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ABSTRACT 

Let (B, < ) be a dense, linearly ordered set without maximum and minimum and 
( @, 8) = (max, min). We say that a matrix A has strongly linearly independent (SLI) 
columns if for some b the system A8r = b is uniquely solvable. An (n, n) matrix 
A = (a, j) is said (a) to be strongly regular if it has SLI columns; (b) to have a strong 
permanent if the equality 

per(A) = & a,.,(,, 
i=l 

holds for unique BEP, [per(A) is eacp @,n=,ui,n(,j and P, is the set of all 
permutations of the set { 1,2,. , n }]. We piove: (i) that an (m, n) matrix has SLI 
columns if and only if it contains an (n, n) submatrix which is strongly regular [we 
derive an 0( mn log n) algorithm for checking this property], (ii) that every matrix 
with strong permanent is strongly regular, and (iii) that a solution to the bottleneck 
assignment problem for strongly regular (n, n) matrices can be found using 
0( n2 log n) operations. 

1. INTRODUCTION 

The quadruple 93 = (B, @ , 8, < ), or B itself, is called a bottleneck 
algebra (BA for short) if (B, < ) is a nonempty, linearly ordered set without 
maximum and minimum and EB, 8 are binary operations on B defined by 
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a@b=max{a,b}, 

a@~=min{a,b}. 

Among the most important interpretations of BA are those based on the 
following linearly ordered sets ( < is everywhere the obvious order of reals, 
and -co<l<u<+co): 

where Q is the set of rationals, Z is the set of integers, and 

P(e)= 
i 

i pia’; p0 ,..., p,integers, r=0,1,2 ,... , 

i=O I 

cx being any (fixed) transcendental number; cf. [lo]. We denote by 
.G?r, 9?s, _%?a, ~3’~ the BA based on (l)-(4) respectively. 

Some practical problems lead to computations in a bottleneck algebra. 
For example, the permanent of an (72, n) matrix A = (aij) in .??Jr, i.e. 

where the summation is taken over all permutations of the set { 1,2,. . . , n }, 
corresponds to a weighted matching in a complete bipartite graph with the 
maximal possible lowest score. This corresponds to those situations where the 
overall performance of a team is measured by the worst performance of an 
individual member-e.g., if each of n workers performs one of n tasks on an 
assembly line, then the speed of the line equals the speed of the slowest 
worker; see [S]. The task of finding such an assignment is a special case of the 
algebraic assignment problem investigated e.g. in [l] and [lo]. 

As another example consider the transportation transmittance problem. If 
the transportation route consists of two parts UV and VW (say V is a 
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transship point), then the total route transmittance is equal to the minimum 
of the transmittances of W and VW. Similarly, in a transportation network 
with U,,..., U, as dispatching points, Vi,. . . , V, as transship points, and 
W r,. . . , W,, as destination points, denoting the transmittances of UVi and 
VjWk by a i j and bjkr respectively (i = 1,. . . , 1; j = 1,. . . , m; k = 1,. . . , n), we 
have that the total transportation transmittance between Vi and W, is equal 
to 

Cik = max 
j=l,...,m 

min{ ajj, bjk} 

for all i = 1,. . . , I and k = 1,. . ., n. This expression can be put in a more 
convenient form by using the obvious extension of $ and @ to matrices in 
L%i: 

where we denote by A, B,C the matrices (aij),(bj,),(ci,). 

2. DEFINITIONS AND BASIC PROPERTIES 

Clearly, a bottleneck algebra (B, @, ~3,) < ) is a distributive (infinite) 
lattice. Among its well-known properties we need to recall that a < b and 
c 6 d imply 

and 

for all a, b, c, d E B. 
The set of all (m, n) matrices over B will be denoted by B(m, n), and 

B( m, 1) by B,. The elements of B, will be called vectors. Extend @, 8, and 
< to matrices over B as in conventional linear algebra. Many properties of 
such an extension can be found in [lo], and we mention here the following 
two: 

if C<D, then A@C < A8D and CBA < D@A 

and 

A@(B@C)=(A@B)@(A@C) 

whenever the indicated operations exist. 
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The main results are proved under the assumption of density of the 
ordering <, that is to say, 

(WY-) x<y ==a (3za3)x<z<y. 

