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Preface

A brief biography and appreciation of Miroslav Fiedler
with a bibliography of his books and papers

We present a brief biography and appreciation of Miroslav Fiedler, to whom this special
issue of Linear Algebra and Its Applications is devoted on the occasion of his 80th birthday,
accompanied by a current bibliography of his books and papers.

Miroslav Fiedler was born on April 7, 1926 in Prague. His mathematical career started at the
Charles University in Prague where he earned the degree RNDr. (Rerum Naturalium Doctor)
in 1950. Continuing his studies at the Mathematical Institute of the Czechoslovak Academy of
Sciences he received two scientific degrees, CSc. (Candidate of Sciences, equivalent of Ph.D.)
and DrSc. (Doctor of Sciences) in 1955 and 1963, respectively. He was appointed a full professor
at the Charles University in 1965, at the age of 39. Since the early days of his research career,
his favourite subjects have been geometry, graph theory, linear algebra, and their applications
to numerical computations. Through 2006, he has authored or co-authored six books (two of
which have been published in English) and close to 200 of papers in these and related fields (a
bibliography is attached). Some of his results have shaped entire research areas, and his work
has deeply influenced scientific computing in general. For many years he lectured at universities
throughout the former Czechoslovakia. He always cared about talented students on the high school
level – for 50 years he has been a leading figure in organizing mathematical competitions including
the Mathematical Olympiad.

M. Fiedler’s public service activities include not only chairmanships of Czechoslovak and
Czech Committees for Mathematics but a remarkable list of journals where he served as a member
of editorial board, distinguished editor, honorary editor or chief editor. For 26 years he was a
member of Householder Symposia Steering Committee.

M. Fiedler has been awarded the Czechoslovak National Prize (jointly with V. Pták) in 1978,
B. Bolzano Medal in 1986, Hans Schneider Prize of the International Linear Algebra Society in
1993, and the honorary medal De Scientia et Humanitate Optime Meritis, the highest possible
award of the Academy of Sciences of the Czech Republic, in 2006.

For many years, M. Fiedler shared his office with another distinguished mathematician, Vlas-
timil Pták. Their life-long friendship and collaboration (Vlastimil Pták passed away in 1999)
represents an example of personal and scientific relationship of exceptional value, and it will
certainly be recognized by historians of mathematics. Since there is a nice survey of the scientific
contributions of M. Fiedler and V. Pták published 10 years ago in this journal (Miroslav Fiedler
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and Vlastimil Pták: Life and Work, by Z. Vavřín, 223/224: 3–29 (1995)), we will concentrate on
some of the newer results of M. Fiedler. Some of these results were obtained in collaboration with
T. Markham, Z. Vavřín and others. It is remarkable that since 1995 more than 40 of his articles
and two of his books have appeared, despite his being well past the age at which most people
retire. The results cluster around several main topics.

1. Matrix theory with a focus on special matrices

A quest for a deeper insight into properties of various classes of special matrices has continued
to be one of the favourite research fields of M. Fiedler. In particular, investigation of matrices
possessing consecutive-row and consecutive-column properties over a ring with identity led to
development of a factorization theorem utilizing bidiagonal matrices [160]. These results were
further developed and applied in a series of papers that resulted in a new generalization of totally
positive matrices [166], and a new generalization of totally nonnegative matrices [173]. This
research was continued by investigations on basic matrices, i.e. those matrices with subdiagonal
and superdiagonal rank at most one [178], complementary basic matrices [180], generalized
oscillatory matrices [174] and treatment of sign-nonsingular matrices [185].

In [26] Fiedler and Pták introduced the class of Z-matrices and they substantially developed
the theory of M-matrices. Many of the new results return to this classical field. Matrices of e-
simple digraphs, which were introduced by M. Fiedler in the sixties [31], were further analyzed
in [182]. This lead to a new algorithm for their inversion. Assumptions of the algorithm are in
some cases trivially satisfied, for example, if the matrix having e-simple digraph is an M-matrix.
Another paper considers a new generalization of the Bergström inequalities for some M-matrices
[163]. The new block generalization of comparison matrices belongs to this group of results as
well [159]. The new characterization of matrices whose inverses are weakly diagonally dominant
symmetric M-matrices (inverse M-matrices) gives as a corollary the known theorem that a strictly
ultrametric matrix is nonsingular and an inverse M-matrix [161].

