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Columns of a matrix A in the minimax algebra are called strongly linecarly independent if for
some b the system of equations A& x = b is uniquely solvable (cf. [3]). This paper presents a con-
dition which is necessary and sutficient for the strong linear independence of columns of a given
matrix in the minimax algebra based on a dense linearly ordered commutative group. In the case
ot square matrices an O(n3) method for checking this property as well as for finding at least one
b such that A% x=b is uniquely solvable is derived. A connection with the classical assignment
problem is tormulated.

1. Introduction

In the whole paper we suppose that v =(G, ®, <) is a commutative, linearly
ordered group. Its neutral element will be denoted by 1. Let G*=G U {0} where 0
is an adjoined element and extend & and < on G" by the rules:

0®a=a®0=0 for all aeG", (1
0<a for all ae G°. (2)

Obviously, < is a linear ordering on G°. For a, b e G" the symbol a@ b will denote
max{a, b}. Many properties of @, &, =< are derived in [3] and it will be useful to
mention here two of them (¢<b means a<b and a#b):

a<bh = c®a<c®b forall a, b, ceG”; 3)
u<h = c®a<e®@b foralla, beG’ ced. (4)
For a, be G" we denote by (a, b) the interval
ixeG'a<x<b}.
The order = on GYis called dense if (@, b)#0 for all a, be G°, a< b. The following
assertion can easily be verified using definitions.
Proposition 1. Ler = be dense on G and a, b, ¢, d be elements of GY such that
a<b,c<d. Then
(a, YN(c,dY+0 if and only if a<d and c<b.
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We recall another simple fact which will be used later:

An arbitrary finite system of intervals in a linearly ordered set has
a nonempty intersection whenever each pair of intervals of this system
has a nonempty intersection. )

The set of all (7, n) matrices over G and G' will be denoted by G(mn, n) and
G"(m, n), respectively. If n=1, then these sets will be written shortly G,, and G',
respectively and their elements will be called vectors. Properties of matrices have
also been investigated in [3] and we recall the associative and distribute laws for the
operations @, ® extended in the natural way on these matrices.

In what follows we always suppose that m, n=>1 are given integers and we denote
by S and N the sets {1,2,...,m} and {1,2,...,n}, respectively; P(n) will mean the
set of all permutations of the set V.

If ceP(n), d,,...,d, € G’ then P,(d,,...,d,) denotes the matrix (p;)e€ G"(n, n)
the elements of which satisfy the conditions

pl:/':di’ 11\]:0'(1),
p;=0, ifj#ali)
for all i, je N. If ¢ is, moreover, an identity then instead of P (d|,...,d,) we write

as usual diag(d|,...,d,). The matrix diag(l, 1, ..., 1) is called unity matrix.
For A :(a,-j)eGo(m, n) and be G, we denote for all je N by S,;(A, b) the set

§i€S|b,ﬁl®a/j: @ (b.s‘il®asﬁl') .
se S

Systems of linear equations of the form
ARx=b (6)

have been treated in [3] and in the case of some special groups in [6].

Let us mention that the relation between dual variables of the classical transporta-
tion problem can be expressed as the system of equations of the form (6) where
is the additive group of reals with the inverse ordering. A more detailed explanation
of this fact can be found in [3, pp. 7-8§].

Recall two results concerning the solution of (6) on which the main results of this
paper are based.

Proposition 2. Let Ae G(m,n), be G,,. Then:
(a) The system (6) is solvable if and only if

Us . 0=5, )

JjeN

i.e. the system {S;(A,b)|je N} is a covering of S.
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(b) The system (6) is uniquely solvable if and only if (7) and the implication

NCN, NN = | JS;(4, =S

JENT

hold, i.e. the system {S/(A, by|je N} is a minimal covering of S.

Recall that if 7 ={S;(A4, bylje N} is a minimal covering of N, then
S1(A, b), ..., S, (A, b) are pairwise disjoint one-element sets. To see this realize that
for every ke N there must exist /€S, (A,b)— U/m 1 S;(A, b) for, otherwise
s —{Si(A4, b)} would be a covering of N, too. As a consequence, for m=n (6) is
uniquely solvable if and only if §,(4, ), ..., S, (A, b) are pairwise disjoint one-
clement sets.