Thus .G?,, .?8s, 9Zd are dense, whereas %?a is not. 
Suppose m and n are positive integers. The set of all permutations of the 

set {1,2,..., n } is denoted by P,,; id means the identity permutation. If 
A = (aij) E B(m, n), u E Pm, T E P,,, then A(o, V) denotes the matrix C = 
(cij) E B(m, n) such that cij = u,(~,,,(~) for all i and j. If u E P,, A = (aij) 
E B(n, n), then the weight of (I with respect to A, i.e. 

al, o(l) Q . . * Qa”,o(“)Y 

is denoted by w(A,u). Since per(A)= $~~Pw(A,u)=max.,,“~(A,u), 
we have per(A) = w(A, u) for at least one u “E P,. We say that A has a 
strong permanent if per(A) = w(A, u) holds for only one u E P, (or, equiv- 
alently: if the corresponding bottleneck assignment problem has unique 
solution). Note that several efficient algorithms can be used in order to check 
the uniqueness of the algebraic assignment problem solution-some of them 
can be found in [2] and [4]. 

By max(A) we denote the set 

{uEP~; w(A,u)=per(A)}, 

and for any set S the symbol ISI means the number of its elements. Hence the 
property of possessing a strong permanent can be expressed by the equality 
jmax( A)1 = 1. 

In the following we deal with (m, n) matrices, and we assume every- 
where that m and n are given positive integers. For short we denote 
{I,2,..., m} by M and {1,2,..., n } by N; Ai, where i E M, stands for row i 
of the matrix A. 

3. CLASSIFICATION OF MATRICES 

Systems of simultaneous linear equations (or briefly, linear systems) of the 
form 

A@x=b, (5) 
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where A E B(m, n), b E B,, have been treated e.g. in [9] and [lo]. But these 
works do not provide any information about the size of the solution set. We 
give now the answer in the case when < is dense. For this purpose denote 
the solution set of (5) by S(A, b) and 

T(A)= {IS(& bEB,}. 

LEMMA 1. OET(A) foreverymuttixA=(aij)EB(m,n). 

Proof. It suffices to take b = (4,. . . , q)T E B,, where 4 is an arbitrary 
element of B greater than max{ a i j; i E M, j E N }. n 

LEMMAS. cc E T(A) for every matrix A = (aij) E B(m, n). 

Proof. Let b be the first column of A. Then every vector x = 

(X 1,...,~,)T~B,withrl~maxi,,ai,andxj~mini,,ai,forj#1isan 
element of S(A, b). w 

LEMMA 3. Let < be dense. Zf IS(A, b)l> 1, then jS(A, b)l =co for 

every A E B(m, n) and b E B,. 

Proof. Supposethat r,yES(A,b), x#y.Thenalsoz=x$y~S(A,b) 
since A@(x@y)=(A@x)@(A@y)=b@b=b. Clearly, x<z, y<z and 
either x # z or y f z. Let us suppose without loss of generality that x # z. 
Then it follows from the assumption of density that an infinite number of 
vectors v satisfying x < v < z exists. But each of these vectors is in S(A, b), 

because 

b=A@x<A@vbA@z=b. n 

As a consequence of Lemmas l-3 we have 

THEOREM 1. Let < be dense. Then 

for every matrix A. 

(6) 
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REMARK 1. It is easy to see that both classes of matrices indicated in (6) 
are actuaIly nonempty. Nevertheless, the following example shows that 
Theorem 1 does not hold true in general without the assumption of density. 
To see this put, in 9Ys, 

and suppose that x = (xi, rs)r E S(A, b). Then it follows from the first 
equation that xi = 2, and the inequalities x2 < 2 and x2 > 1 can be derived 
from the second and third equation, respectively. Hence, S(A, b) = 
((2, Kw)T}. 

Note that after introducing the notation S( A, b) and T(A) in linear 
algebra, we get a classification of matrices which can be conveniently 
described using the concept of rank: supposing that A is a real (m, n) matrix, 
clearly I’( A) c (0, 1,~ }, and denoting the rank of A by r(A), we have that 
0 E T(A) means r(A) < m, 00 E T(A) means r(A) < n, and 1 E T(A) means 
r(A) = n, so that e.g. { 1, co} g T(A) for any matrix A. All possibilities for 
T(A) in the linear as well as in the bottleneck case are described in Table 1. 

