ing  to the choosen rows we obta in  that  Si(A ', b ') ,  j c N are pairwise  

d is jo in t  one-e lement  sets. 

To prove  the converse  impl ica t ion  let us suppose  that  the mat r ix  A '  consis t ing o f  

the rows o f  A with indices i~, i> . . . ,  i,, is s t rongly  regular .  Then there exists c e  G,, 

such that  the system 

A ' @ x - c  (9 ' )  

has unique solut ion,  say 2. Denote  A @ 2  by b. Then 2 is, na tura l ly ,  a solut ion o l  

A @ x = b  and the existence of  ano ther  so lu t ion  would yield that  (9 ' )  has more  than 

one solut ion,  a con t rad ic t ion .  11 

6. The proof of Theorem 2 

Before proving  Theorem 2 we establish some lemmas.  Everywhere  we suppose  

that  A - (a,j) e G(n, n). 

L e m m a  1. I f  A is normal, then 

A ( j  I . . . . . .  j k , j j )  < _ 1 (10) 

.for all Jl . . . . .  ja ~ N, k >_1 integer such that j,=/:j, j o r  r~es. Moreover,  ~f A has a 
strong permanent ,  then equa#ty  in (10) holds only Jor k I. 

Proof. Take  a e P ( n ) d e f i n e d  by formulas :  

a(j i )  ./i ~ for i - 1 , 2  . . . . .  k 1; 

a( jk  ) =./,; 

a ( j ) = j  for j e N - - { J l  . . . . .  Jk} - N : .  

Then 

1 >_ w ( A ,  a) 
aj,./~ ® % :, @...  ® aj~ j, ® ,@a// 

= A ( j j  . . . . .  Jk,JJ)" 

If  k > l ,  then a is different  f rom ident i ty  and thus we have A( j l  . . . . .  Jk, JJ)-- 
w(A,  a ) < p e r ( A ) - 1 ,  assuming that  A has a s t rong pe rmanen t .  ! 
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l .emma 2. IrA is normal ,  then 

A(jl  . . . . .  Jx ) <- A(J l  . . . . . .  /,-,.J, ~ 1 . . . . . .  ]~ ) ( 11 ) 

f o r  arbitrat:v Jl . . . . . .  / k e N ,  k>_3 integer attd r, s e { l , 2  . . . . .  k 1} such that r < s ,  
j, j ,  and  j/,4:j~/ f o r  p 4 : q  and  p, q e  { r , r +  1 . . . . . .  s -  1]. lj; moreover ,  .4 ha.s a 

s,rrong p e r m a n e n t  then the equal i ty  in (11) holds  only  f o r  s -  r+  I. 

Proof .  Obviously,  A ( j  I . . . . .  j x ) -  A ( j l  . . . . .  Jr ,J , ,  i . . . . . .  /~)(~jA(j,. . . . . . .  i,) 

<-/l(Jt . . . . . .  L, . / ,  ~ l . . . . . .  ix) since j , . : j ,  and 

A (./, . . . .  ,./, ) _< 1 ( 12 ) 

accord ing to l . cmma 1. I f  A has a strong permanent,  then Lcmma 1 yields that the 
equal i ty  in (12) can hold on ly  for  s - r +  1. ] 

In what fo l lows wc denote by Z ~ the set o f  nonnegat ivc  integers. For k , / e  N we 
denote by E(A, k, I) and F(A, k, 1) the f ini te sets 

{A(k,.il . . . . .  j , , I ) ] j l  . . . .  , j , e / V  {k. /} ;  t e Z ~ ; j , U - j ,  for r ~ s }  

and 

{(A(k,j l  . . . . .  j , , l ) )  ~lJ~ . . . . .  j ,  e N  {k,/}; t e Z + ; j , . 4 : j ~  for r:/:s},  

respectively and we put 

re (A ,  k, l) - max E ( A ,  k, l), 

M ( A ,  k, I) - rain F ( A ,  k, l). 

It is obvious that m ( A , k , I )  ( M ( A , k , l ) )  i for all k , / e N .  