It has been shown in {3] that certain job-scheduling problems can be formulated
as problems of solving the system (6) for m = n in the additive group of reals. Here
b plays the role of prescribed termination times of the work on m machines after
a certain finite number of cycles and x; are starting times we want to know. In
many cases the components of x can move in an interval without any change of the
fact that x is a solution of (6) but a natural question arises: can it happen for some
b that (6) will have exactly one solution? It turns out that there exists a class of
matrices for which the answer is positive.

Let AeG@n, n). The set

ir(4)={be G, | there exists a unique xe G, such that A ®x=h}

is called irreducibility set of the matrix A. We say that the columns of A are strongly
linearly independent (cf. [3]) or, shortly SLI, if ir(A4)#0. In the case m=n we say
that A4 is strongly regular.

In the light of what has been said above matrix A is strongly regular if and only
if there exists a vector b such that S (A, b), ..., S,(A4, b) are pairwise disjoint one-
clement sets.

Example 1. Let # be the multiplicative group of positive reals with the obvious
ordering. The columns of 4 are SLI where

4 4 6
1 4 1
A=12 4 3
111
2 3 6

because for b=(2,1,1,5,2)" we get S;(A,b)={1,3,4}, Sy(A,b)=1{2,3},
Si(A, b)y={1, 3,5} yielding that these sets form a minimal covering of the set
S=1{1,2,3,4,5}. Hence, the system A®x=5b has a unique solution and b eir(A4).

Example 2. For the same % consider



(2]
(8%
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31 3
A=11 1 1
2 4 3

We will not be succesful in finding some be Ry such that the system AXx=5
would be uniquely solvable. Theorem 3 will show that such a b in fact does not exist.

Let A=(a;)e G(n, n), geP(n). The product

a1, s(hP ;)X ... ®a,, o(n)

will be denoted by w(A, o) and the sum @, p,y W(A, a) by per(A4) (and called per-
manent of A). If, moreover, j,,...,j, e N, =2, then the product

4, ®a; ; Q... ®a;

will be denoted by A(j,...,/,). A permutation ¢e P(n) is called maximal with
respect to A if per(4) = w(A4, g). We say that 4 has a strong permanent if there ex-
ists just one permutation maximal with respect to A.

The aim of this paper is

(i) to show that strongly regular matrices are exactly those with strong permanent
whenever =< is dense, and

(i) to derive a method for checking this property as well as for finding at least
one beir(A).

2. Auxiliary results

The following two assertions show that permutations of the rows and columns of
a matrix A as well as multiplying them by non-zero constants do not influence the
strong regularity of A as well as the fact that 4 has a strong permanent.

Proposition 3. Let g, 1€ P(n), S|, ...,8,; ..., 1,€C.

(a) A € G°(n, n) has a strong permanent if and only if the matrix B=P (s, ...,S,)
RAQPLty,...,1,) has a strong permanent, and

(b) per(B)=5® ... ®5,01&X... ®1,Qper(A).

Proof. One can easily verify that the product

-1 L]
PG(SI,...,S,1)®PU,1(SU Uy g 1(”))

gives as result the unity matrix. Because of this fact it suffices to prove only the
necessity in (a) since

A=P, (5 1y eerSs W) RBRP, (1, Yyt )
Let B =(b))=P,(s,...,5,)RA. Since
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bi=(0,...,0,5,0,...,00&(ay, s @) =5, R, s
e

aii)

for all p € P(n) we have

w(B’, 0)=s5 ®aa'(l), g<1)®52®aa(2).g(2)® ®5n®aa(n).y(n)
— 5 ® ... ©5,0d) 1)@ ... @y m Where =00 .
Hence, denoting ;& ... ®s,€ G by s we get
w(B',0)=s@w(A, 00 )

for all oeP(n) and thus per(B')=s®per(4). Moreover, o’'#¢ implies
o'c '#o00 '. From this fact we get that w(B’,0)=per(B’) and ¢’ € P(n)- {0}
imply w(B’, 0" )< w(B’, ) for, otherwise we would have

»t'(A,Q'U"):S l@)W(B’,Q’):S’’®W(B’,Q):w(A,g('f 1y = per(A),
a contradiction.