In linear algebra several methods for computing the rank and hence also 
for finding T(A) exist (Gaussian elimination etc.). A similar question arises in 
the bottleneck case. The results of this paper enable one to decide effectively 
whether T(A) = (0, co} or T(A) = {O,l, co} for a given matrix A in a dense 
bottleneck algebra-or, equivalently, whether A has full column rank. 

We shall say that the columns of the matrix A E B(m, n) are strongly 
linearly independent (SLI for short) if 1 E T(A); moreover, if m = n, then A 
will be called strongly regular. It is clear that one column is always SLI (it 

T(A) 

TABLE 1 

Linear case Dense bottleneck case 

- - 
n =r(A) = m - 

:03”1: m =r(A) < n - 

n =r(A) -C m 
r(A) < min(m, n) Columns not SLI 

- - 
- Columns SLI 
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suffices to take b = (9,. . . , q)T where 4 E B is less than the least element of 
the column). 

A characterization of strong regularity was presented in [3]; moreover, an 
efficient algorithm for checking this property was derived. We recall briefly 
the main result of [3]. 

A matrix A = (ai j) E B(n, n) for n > 1 is said to be trapezoidal if 

akk’ 63 6 aij 

i=l j=i+l 

for all k E N. Every (1,l) matrix is trapezoidal by definition. Matrices 
A, C E B( m, n) are said to be equivalent (A - C) if one of them can be 
obtained from the other by permuting the rows and columns. It is evident 
that equivalence constitutes an equivalence relation. 

THEOREM 2. Let A E B( n, n). Then a necessary condition for A to be 
strongly regular is the existence of a trapezoidal matrix equivalent to A. 
Moreover, if < is dense, then this condition is also sufficient. 

The concepts of SLI and strong regularity were introduced originally in 
[6] in the same way as here, but in a structure where @ is defined by the 
assumption that (B, @ , < ) is a linearly ordered, commutative group (and @ 
plays the same role as in BA). We shall refer to this structure as the “group 
case.” Strong regularity in the group case was treated in [2], and the main 
results for square matrices can be formulated as follows: 

(i) a necessary and sufficient condition for the columns of an (m, n) 
matrix A to be SLI is the existence of a strongly regular submatrix of A of 
order n; 

(ii) a necessary condition for a square matrix A to be strongly regular is 
that A has a strong permanent, and moreover, if < is dense, then this 
condition is also sufficient. 

The aim of the present paper is to prove in a dense bottleneck algebra: 

(i) the same necessary and sufficient condition for the columns to be SLI 
as in the group case, as well as an efficient method for checking this 
property; 

(ii) that the concepts of strong regularity and strong permanent are 
connected here too, though they are not equivalent in general-more pre- 
cisely, strong permanent is a sufficient condition for strong regularity, but it 
is necessary only for matrices of order 2. 
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4. AN (m, n) MATRIX WITH SLI COLUMNS CONTAINS A STRONGLY 
REGULAR SUBMATRIX OF ORDER n 

(b 

Throughout this section we suppose that A = (ai j) E B( m, n), b = 

1,. . . , b,,,)T E B, are given, and we denote for all j E N 

Mj= (i E M; aij> bi}, 

tij = {i EM; aij = bi}, 

Xj=min{b,; HEMP}, 

Ii = {i E Mj; bi = Tj}, 

Kj= ( i E iii; bi < xi L 
L, = zj u Kj. 

We recall some results proved in [3] which will be helpful in the later 
theory. 

LEMMAS. Zf IS(A, b)l= 1, then 

(a) Mj#O forall jENand 

(b) (Xl,..., XJT E S( A, b). 

LEMMA 5. Let m = n. Then JS(A, b)l = 1 if and only if the relations 

ai,n(i) >bi> @ ‘i,n(j)“j for all i E M 
jGN-{i} 

are satisfted by at least one P E P,,. 

LEMMA 6. Zf IS(A, b)l = 1, then {L,,. .., L,} is a minimal covering 

of M. 