L e m m a  3. I f  A is normal ,  then f o r  all k, l • N 

max { A (k, J l . . . . . .  Jr,/) ] Jl . . . . .  J~ • N, t c Z ~ } ( d e n o t e d  by  m ' (A,  k, l)), 

rain{ (,4 ( k , j  I . . . . .  j~, 1)) J J Jl . . . . .  j~ • N, t • Z + } ( d e n o t e d  by M ' ( A ,  k, I)) 

exist  and  the f o l l o w i n g  equal i t ies  hold:  

m ' ( A ,  k, l) = re(A,  k, l), 

M ' ( A ,  k, l) - M ( A ,  k, l). 

P r o o f .  It is suff ic ient  to prove the inequalities 

A ( k , j l  . . . . .  Jr, l )<_m(A ,  k, I) 

and 

( A ( k , j ]  . . . . .  j¢ , l ) )  l > _ M ( A , k , l )  

(13) 

(14) 
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for all k , l ,  j j , . . . , . , / t e N .  According to Lemma 2 the subsequences of  the sequence 
k,j~, ... ,j~, / the equal members of  which are only the first and the last ones may be 
omitted successively (with the exception of the first members) without decreasing the 
value of the corresponding product.  Obviously, after finite number of such 
deletions we obtain a product which is an element of E ( A ,  k,  I). This yields (13) and 
(14) can be proved similarly. 

Denote by A (A) the strongly complete, arc-weighted digraph associated with A. 
We notice that the quantities re (A ,  k,  1), M ( A ,  k,  l), resp. m ' ( A ,  k,  l), M ' ( A ,  t,', I) 
are just the lengths of the shortest and the longest paths and elementary paths in 
A ( A ) ,  respectively. Thus, Lemma 3 describes the following property: I f A  is normal, 
then the lengths of the longest and the shortest paths between arbitrary two (not 
necessarily distinct) nodes in A ( A )  are lengths of elementary paths. 

For k, l e N ,  k < l  and a normal matrix A we define intervals 

I ( A ,  k,  I) - - ( m ' ( A ,  k ,  l), M ' ( A , / ,  k)). (15) 

It follows from Lemma 3 that 

l ( A , k , l ) - ( m ( A , k , l ) ,  M ( A , l , k ) )  for all k,  l e N .  

Lemma 4. S u p p o s e  that  <_ is dense,  A is n o r m a l  a n d  has  a s t rong  p e r m a n e n t .  Then  
l ( A ,  k,  I ) ~ O j b r  all R, I o N ,  k < l .  

Proof .  It is sufficient to prove that 

A ( k , J l  . . . . . .  Jr, l)  < (A(/ ,  i I . . . . .  iq, k ) )  i (16) 

for arbitrary Jl . . . . .  Jr, il . . . . .  i q 6 N - { k , l } ,  t, q c Z  ~, i~4=i, and jr-~j~ for r -~s  
because the sets E ( A ,  k,  l) and F ( A ,  k,  I) are finite and _< is dense. Inequality (16) 
is, however, equivalent to 

1 > A ( l ,  i l , . . . ,  i~4, k ) ( x 2 A ( k , j l  . . . . . .  j~, l) = 

A(l ,  il, . . . ,  iq, k , j  I . . . . . .  j~, If. 

Using Lemma 2 several times we get 

A(l ,  ij . . . . .  i~1, k ,J l  . . . . .  Jr, I)<_ A( l ,  h 1 . . . . .  ht,, I) 
where 

{hi . . . . .  h/,~ c {il . . . . .  i~t, j t  . . . . . .  j~, k }  

and h,.#:h, for r-%s. Thus by Lemma 1 we have that 

A(l ,  hj . . . . .  hi,,/)<_ 1 

and the equality would hold only if {h I . . . . .  hv} = 0  which is impossible because 
I¢  {ii . . . . .  iq, j l  . . . . .  j~, k }. 
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l !"/= (a, b) c G and c •  G, then the interval (c(~a, c@b) will be denoted by el. 

For  / 2.3 . . . . .  n and w I . . . . .  wt l e G  the symbol J (w I . . . . .  w l 1;/) will denote the 

set  

w l l ( A  , l , l ) D w : l ( A , 2 , 1 ) Q . . .  N w /  i I ( A , l - l , l )  

and J(1) will mean {1}. 