The product B’ ®@P.(f,,...,t,) can be treated similarly. []

Proposition 4. Let geP(m), t€Pn), s, ....Sy, h.....l,€G. Columns of
AeGun, n) are SLL if and only if columns of

PoASts s S, YRARPLLy, ..., 1)
are SLI.
Proof. We prove only the necessity of the condition for the same reasons as in the

foregoing proof.
Let B'=P,_(sy,...,5,)®A. 1f x is the unique solution of

ARx=b, (8)
then x is also the unique solution of

B xx=5b' (8")
where b = P_(s),...,5,) X be G, because

A=Py sy gy eees Sy 1) B

(cf. the foregoing proof) and the existence of another solution of (87), say v, would
vield that y solves (8), too.

Let B"=ARP,(,,...,t,), 1€ Pn) and (8) be uniquely solvable. Clearly,
B”eGun,n) and S,U-)(B”, b) :S/v(/l, b) for all jeN and thus the system
{S(B”, b),....S,(B”, b)} is the same covering of S as {5,(4, b), ..., S,(A, b)} which
is minimal. |
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A square matrix 4 over G is said to be normal it all its diagonal elements as well
as per(A) are 1.

Proposition 5. Let A =(a;) e G(n, n) and g€ P(n) be maximal with respect to A.
Then the matrix
B=(b,)=P,; (4, l‘(l)‘ sty l‘(N),n)(i()A

is normal.

Proof. Denote a, ", ;
Proposition 3(b) that

by d; for all ie N and ¢,& ... ®d, by d. 1t follows from

per(B)=d®@w(A,g)=1.

Moreover, taking an arbitrary /e N we obtain

by =(0,...,0,d,0,....00(ay, ..., ap) =d;@ay 1, ;=1 !
N

a

3. Every strongly regular matrix has a strong permanent
Theorem 1. Let A€ G(n, n) be strongly regular. Then A has a strong permanent.

Proof. Suppose that b=(b,,...,b,)' € G, is such that the system {S;(A, by jeNy
is a minimal covering of N and let B=(b;)=diag(h, h ....b,,‘ "N&A. Then
Si(A, b), ..., S,(A, b) are disjoint one-element scts. According to Proposition 4 we
may assume without any loss of generality that

SiA,by=1{j} forall jeN (9)

and due to Proposition 3 it is sufficient to prove that B has a strong permanent. But
(9) yields that b;;>b,; for all je N and se N~ {/}. That’s why we get (using (4))
per(B)=b,,® ... ®b,,>w(B, a) for every o € P(n) different from the identity.

4. Every matrix with strong permanent is strongly regufar

Theorem 2. Let the ordering < be dense and A e G(n,n) be normal. If A has a
strong permanent, then A is strongly regular.

Theorem 2 will be proved in Section 6.

Theorem 3. Let the ordering < be dense. [f Ae G(n,n) has a strong permanent,
then A is strongly regular.
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Proof. Suppose that A =(a;) € G(n, n) has a strong permanent. According to Pro-
position 5 there exist d,...,d, € G and ¢ € P(n) such that

PAd dy,...,d,)RA
is normal. This fact ensures using Propositions 3, 4 and Theorem 2 that A is strongly

regular.

Theorems 1 and 3 give a condition being necessary and sufficient for the strong
regularity of an arbitrary square matrix over a dense linearly ordered commutative
group.

Example 2 (continued). For the matrix 4 we can now easily check the strong
regularity. Its permanent is
I9P2EHNRE6GI12B3=12

and thus equals w(A, o) for two permutations ¢ € P(3).
Hence we conclude that 4 has no strong permanent and according to Theorem
1 it is not strongly regular.

Example 3. For the same % and matrix

3 4 2
A= 15 3 1
53 2

per(A)=18@20B30P30®9®40, i.e. A has a strong permanent and thus
(Theorem 3) it is strongly regular.

The problem of finding some b eir(4) will be solved at the end of the paper and
the method will be illustrated at this matrix.

Remark. Theorem 3 does not hold, in general, without the assumption that < is
dense. To demonstrate this fact consider matrix A = (] }) over the additive group of
integers. In this case A has a strong permanent (3@2) but obviously A is not
strongly regular.

5. The case of rectangular matrices

We say that a matrix 4 € G(sm, n) has rank k (written r(A)=k) if k is the greatest
natural number for which there exists a strongly regular submatrix Be G(k, k) of A.