Proof. At first suppose {L,,.. ., L,} is not a covering, say i E M - 
UjcNLj. Then A,@? < b,, since for every j EN either aij < bi, or aij = bi 

but Xj < bi (because i P Kj), or aij > bi but Xi < bi (because i P Zj). 
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Now suppose { L,, . . . , L, } is a covering of M but not minimal, say 
U j E N_ ck,Lj = M for some k E N. Then every vector x = 

(5 
_ 

1,. . . , Xk- 1’ a, Xki_ 1,. *. 2 %JT with (Y-cX~ is in S(A,b), because A,@x< 
Ai@?=biforiEM, and equality follows from the existence of 1 E N - {k } 

for which i E L,, because in this case either ail > b, = gxI or ai, = bi < XI. n 

Lemma 6 shows that if JS(A, b)l = 1, then for every k E N an index 
i(k) E M satisfying 

i(k)E U Lj 
jEN- (k) 

exists. Naturally, we can permute the rows of A so that i(k) E N for all 
k E N and so that the right hand side constants of the first n equations are 
ranked nondecreasingly. Finally, since i(l), . . . , i(n) are pairwise different, we 
can permute the columns of A so that i(k) = k for all k E N. Now we say 
that the system (5) is in a normal form. Thus for any system (5) in normal 
form we have 

b,< b,< ... <b, 

and 

iEL,- IJ Lj 
j E N ~ ( i } 

for all i E N. 

LEMMA 7. If (S(A, b)l = 1 and (5) is in normal form, then 

uii~bi~ ~ 
jEN_ (i} 

uij@bj (7) 

holds for all i E N. 

Proof. The first inequality in (7) for i E N follows from i E Li. 

To prove the second inequality for any i E N, take an index j E N - { i } 

with a i j > bi (otherwise the assertion is trivial). Thus bi > min{ b,; ulj > b, } 
= Xi. But j E Lj, and thus Xi > bj, both when j E Kj and when j E Zj. 
Hence bi >, bj, which yields that 

uij@bj< bi. n 
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THEOREM 3. A sufficient condition for A to have SLZ columns is that A 
contains a strongly regular submutrir of order n. Moreover, if < is dense, 
then this condition is also necessay. 

Proof. Suppose A contains a strongly regular submatrix C of order n, 
and without loss of generality let C consist of the first n rows of A. Denote 
by y and c =(cl,..., c,)~ the vectors satisfying S(C, c) = { y }. Put bi = ci for 
i = l,..., n, and bi=Ai@y for i=n+l,...,m. Then evidently S(A,b)= 

{YI. 
Nowsuppose G isdenseand IS(A,b)l=lforsomeb=(b,,...,b,,)r~ 

B,,,. Without loss of generality let A@x = b be in normal form. We show that 
the submatrix of A consisting of its first n rows is strongly regular. According 
to Lemma 5 it is sufficient to find d 1,. . . , d n E B, satisfying 

aii > d, > @ aij@dj 
jEN- (i) 

for all i E N. We take arbitrary d 1,. . . , d, fulfilling the following conditions: 

bl>dl> 6 alj, 
j=2 

bi>di>di_l@ 4 aij 
j=i+l 

for i = 2,. . . , n. Clearly, in order to guarantee that d 1,. . . , d, are well defined 
it suffices to prove the inequality 

bi > 6 
j=i+l 

aij 

for all i E N. But bi < a,, for some I > i would imply bi > Xl, because neither 
i E K, nor i E I,. Thus, using XI > b, (since 1 E L,), we get bi > b,, which is 
impossible‘ for 1 > i. 

Now it remains to verify (8) for every i E N. The first inequality follows 
from aii 2 bi (since i E L,), and one can easily see that 

i-l 

d,> @ dj@ 6 
i-l 

j=l j=i+l 

aij > IFI aij@dj@ 6 
j=i+l 

aij@dj 

= $ aij@dj. 
jsN-{i} 

W 
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The natural number r(A) defined by the relation 

r(A) = max{ r; there exists C E R(r,r), 

C a strongly regular submatrix of A ) 

will be called the rank of the matrix A. Hence we have immediately 

COROLLARY of Theorem 3. Let < be dense. Then the columns of A are 

SLZ if and only if r(A) = n. 

