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Systems of linear equations of the form A®X=B®X and of the form AQX=B® Y over the 
structure based on linearly ordered commutative group (G, ®, -<) where the role of ® plays the 
maximum are treated. Necessary solvability conditions are derived using known results concern- 
ing eigenvectors of matrices in such structures. In the special case of idempotent, increasing 
matrices A and B a condition is given which is necessary and sufficient for the existence of a non- 
trivial solution. 

I. Definitions and basic properties 

Let (G, ®, -<) be a nontr iv ia l  l inearly ordered commuta t ive  group (its neutral  ele- 

men t  will be denoted by 1). Denote  

c°= u{o}u{oo} 
(0 and  ~ being the ad jo ined  elements) and  extend ___ and  ® on  G O in such a way 

that  

0 < a < o o  for a l l a ~ G  ° 

and  

a ® 0 = 0 N a = 0  for a l l a E G  °, 

a ® o o = o o ® a = ~  for a l l a e G ° - { 0 } .  

Let ®'  be the b inary  opera t ion  on  G O defined by the fo rmula  

a®'b = ~ ,  if oo ~ {a, b}, 

= a®b,  otherwise. 

Denote  a ® b  = max{a, b}, a®'b = min{a,  b} for all a, b ~ G °. It is know n  (cf. [1], 

[3], [7]) that  S =  (G °, ®, ®) as well as S ' =  (G °, ®', ®')  are commuta t ive  semirings. 

In  the te rminology  used in [3] the system (G °, ®, ®, ®', ®')  is a l inear  commuta t ive  

biog. The most  impor t an t  in terpreta t ions  seem to be those based on  ordered groups 
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(¢l = (  R÷, ", -<), 

~2=(R  +, ., ->), 

~¢3 = (R, +, --),  
:¢~ = (R ,  +, _>), 

where R ÷, resp. R is the set of  positive reals and reals, respectively and _<, resp. 
_> is the obvious order and the inverse order of  reals, respectively. The works [3] 
and [5] are recommended to the reader for practical motivations. 

We extend by the obvious way the order _< on matrices over G O as well as the 
operations ®, ®, resp. ®', ®'  on matrices over S and S', respectively. These exten- 
sions will be denoted by the same symbols. Many interesting properties of  matrices 
over blogs have been proved in [3]. Propositions 1-6 are corollaries of  some of  
them. 

I f  a e G o we denote by a* the element of  G o defined as follows: 

a*=a  -1, i f a ~ G ,  

O*~ oOj 

00"~-0. 

For an arbitrary set M we denote by M(m,  n) the set of  all (m, n) matrices over M; 
m, n >_ 1 being integers. I f  A is a matrix, then the symbol (A)• denotes the element 
of  A in its ith row and j t h  column. I f  A ~ G°(m, n), then A *~ G°(n, m) is defined 
by the relations 

(A*)ji=(Aij)* for all i 6{1 ,2  . . . . .  m } , j e { 1 , 2  . . . . .  n}. 

The symbol A v means the transposition of the matrix A. For all integers m_> 1 we 
shall denote M(m, 1) by M m and its elements will be called vectors. 

Proposil ion 1. Let A ~ G°(m, n), B ~ G ° .  I f  the system o f  equations A ® X  = B is 
solvable, then A *®'B is its (greatest) solution. 

Remark.  For the theory of linear systems mentioned in Proposit ion 1 see e.g. [3], 
[6]. Numerical methods for solving linear programs with constraints of  this type are 
to be found in [6]. 

Proposit ion 2. I f  A ~ G°(m, n), X e  G ° ,  then 

A Q(A *®'X) <_ (A ®A * )®'X <_X <_ (A Q'A * ) ® X  <_A Q'(A *®X). 

Proposit ion 3. I r A  e G°(n, n), then 

(AQ'A *)®(A ®'A *) = A Q ' A  * 

and 

( A ® A * ) ® ' ( A ® A * ) = A ® A  * 
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Let an integer n > 1 and a matrix A e G°(n, n) be given. The elements of  the set 
V ( A ) = { X e G n I A Q X = X } ,  resp. V ' ( A ) = { X e G n I A Q ' X = X }  will be called 
eigenvectors and dual eigenvectors of  the matrix A, respectively. Denote by A(A) 
the oriented, strongly complete and weighted graph with the set of nodes 
{1,2 . . . . .  n} and the weight function w satisfying 

w(i , j )=(A) i  j for all i, j e { 1 , 2  . . . . .  n}. 

To each path p= (i o,i I . . . . .  i t )  of A(A) we associate a path product (dual path 
product) 

w(p) = w(i o, i 1 ) ® w(i l, i 2) ®--. @ w(it_ 1, it) 

( w'(p) = w(io, il)®'w(i 1, i2)®'... ®'w(i t_ l, it)). 

The matrix A is called definite (dually definite) if (~cW(C)= 1 (@'cw'(c) = 1) where 
the summation is taken over all elementary circuits in A (A). The matrix F(A)= 
A®A2®. . .  ®A n is called metric matrix generated by A. 