Theorem 4. Ler A € G(m, n). Then the columns of A are SL1 if and only if r(A)=n.
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Proof. We note at first that according to Proposition 2, < n would vield ir(A) = 0.
Suppose that heir(A). Hence the system
1S(A, by jeN)

is a minimal covering of S and thus for each AeN there exists some
ikeSA.(A,b)fU/.M 0y Si(A, b). Choosing rows with indices /,....7, from A we
get a matrix A'e G(n, n) we are looking for because denoting by o’ the subvector
of b corresponding to the choosen rows we obtain that §;(A’, b'), e N are pairwise
disjoint one-element sets.

To prove the converse implication let us suppose that the matrix A" consisting ot
the rows of A4 with indices i, i», ..., 7, is strongly regular. Then there exists ce G,
such that the system

A'Qx=c 9"

has unique solution, say X. Denote A& X by ». Then X is, naturally, a solution of
A®x=b and the existence of another solution would yield that (9) has more than
one solution, a contradiction. .J

6. The proof of Theorem 2

Before proving Theorem 2 we establish some lemmas. Everywhere we suppose

that 4 = (a,;)e G(n, n).
Lemma 1. If A is norimal, then

AU - dpi)=1 (10)
Jor all j,....j.e N, k=1 integer such that j.#j, for r#s. Moreover, if A has a
strong permanent, then equality in (10) holds only for k=1.
Proof. Take o e P(n) defined by formulas:

a(j)y=j ., ftori=1,2,....k—-1;

a(j) =i

a(j)=J for je N— {1, Jxf =N".
Then

1=w(A, g)
= afl./:®a./z./1® ®a]}‘/1 ® /,®\ a//
=AU oo s dis d1)-
If k>1, then ¢ is different from identity and thus we have A(j,....,J; /)=
w(A, o)< per(A)=1, assuming that A4 has a strong permanent. [
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Lemma 2. /f A is normal, then

‘4(jl'""j/\‘)SA(jls'Hyj/"js‘ ]""*j/\) (11)

Jor arbitrary ji,....j.€ N, k=3 integer and r,se{l,2,....k—1} such that r<s,
Jr=Jand j,#j, for p#q and p, geir,r+1,....s~1}. If, moreover, A huas u
strong permanent then the equality in (11) holds only for s=r+1.

Proof. Obviously, A(Jy, ..., ) =AU 1o sdrsdor 1 eees i VAU, o0 1)
SAS s oosfradoy s ---ady) since .=/, and

A,y g)=1 (12)
according to Lemma 1. If 4 has a strong permanent, then Lemma 1 yields that the
equality in (12) can hold only for s=r+1. |

In what follows we denote by Z ' the set of nonnegative integers. For &, /e N we

denote by E(A, k, Iy and F(A, k,[) the finite sets

{AK s oeidin Dy e N= kY 1€ 75 jo#), for re#s)
and

SCAK o) i eN=Lk 1Y 1€ Z 5 jo#j, for r#s},
respectively and we put

m(A, k,y=max E(A, k, 1),

M(A, Kk, [y=min F(A, k, ).
It is obvious that m(A, k, [)=(M(A, k, 1)) ' for all k,/eN.

Lemma 3. I/ A is normal, then for all k,le N
max{ A, ji,....jp )| i1y s/ €N 1€ Z T} (denoted by m'(A, k1)),
min{(Ak, ji, .. jp ) ‘\jl, €N, t€Z "} (denoted by M’ (A, k, 1))
exist and the following equalities hold:
m' (A, k,[y=m(A, k, 1),
M (A, k,1Y=M(A, k,1).

Proof. It is sufficient to prove the inequalities
Ak, jiy s jus )smA k1) (13
and

(AKy 1y oo fpn D) ' 2 M(A k) (14)
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for all k,1,/,,...,j,€ N. According to Lemma 2 the subsequences of the sequence
K, Jis .. sJ;s [ the equal members of which are only the first and the last ones may be
omitted successively (with the exception of the first members) without decreasing the
value of the corresponding product. Obviously, after finite number of such
deletions we obtain a product which is an element of £(A, &, /). This yields (13) and
(14) can be proved similarly.