5. AN ALGORITHM FOR CHECKING STRONG 
LINEAR INDEPENDENCE 

Theorems 2 and 3 imply that assuming the density of <, A E B(m, n) 
has SLI columns if and only if A is equivalent to a matrix containing a 
trapezoidal submatrix of order n. Using this result, we derive an algorithm for 
checking strong linear independence which uses successive reductions of the 
problem for an (m, n) matrix to the same problem for an (m - 1, n - 1) 
matrix. As a result, our algorithm provides a trapezoidal (n, n) submatrix or 
indicates that such a submatrix does not exist. 

We note at first that according to our definitions every matrix with just 
one column has SLI columns and any of its (1,l) submatrices is strongly 
regular. Furthermore, it follows from Lemma 6 that m > n is a necessary 
condition for (5) to be uniquely solvable (and hence also for the columns to 
be SLI). 

For A = (a ij) E B(m, n) with n >, 2, o E B, and i E M, we denote in this 
section 

Z’,(A)= {REM; (3k~N) (V,~EN- {k}) aik>v>aij) 

and w(i)= min{u; ieP,(A)} ( we u min 0= + co). [Clearly, v(i) = + 00 p t 
if the maximal element of Ai is not unique, and u(i) is equal to the second 
greatest element of A i otherwise.] If { v E B; i E P,(A)} # 0, we denote by 
k(i) the unique index k E N for which aik > u(i). 

LEMMA 8. Let A,C E B(m, n) and A - C. Then IZ’,(A)I = II’,(C)\ for 
all v E B. 

The proof is trivial. 
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LEMMA 9. Let A E B(m, n) and n > 2. Zf A is equivalent to a matrix 

where C E B( n, n) is trapezoidal, then Z’J A) # % for some v E B. 

Proof. Since C = (cij) is trapezoidal, we have 

n 

‘11’ @ clj’ 

j=2 

Hence, denoting @I~z2clj by v, we get 

lEP”(C)CP” g i( 1) . 

The rest follows from Lemma 8. 

For A=(aij)~ B(n,n) we denote @iGNuii by d(A). 

LEMMA 10. Let d E B, A = (aij) E B(m, n), and n > 2. Suppose that A 

can be written blockwise in the form where C E B(n, n) is trapezoidal 

and d(C) > d. Then the set 

V(d) = (0 E B; al,k(l) >dforsomeZEP,(A)} 

is nonempty. Furthermore, if vO = minV(d) and i E POO( A) is an arbitrary 
index satisfying a i, k(ij > d, then permutations a E P,,,, 7~ E P,, with the 
following properties exist: 

a(l) = i, 

~(1) = k(i), 

A(u,T) = 

where C’ E B( n, n) is trapezoidal and d(C’) > d. 

Proof. V(d)#0, since a,,k(lj=a,,>d and thus at least @I?zza,jE 

V(d). 
Suppose that vO, i, and k(i) fulfill the assumptions of Lemma 10. Denote 

k(i) by j. Clearly, j < i for i < n, since C is trapezoidal (actually equality 
holds), and for i > n trivially because j < n < m. 
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Then the relations 

for all s = 2,3,. . . , i follow from the assumption that C is trapezoidal and 

from the choice of q. Clearly, 

a;, =uii > $ uiq= i3 u;q> 
qeN- (i) q=2 

and since 

u;,=u r-l,s-1 forall r,sE (2 ,..., i}, 

a:, = Ur-l,.7 forall rE (2 ,..., i}, SE {i+l,..., n}, 

a:, = urp forall rE {i+l,..., m}, SE {i+l,..., n}, 

we can summarize that C’ is trapezoidal and d(C’) > d. 
Similarly, if j < i, we put 

(J = (ij.. ~2l)(j+l)~~~(i-l)(i+l)~~~(m), 

r=(j.. .21)(j+1)+& 

A’=(u;~)=~(IJ,~)=(;:), C’E B(n, r&). 

One can derive in the same way as before that C’ is trapezoidal and 
d(C’) > d. H 

LEMMA 11. Let A E B(m, n) and n > 2. Suppose that A can be written 
blockwise in the form 
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where A,, E B( r, r), 1 G r < n and 

uij’ @ @ ak[ 
k=l Z=k+l 

for i = l,..., r. Then the following two statements are equivalent: 

(a) a trapezoidal matrix 

and a matrix D such that 

exist; 
(b) a trapezoidal matrix C’ E B(n - r, n - r) and a matrix D’ such that 

k=l I=k+l 

exist. 