P r o p o s i t i o n  4. (a) Let A • G ° ( n , n ) .  I f  V(A)~O (V'(A)--/:O), then A is (dually) 
definite. 

(b) Let A e G(n, n). Then V(A) --/:0 (V'(A) ~0)  i f  and only i f  A is (dually) definite. 

P r o p o s i t i o n  5. I r A  e G(n, n) is definite, then F(A) has at least one diagonal element 
equal to 1. Moreover, every linear combination over S with the coefficients from 
G o f  the columns o fF(A)  having the diagonal element equal 1 is an element o f  V(A). 

In correspondence with [3] we say that the matrix A e G°(n, n) is 
- increasing, if A ® X > X  for all X •  G °, 
- decreasing, if A Q ' X < X  for all X e  G °, 
- idempotent, if A ® A  =A, 
- dually idempotent, if A®'A =A, 
- projection matrix, if there exists B e  G°(n, m) such that A =BQ'B*, 
- dual projection matrix, if there exists B e  G°(n, m) such that A =B®B*. 

Hence, Proposition 3 may be formulated as follows: every (dual) projection 

matrix is (dually) idempotent. 

P r o p o s i t i o n  6. The matrix A • G°(n, n) is increasing (decreasing) i f  and only i f  
(A)ii > 1 (<  1) for  all i= 1,2 . . . . .  n or, equivalently A Q I = A  (AQ' /=A) .  

2 .  C o m m o n  e i g e n v e c t o r s  a n d  e i g e n - b i v e e t o r s  

P r o p o s i t i o n  7. Let A, B • G°(n, n). Then 
(i) V(A)n V(B) c V(A®B) and 

(ii) if, moreover, A , B  are increasing, then V(A®B) c_ V(A)n V(B). 
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Proof.  (i) Let A ® X =  X =  B®X. Then 

(,4 ®B)®X = A ®X®B®X = X ® X  = X. 

(ii) Let (A®B)®X=X.  Then A ® X ® B ® X = X  and thus A®X<_X, B®X<_X. 
But since, A, B are increasing, the last inequalities are in fact equalities. [] 

By the same way the following proposition can easily be verified. 

Proposition 8. Let A, B ~ G°(n, n). Then 
(i) V'(A) n V'(B) c_ V'(A ®'B) and 

(ii) if, moreover, A ,B  are decreasing, then V'(A®'B)c_ V'(A)®'V'(B). 

Corollary 9. I f  A, B ~ G°(n, n) are increasing, then 

V(A) n V(B) = V(A ®B) 

and if  A, B are decreasing, then 

V'(A)N V'(B)= V'(A®'B). 

Let A ~ G°(2n, 2n). The elements of the set 

V2(A) = {X= (xl . . . . .  Xzn)T~ V(A)lxi=x,+~; i= 1,2 . . . . .  n}, 

resp. 

Vd(A)= {X=(xl . . . . .  X2n)T ~ V'(A) lxi=Xn+i; i= 1,2 . . . . .  n} 

are called eigen-bivectors and dual eigen-bivectors of the matrix A, respectively. We 
shall use the following notations: 

. , / 0 "  o:) 
where O, resp. I are the zero and the unity matrix from G°(n, n), respectively. 

Proposition 10. I f  A ~ G°(2n, 2n) /s 
(i) increasing, then V2(A)= V(A+), 

(ii) decreasing, then V~(A)= V'(A-). 

Proof.  (i) Let Z~  V2(A). Then Z = ( x )  where X~Gn and 

Hence, 
I X I X 
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Let Z 6  V(A+). Then Z=(Vw) where U, W ~ G n  and 

Thus, 

A Q ( U ) < ( U ) w  - and ( W ) < ( U w ) _  . 

Since A is increasing and _< is antisymmetric, the last inequalities are in fact equali- 
ties. Hence, U =  W and Z = (Uw) ~ Vz(A). 

Part  (ii) can be verified similarly and dually. [] 

3. Necessary conditions of the solvability of linear extremal systems 

Let A, B ~ G(m, n). Consider the system of  equations 

(I) A Q X = B ® X .  

Its solutions are always the zero vector f rom G ° and every vector f rom G o at least 
one component  of  which is equal to co. These solutions will be called trivial and all 
other nontrivial. A general procedure for solving such (and slightly more general) 
systems, as well as for minimization of  isotone function over their solution sets, has 
been derived in [2]. But this procedure works too long in the case when the solution 
set is empty. To avoid this we shall now look for some (at least necessary) solvability 
conditions of  (I). 

Theorem 1. I f  (I) has a nontrivial solution, then C-  & dually definite where 

A A * 

Proof.  Let X = ( x l  . . . . .  xn) T be the nontrivial solution of (I) and let xt~O.  Then 
there exists Z = (zl . . . . .  Zm) T ~ G ° satisfying 

A ® X = Z = B ® X .  (1) 

At first we show that Z ~  Gin. Take an arbitrary i t  {1,2 . . . . .  m}. Clearly Zi:/::0o and 

zi = max{(A)u®x j I j =  1,2 . . . . .  n} >-(A)itQxt~ G 

because x t is an element of  G and all (A)i t are in G. That ' s  why zi ~, G. The equa- 
tions (1) can be rewritten blockwise as 
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Hence,  using Propos i t ions  1 and 2 we get 

Thus  ( z ) e  V~(C). But V~(C)c_ V ' (C-)  which implies together  with Propos i t ion  4 
tha t  C -  is dual ly  definite. [] 

The  following example  will i l lustrate the applicabi l i ty  o f  T h e o r e m  1. 