Other results cover simple generalizations of biorthogonal systems to sets of linearly depen-
dent vectors based on the Moore–Penrose inverse, new factorizations of companion matrices of
polynomials of order n into a product of n matrices [175], new results for equilibrated Monge
matrices related to their eigenvalue properties [172], and analysis of completion problems for
2-subtotally positive matrices and their additive counterparts, anti-Monge matrices [186].

2. Computational and numerical aspects in linear algebra

M. Fiedler was one of the first to recognize the importance of graphs for studying sparse linear
systems. He considered this topic already in [31] and [38], then again in [47,76,82], and returned to
it recently in [183]. However, the most important of Fiedler’s contributions to this area was in his
discovery of properties of the second smallest eigenvalue of the Laplacian matrix of a graph [60].
He called it algebraic connectivity and studied [73] properties of the corresponding eigenvector.
This theoretical approach, as is usual in mathematics, found its applications much later, not only
in graph theory but in many other fields. In numerical mathematics, the remarkable properties of
the eigenvector for this eigenvalue (now generally called Fiedler vector) and the related spectral
graph partition became basis of spectral partition methods.

Although M. Fiedler is mostly a theoretician, his work has and will have, as mentioned above,
a significant impact in matrix computations.
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One of the new trends in this field is to describe sparsity of system matrices using unions of
some simple structures. Consequently, results for particular structurally simple matrices may find
important applications there.

Nice new results for generalized Hessenberg matrices were developed jointly with Z. Vavřín,
in particular, in studying invariance of a premultiplication or postmultiplication by a nonsingular
triangular matrix [179], with a link to totally nonnegative matrices.

Another interesting paper deals with the new measure for irreducibility of stochastic matrices
[147]. This measure can be used to estimate the second largest eigenvalue of a weighted graph,
which represents a very practical subject.

Further results in this category include derivation of new bounds for some functions of eigenval-
ues of Hadamard products of matrices [148], showing new conditions for reducibility of matrices
into a row-rhomboidal form, defining new positive definite geometric mean of positive definite
matrices [156], and investigation of mutually orthogonal vectors which are eigenvectors of acyclic
matrices [157]. All these results have strong potential for practical applications.

3. Euclidean geometry

Deep interest in Euclidean geometry is clearly visible behind many new developments of
M. Fiedler. In particular, new results on symmetric matrices with exactly one positive eigenvalue,
so-called elliptic matrices, were provided [168]. These results allow explicit construction of the
elliptic matrices from a given spectrum or from the complete interlacing system.

His long-term interest in the Laplacians of graphs culminates in the paper [184] on
simple geometric interpretation of the Laplacian of a graph including interpretation of its eigen-
vectors. This interpretation makes use the notions of quadrics geometry in a related Euclidean
space.

An overview of Fiedler’s results in Euclidean geometry can be found in his chapter [188,
Chapter 66] of the new reference book Handbook of Linear Algebra.

The breadth and scope of M. Fiedler’s work was well summarized by a colleague who remarked
that it is always intimidating to see him in the audience when one is speaking at a conference, as
there is a good chance he will very politely point out that a much shorter proof of the main result
can be obtained from one of his earlier results. Originality, mathematical elegance, and vision are
the hallmarks of the work of Mirek Fiedler.
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Publications of Miroslav Fiedler

Books

[B1] K. Čulík, V. Doležal, M. Fiedler, Combinatorial Analysis in Practice (Czech), SNTL, Praha, 1967.
[B2] M. Fiedler, J. Zemánek, Selected Problems of the Mathematical Olympiads (Czech), SPN, Praha 1976.
[B3] M. Fiedler, Special Matrices and Their Applications in Numerical Mathematics (Czech), SNTL, Praha 1981.
[B4] M. Fiedler, Special Matrices and Their Applications in Numerical Mathematics, Martinus Nijhoff Publishers and

SNTL, Dordrecht and Praha 1986.
[B5] M. Fiedler, Matrices and graphs in Euclidean geometry (Czech), Dimatia, Prague, 2001.
[B6] M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, K. Zimmermann, Linear Optimization Problems with Inexact Data,

Springer Science, New York, 2006.