Denote by A(A) the strongly complete, arc-weighted digraph associated with 4.
We notice that the quantities m(A, k, 1), M(A, k, 1), resp. m' (A, k, 1), M'(A, k., )
are just the lengths of the shortest and the longest paths and elementary paths in
A(A), respectively. Thus, Lemma 3 describes the following property: If 4 is normal,
then the lengths of the longest and the shortest paths between arbitrary two (not
necessarily distinct) nodes in A(A) are lengths of elementary paths.

For k,/e N, k<[ and a normal matrix 4 we define intervals

Ak, Dy=m'(A, k, 1), M'(A,l Kk)). (15)
It follows from Lemma 3 that

A, k,Dy=(m(A, k, 1), M(A, [, k)) forall k,/eN.

Lemma 4. Suppose that < is dense, A is normal and has a strong permanent. Then
I(A, Kk, 1Y+0 for all k,1e N, k<.
Proof. It is sufficient to prove that

AR, Ji eeondn D<A By i K)) ! (16)

for arbitrary ji,...,jn i,....i,e N={k, I}, t, geZ", i,#i, and j,#j; for r#s
because the sets E(A, k, 1) and F(A, k, ) are finite and < is dense. Inequality (16)
is, however, equivalent to

1> AU d ey KYRAK, Sy e fp )=
=AUy, i Ko Jys e dn 1)
Using Lemma 2 several times we get

Aty ks e D)= AL, /1],...,11,,, )
where
{hl,...,h/,} C {i,,...,iq,jl,...,‘/,,k}

and h,#h, for r+s. Thus by Lemma 1 we have that
Al by, ok, D=1

and the equality would hold only if {4,,...,4,} =0 which is impossible because
le iy, .osipjysedu kY. 7
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If I=(a, b) C G and c € G, then the interval (c®a, c&b) will be denoted by cl.
For [=2.3,....,n and w,,...,w, €G the symbol J(w,,...,w, ;/) will denote the
set

w (A, L, DN w (A, 2,00 Nwy ([(A= 1)
and J(1) will mean {1}.
Lemma 5. Suppose that < is dense, A is normal, I{A, k,1)#0 for all k,1e N, k<l.
Let le N and w,....,w, | be arbitrary elements of G satisfving the condition
wypeJ(wy, w3l
Jorali "€ {1,2,...,0—1}. Then

Jwiow D #0.

Proof. Fact (5) cnsurcs that it is sufficient to prove
w Ak, DNV w, (A, m, 1) #0 (17

for 1 <k <m< i (case =2 is trivial) or equivalently (cf. Proposition 1), to prove the
inequalities

W AWK, Jis e < W, QAU iy iy m)) (18)
and

W AN, iy oo f DS WA by, oy kD) (19)
However (18) is equivalent to the inequality

W AWK, fyyoeosdp LB oy M) <y,

which follows from the assumption w,, € w, (A, k, m). The inequality (19) can be
proved similarly.
Lemma 6. Let AeGn,n) and all diagonal elements of A be Y. If
d=(d,,....d) €G, is a solution of the svstem of inequalilies

a;0d;<d, i, jeEN, i#] (20)
then d=(d; ', ....d, ) eir(A) (and hence A is strongly regular).

Proof. From (20) it follows that S(A,d)={,} for all je N. Thus {S(4, dy jeN)}
is a minimal covering of {1,2,...,n}. _J
Theorem 2 follows immediately from Lemma 4 and from the following assertion.

Lemma 7. Let A be normal and < be dense. Then the condition

IA,k,Y#@ forall k,leN, k<! 2n
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is necessarv and sufficient for A to be strongly regular.
Moreover, every vector (wy ', ..., w, "} such that

weS (W, ..., w,_ i l) forall leN (22)

is an element of ir(A).

Proof. If A is strongly regular, then by Theorem 1 it has a strong permanent and
thus Lemma 4 implies the necessity of (21).
If (21) is fulfilled, then by Lemma S there exists w=(wy, ..., w,)' satisfying (22).
Due to Lemma 6 the proof will be completed by showing that w is a solution of (20).
i<y, then wye w;I(A, i j) and thus

w; > w, (A, 1L, )z w AU, j)=w,Kay;.
If i>/, then w,e w;1(A,j, 1) and thus
W <w,QM(A, j, 1)< w;®Q(AG,)) '=wRa; .