We compu te  that  

Example  1. Take  the in terpre ta t ion based on ~71 and consider the system (I) with 

(0. ,.) 
C - =  ® ® I*  0* = ½ 1 1 " 

1 1 

Since w'(1, 3, 1) = 1 • ½ = ½ < 1, we conclude that  the considered system has only trivial 
solutions.  

Re mark .  The  condi t ion in T h e o r e m  1 is not  sufficient because for  

the system (I) has only trivial solutions but  C -  is dually definite. 

Consider  now the system 

(II)  A ® X  = B® Y 

x 0 where A e G(m, n), B e G(m, k). The vector  ( v ) e  G, +k is its solut ion whenever  (x)  
is a zero vector  or at least one c o m p o n e n t  of  bo th  X and Y is equal  to oo. These 
solutions will be called trivial and all o ther  nontrivial .  Note  that  (II)  cannot  be 
regarded as a special case o f  (I). 

T h e o r e m  2. I f  (II)  has a nontrivial solution, then the matrix (A ®A * ) ® ' ( B ® B * ) / s  
dually definite. 

Proof .  Let x 0 (y) EGn+ k be a nontr ivial  solut ion o f  (II).  One can verify that  
Z = A @ X = B ®  Y~ G m by the same way as in the p r o o f  o f  T h e o r e m  1. Propos i t ion  
1 yields that  

A ® ( A * ® ' Z ) = Z  and B®(B*®'Z )= Z .  
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According to Proposition 2 we have 

Z= AQ(A *®'Z)< (A®A *)@'Z < Z 

and 

Hence 

Z = B®(B*Q'Z) <_ (BQB*)®'Z<_ Z. 

25 

Z e V'(A ®A *)O V'(B®B*). 

The last set is a subset of V'((A®A*)O'(B®B*)) due to Proposition 8. Thus, 
according to Proposition 4 the matrix (AQA*)Q'(B®B*) is dually definite. [] 

Example 2.- Take the same interpretation as in Example l and 

A =  (12 24 ) ,  B=(32 21). 

Hence, 

C=(A®A*)®'(B®B*)=(I~ ~). 

Since W ' ( 1 , 2 , 1 ) = l ' ~ = l < l  we conclude that the considered system has only 
trivial solutions. 

Remark. The condition in Theorem 2 is not sufficient because the system (II) with 

A =  , B=  

has only trivial solutions but the matrix (ANA*)®'(B®B*) is dually definite. 

4. A condition which is in one special case necessary and sufficient 

Obviously, an idempotent matrix need not to be definite (e.g. zero matrix). 

Proposition 11. An idempotent matrix A c G°(n, n) having at least one column 
from Gn is definite. 

Proof. Let A ( j ) ~ G ,  be the j th  column of the idempotent matrix A. Then 
A ®A ( j )=  A (j) and thus A ( j )~  V(A). The assertion follows now from Proposition 
4. [] 

Theorem 3. Let A, B ~ G(n, n) be increasing and idempotent. Then the following 
statements are equivalent: 
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(i) there exists a nontrivial solution of the system (II), 
(ii) A ®B is definite, 

(iii) there exists a nontrivial solution of the system (I). 

Proof. ( i )=  (ii) Let ( x ) e  GO be the nontrivial  solution o f  (II). Thus the vector Z 
defined by 

A ® X = Z = B ® Y  

is an element o f  Gn (for details see the beginning o f  the p r o o f  o f  Theorem 1). The 
matrices A,B  are definite according to Propos i t ion  11 and F(A)=A,  F(B)=B 
because A , B  are idempotent .  The definiteness o f  A , B  yields that  their diagonal 

elements are less or equal to 1 (these elements are weights o f  the circuits o f  the length 
1 in A (A) and A (B)). Thus,  Propos i t ion  6 gives that  all diagonal elements o f  A and 
B are 1. According to Propos i t ion  5 then Z ~  V(A)A V(B) and due to Propos i t ion  
7 also Z~ V(A®B). Finally, f rom Propos i t ion  4 we get that  A®B is definite. 

(ii)=(iii) Let A QB be definite. Since A , B ~  G(n,n), Proposi t ion  4 yields that  

V(A®B)~O. But A,B are increasing and thus V(A)AV(B)~O (Corollary 9). 
Hence,  there exists X ~  V(A)N V(B), i.e. A ® X = X a n d  B ® X = X .  We see that  X i s  
the nontrivial solution o f  (I). 

(iii) = (i) This implication is trivial. []  

Corollary. I f  A, B ~ G(n, n) are projection matrices, then the statements in Theorem 
3 are equivalent. 

Proof. Every project ion matrix is increasing according to Propos i t ion  2 and idem- 
potent  due to Propos i t ion  3. []  
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