Lemma 5. Suppose  that <_ is dense, A is normal,  I (A ,  k, l) ~ O.for all k, I • N, k < I. 
Let I •  N and w~ . . . . .  w/ ~ be arbitratLv elements  o f  G satisfying the condit ion 

w/ • . l ( w  I . . . . .  wr 1;/') 

/ b r a l l l ' • { 1 , 2  . . . . .  / 1}. Then 

J(wl . . . . .  w/ 1;1)~0. 

Proof .  Fact (5) ensures that it is sufficient to prove 

wkl  (.4, k, I) Q w, , l  (A, m, 1) =¢ 0 (17) 

for 1 ~ k < t n < / ( c a s e / = 2  is trivial) or equivalently (cf. Proposi t ion 1), to pro~.e the 

inequalities 

wk(ksA(k , j  I . . . . . .  j , / ) <  w,,,@(A(I, i I . . . . .  i,/, m))  1 (18) 

and 

w,,, @,, A (m, Jt . . . . . .  L, / )  < wk @~ (,4 (L il, ..., i,/, k )) i (19) 

However  (18) is equivalent to the inequality 

W/, (~'A (k, Jl . . . . .  Jt ' / ,  il . . . . .  i~j, m ) <  w,, 

,xhictl fo l lows f rom the assumpt ion w,,,e wkl(A,  k, m). The inequal i ty  (19) can be 

pro~.ed similar ly.  : 

l , emma 6. Let A e G ( n , n )  and all diagonal element.s' q f  A be 1. I/" 

d (dl . . . . .  d,,)I • Gn is a so~u/ion o f  the .tvstem o f  inequalities 

a,i(><)di<dl, i , j •  N, i ~ j  (2(11) 

then 3 (di i . . . . .  d,, l)l ~ir(A) (and hence A is s trongly regular). 

Proof .  From (20) it f o l l o w s t h a l S ~ ( A , 3 )  {j} f o r a l l j • N .  Thus { S ~ ( A , 3 ) ! j e N }  
is a minimal covering of  { 1 , 2 , . . . , n } .  ~J 

~[heorem 2 follows immediately from Lemma 4 and from the following assertion. 

Lemma 7. Let  A be normal  and <_ be dense. Then the condit ion 

l ( A , k , I ) ~ O  f o r  all k, l e N .  k < l  (21) 
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is necessary and  Slff./'icient .~or ,4 to be strongly regular. 
Moreover,  every vector (w~ I . . . . .  w,; J)~ such that 

w / ~ J ( w  I . . . . .  w/ i;/) j b r  all l ~ N  

is an e lement  o f  ir(A). 

(22) 

Proof. If A is strongly regular, then by Theorem 1 it has a strong permanent and 
thus Lemma 4 implies the necessity of (21). 

If (21) is fulfilled, then by Lemma 5 there exists w= (w 1 . . . . .  w,,) ] satisfying (22). 
Due to Lemma 6 the proof will be completed by showing that w is a solution of (20). 

If i< j ,  then ~ wi l (A ,  i , j )  and thus 

wi> w i @ m ( A ,  i,j)>_ w , @ A ( i , j )  = wi@ai:. 

If i > j ,  then wie  w j l ( A , j ,  i) and thus 

wi< w j @ M ( A , j ,  i)<_ w i @ ( A ( i , j ) )  ] = w,j@a~i I ,, 

7. A method for checking the strong regularity 

Checking the strong regularity of a given square matrix A by the results of Sec- 
tions 4 and 6 would not be effective in general because one would have to compute 
w(A, a) for all ~r ¢ P(n) ,  i.e. for n! permutations. Besides, it is not clear enough how 
to find at least one be l t (A)  (if such b exists). We try now to make these aspects 

clear. 
If a maximal permutation with respect to A is known then Propositions 4 and 5 

reduce the problem of checking the strong regularity of A to the same problem for 
a normal matrix. Note that in the case when G is the additive group of reals the pro- 
blem of finding the maximal permutation is in fact the classical assignment problem 
the updated algorithm for which can be implemented in O(n 3) time (cf. [4]). 

Proposition 6. Let  A e G(n, n) be normal  and A"  i = (gi/)" T h e n j o r  all i , j e  N, i < j  

I (A ,  i , j )  = (g~i, gi, ~) 

where I (A ,  i , j )  are intervals" def ined by (15). 