Articles

[1] M. Fiedler, Hyperosculating points of algebraic plane curves and their generalization in Sr (Czech), Thesis, Charles
University, Praha 1950.

[2] M. Fiedler, Solution of a problem of Professor E. Čech, (Czech) Čas. pěst. mat. 77 (1952) 65–75.
[3] M. Fiedler, On certain matrices and the equation for the parameters of singular points of a rational curve, (Czech)

Čas. pěst. mat. 79 (1952) 243–265, 321–346.
[4] M. Fiedler, L. Granát, Rational curves with the maximum number of real nodal points, (Czech) Čas. pěst. mat. 79

(1954) 157–161.
[5] M. Fiedler, Geometry of the simplex I, (Czech) Čas. pěst. mat. 79 (1954) 270–297.
[6] M. Fiedler, Geometry of the simplex II, (Czech) Čas. pěst. mat. 80 (1955) 462–476.
[7] M. Fiedler, Geometry of the simplex III, (Czech) Čas. pěst. mat. 81 (1956) 182–223.
[8] M. Fiedler, Über das Gräffesche Verfahren, Czechoslovak Math. J. 5 (80) (1955) 506–516.
[9] M. Fiedler, Numerical solution of algebraic equations which have roots with almost the same modulus, (Czech)

Aplikace mat. 1 (1956) 4–22.
[10] M. Fiedler, V. Pták, Über die Konvergenz des verallgemeinerten Seidelschen Verfahrens zur Lösung von Systemen

linearer Gleichungen, Math. Nachrichten 15 (1956) 31–38.
[11] M. Fiedler, Numerical solution of algebraic equations by the Bernoulli–Whittaker method, (Czech) Aplikace mat.

2 (1957) 321–326.
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[12] M. Fiedler, On some properties of Hermitian matrices, (Czech) Mat.-fyz. časopis SAV 7 (1957) 168–176.
[13] M. Fiedler, Über qualitative Winkeleigenschaften der Simplexe, Czechoslovak Math. J. 7 (82) (1957) 463–478.
[14] M. Fiedler, Einige Sätze aus der metrischen Geometrie der Simplexe in Euklidischen Räumen, Schriftenreihe d.

Inst. f. Math, DAW, Heft 1, Berlin, 1957, pp. 157.
[15] M. Fiedler, J. Sedláček, On W-bases of directed graphs, (Czech) Čas. pěst. mat. 83 (1958) 214–225.
[16] J. Bílý, M. Fiedler, F. Nožička, Die Graphentheorie in Anwendung auf das Transportproblem, Czechoslovak Math.
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441–455.
[18] M. Fiedler, V. Pták, On an iterative method of diagonalization of symmetric matrices. (Czech) Čas. pěst. mat. 85

(1960) 18–36.
[19] M. Fiedler, A note on positive definite matrices, (Czech) Čas. pěst. mat. 85 (1960) 75–77.
[20] M. Fiedler, V. Pták, Some inequalities for the spectrum of a matrix, Mat.-fyz. časopis SAV 10 (1960) 148–166.
[21] M. Fiedler, Some estimates of spectra of matrices, in: Symp. PICC, Roma, 1960, pp. 33–36.
[22] M. Fiedler, F. Nožička, On a criterion in the theory of the transportation problem, (Russian) Czechoslovak Math.

J. 11 (86) (1961) 204–212.
[23] M. Fiedler, Über eine Ungleichung für positiv definite Matrizen, Math. Nachrichten 23 (1961) 197–199.
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2 (1) (1961) 3–51.
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[28] M. Fiedler, Relations between the diagonal elements of an M-matrix and of its inverse, (Russian) Mat.-fyz. časopis
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[48] M. Fiedler, Metric problems in the space of matrices, Programmation en mathématiques numérique, Proc. Symp.,

CNRS, Paris, 1968, pp. 93–103.



178 Preface / Linear Algebra and its Applications 421 (2007) 173–181
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[59] M. Fiedler, E.V. Haynsworth, Cones which are topheavy with respect to a norm, Linear and Multilinear Algebra 1

(1973) 203–211.
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(1974) 25–29.
[66] M. Fiedler, Some problems of numerical algebra, (Czech) Algoritmy vo výpočtovej technike, SVTS, Bratislava,
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