7. A method for checking the strong regularity

Checking the strong regularity of a given square matrix A4 by the results of Sec-
tions 4 and 6 would not be effective in general because one would have to compute
w(A, o) for all 6 € P(n), i.e. for n! permutations. Besides, it is not clear enough how
to find at least one beir(A4) (if such b exists). We try now to make these aspects
clear.

If a maximal permutation with respect to A is known then Propositions 4 and 5
reduce the problem of checking the strong regularity of A to the same problem for
a normal matrix. Note that in the case when G is the additive group of reals the pro-
blem of finding the maximal permutation is in fact the classical assignment problem
the updated algorithm for which can be implemented in O(n?) time (cf. [4]).

Proposition 6. Ler A € G(n, n) be normal and A" ' = (g;). Then forall i,jeN, i<
A, Lj)=(g & h
where 1(A, i, ]) are intervals defined by (15).
Proof. It is not difficult to verify (cf. [3]) that ¢;=1 for all ie N implies the
cquality
APATD...@A" '=a" !

Thus, taking i,jeN, i#j we get

no2 "
L= @ @ a4y ®¢,,0... Oa;,;=maxH
k-1

=0 ..

where we have denoted by H the sct
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{AG, Jyseeorfprd) [ J1s-osfr €N, €40, 1, .., n =2} ).
Since E(A, i,j)C H, we have the inequality
m(A,i,jy<max H.
The reverse inequality follows from the fact that
max H<m'(A, i, )
and from Lemma 3. Thus, g;=m(4,4,j). U

We summarize obtained results in a method for checking the strong regularity of
a given A =(a;) € G(n, n), assuming that < is dense:

(i) Find o€ P(n) being maximal with respect to A.
(i1) Set B=P; 1(a, ll(l)’l, AL l1(,,),,7)®A and compute B" ' =(g;).
(iii) Check whether

gy<gj' forall i,jeN, i<j.

In the negative case stop (A is not strongly regular by Propositions 5, 6 and Lemma
7).
(iv) Find w=(w, ',...,w, )T by the formula

wedw,...,w, ;1) forl=1,2,...,n

(such w exists according to Proposition 6 and Lemma 5).
(v) Compute b=P,(a) 51y > Uy, oim) ®W which is an element of ir(4) (cf. the
beginning of the proof of Proposition 4).

Note that it remains an open question how to describe the whole set ir(A4).
Example 3 (continued). We check alternatively the strong regularity of A by the just

described method. One can easily verify that here (in the algebraic notation)
o=(12)3)=¢ 'and

0 1 0
—1 .
P, (a, '(1),1’%1'(2».2saal'(3),3): i 00
0 0 4
Thus
I R
B=|2 1 1| and B'= |3 1 L
AR | 33
Hence,
IB,1,2)=( 4y IB,1,3)=( 2 I(B,2,3)=(4 .

We find successively w; =1, wy=7I,

MH*FE(W i)nm R 1):(%’ E

Ao
-~

and w=(1,29HT
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The element of ir(A4) we wanted to find is thus

b=P,(a) 501y G2.q02p G3.53)0W

0 4 0% (1) gL
=50 0|®|L =5
0 0 2 2 e

N

In conclusion two remarks.

Remark 1. One can easily verify (see e.g. [3]) that A7=A4" ' for a normal matrix
A e G(n,n). In order to compute A" the generalized Warshall algorithm can be us-
ed, i.e. defining the matrices A%’ =(a!); k=0, 1,...,n by the rules

A=A

af’=df "y "®al; V) for k=1,

we get A”)=4" By Lemma 3 this assertion can be proved in the same way as in
[5]. Thus, step (ii) can be carried out in 2 #°n=0(n") steps.

Step (iii) of the presented method does not require more time. Furthermore, it
follows from [1] that (even in more general structures) the assignment problem (step
(i)) can be solved in O(n?) steps. Thus, the problem of the strong regularity can be
solved in O(n?) steps, too.

Remark 2. Theorems 1 and 3 yield that the strong regularity of a square matrix is
in fact equivalent to the uniqueness of the assignment problem solution (APS)
whenever < is dense. Hence as an immediate corollary we get that the uniqueness
of the APS can be decided in O(#?) steps whenever < is dense. We want to em-
phasize at this place that the last statement is true also without the assumption of
density.
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