Proof.  It is not difficult to verify (cf. [3]) that aii = 1 
equality 

A @ A 2 @ . . . @ A "  I = A "  ] 

Thus, taking i, j e N ,  i:/:j we get 

t 0 h, , / ,  I 

where we have denoted by H the set 

for all i e N  implies tile 
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{ A(i,  Jl . . . . .  Jr, J) l Jl . . . . .  Jr e N, t ~ {0, 1 . . . . .  n -  2}}. 

Since E(A,  i,j)c_ H, we have the inequali ty 

re(A, i , j )<_maxH.  

The reverse inequali ty follows f rom the fact that  

max H<_ m ' (A ,  i , j )  

and f rom L e m m a  3. Thus,  g(i =re(A,  i , j ) .  [] 

We summar ize  obta ined results in a method  for  checking the s t rong regularity of  
a given A = (ao) E G(n, n), assuming that  _< is dense: 

(i) Find o e P(n) being maximal  with respect to A. 
(ii) Set B = P o  ' (a~l , (1) , l  . . . . .  Ac, l,(ni.n)@A and compute  B n I--(gij ). 
(iii) Check whether  

go<gii l for all i, j e N ,  i < j .  

In the negative case stop (A is not s t rongly regular by Proposi t ions  5, 6 and L e m m a  
7). 

(iv) Find w = ( w j  1 . . . . .  w,, I)T by the fo rmula  

w / c J ( w l  . . . . .  wl 1;l) for  / = 1 , 2  . . . . .  n 

(such w exists according to Propos i t ion  6 and L e m m a  5). 
(v) Compu te  b=P~(ah~o)  . . . .  , a , . ~ ( , ) ) @ #  which is an element of  i t(A) (cf. the 

beginning of  the p roo f  of  Propos i t ion  4). 

Note that it remains an open quest ion how to describe the whole set Jr(A). 

Example  3 (continued).  We check al ternatively the strong regulari ty of  A by the just 
described method.  One can easily verify that here (in the algebraic nota t ion)  
o - ( 1 2 ) ( 3 ) - o  l a n d  

Thus  

Hence,  

P(~ ,(a~ l, aa l,, 2 a a 1 , (3) ,3)  0 (1), 1' t ) , 2 '  

0 

B2 B @ 1 and 1 T • 
3 3 

I(B, 1 , 2 )  = (~,. z),4. 

We find successively wl 1, w 2=~]), 

3 t 2 7 I 2 7 

I(B, 1,3) = ( 3 ,  z); I(B, 2, 3) - (t2, :~)- 

and ~'=(1,T>, ~)s 1-. 



222 P. Butkot ' id,  I .  t l e ve rv  

The element o f  ir(A) we wanted to find is thus 

b=P~(a~,~l~ i, a2,~(> a3,,~(3))(x)~' 

0 0 ~" ~' 
0 2 ~, ~ 

In conclusion two remarks.  

Remark  1. One can easily verify (see e.g. [3]) that A " = A  '~ 1 for a normal  matrix 
A ~ G(n, n). In order  to compute  A" the generalized Warshall  a lgori thm can be us- 

ed, i.e. defining the matrices A I~)= (@)); k = 0, 1 . . . . .  n by the rules 

A I°)= A, 

(./(k) _ ~(L 1) ~ 1/~ I ,:i -u i i  @(a,'k )@a~} i~) for /, '~ l, 

we get AIn)=A ". By Lemma 3 this assertion can be proved in the same way as in 
[5]. Thus, step (ii) can be carried out in 2 n2n = O ( n  3) steps. 

Step (iii) o f  the presented method  does not require more time. Furthermore,  it 
follows f rom [11 that (even in more  general structures) the assignment problem (step 
(i)) can be solved in O(i"/3) steps. Thus,  the problem of  the strong regularity can be 
solved in O(n 3) steps, too. 

Remark 2. Theorems 1 and 3 yield that the strong regularity o f  a square matrix is 
in fact equivalent to the uniqueness o f  the assignment problem solution (APS) 
whenever < is dense. Hence as an immediate corol lary we get that the uniqueness 

o f  the APS can be decided in O(n ~) steps whenever _< is dense. We want to em- 
phasize at this place that the last statement is true also without the assumption of  
density. 
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