Proof. To prove (b) 3 (a) it suffices to put C,, = C’ and to take for C,, 
and C,, the matrices obtained by permuting correspondingly the columns 
and rows of A,, and A,,, respectively. 

In order to prove the converse implication, put C’ = C,, and for D’ take 
the matrix obtained from the matrix consisting of the last m - n rows of A,, 
by permuting correspondingly its columns and rows. n 

Now it is not difficult to compile an O(mn’) algorithm for checking 
strong linear independence, based on Lemmas 9-11. Lemma 9 shows that a 
necessary condition for the columns of A to be SLI is the existence of a 
unique maximal element in at least one row of A. Lemma 10 implies that on 
choosing the maximal element in row r, say ars, for which the second 

greatest, say a,, (a,, < a,$). is as small as possible, A is equivalent to C 

where C is trapezoidal and (I,, 
( 1 D 

is in its first row and column. Lemma 11 
enables us now to transform our problem to the submatrix A’ arising from A 
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by deleting the rth row and the sth column. It follows again from Lemma 10 

that in some row of A’ the unique maximal element greater than a,, exists 
whenever columns of A are SLI. The procedure continues in this way until 
the whole trapezoidal submatrix of order n is found or at some step it is not 
possible to continue because no row exists with unique maximal element 
greater than all known superdiagonal elements. 

We present a more sophisticated version of this algorithm with smaller 
computational complexity, achieved by rearranging of each row of A in 
nonincreasing order. This enables us to avoid the repeated computation of 
the greatest and the second greatest element of each row and saves in this 
way a significant number of evaluations. We must, of course, distinguish 
infeasible and feasible rows and columns, depending on whether they have or 
have not been already chosen for the trapezoidal submatrix being formed. 

In the algorithm written below in pidgin ALGOL (for a description of this 
informal language we recommend e.g. [8]) we denote by ro(A) the matrix 
arising from A by reordering of each row nonincreasingly. The variables fc( j) 
and fr( i) indicate the feasibility or infeasibility of the jth column and the ith 
row, respectively; gl(i) and g2(i) express the column indices of the greatest 
and the second greatest element in the ith row; respectively. In the variables 
r(Z), c(E) the row and column indices of the desired trapezoidal submatrix are 
collected. 

TRAPEZOIDAL ALGORITHM. 

Input: An (m, n) matrix A = (aij) of elements of a bottleneck algebra 
withm~n>2. 

output: “yes” for the variable named answer and a trapezoidal (n, n) 
submatrix T = (tij) of A, if A has SLI columns; “no” for the 
variable answer otherwise. 

begin 
for all j E N do fc( j) := “yes”; 

for all i E M do fr(i) :=“ yes”, gl(i) := 1, g2(i) := 2; 
answer := “no”, d := min{ aij; i E M, j E IV}, B = (bij) := ro(A); 

for all (i, j) E M X N do pi(j) := column index of bij in A; 
for 1 = l,.. ., n - 1 do 
begin 

for all i E M with fr(i) =“yes” do 
begin 

while fc(pi(gl(i))) =“no” do gl(i) := gl(i)+ 1; 
g2(i) := max(gl(i)+ l,g2(i)); 
(comment: ensure the monotonicity of g2(i)) 
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while fc( p,(gZ(i))) = “ no” do g2( i) := g2( i) + 1 
end 
9 := { bi,p2Cij; i E M, bi,seCiI # bi,glCij > d, fr(i) =“yes”}; 
if B = 0 then stop; 
find min B, say b,, g2CrI; 
r( 1) := r, c( 1) := p,(gl( r)), d := d @ b,, gl(rj; 
fr( r) := “no”, fc( p,(gl(r))) := “no” 

end 
find max{ bi,g2Cij; i EM, fr(i) =“yes”}, say br,gzCl,; 
if b, p2(rj < d then stop; 
r( n )‘:= r, c( 72) := p&(r)); 
for all (i, j) E N X N do tij = u,(~),~(~); 
answer := ” yes” 

end 

THEOREM 4. The trapezoidal algorithm is correct and terminates afier 
using at most O(mn log n) arithmetic operations and comparisons. It en- 
ables, in particular, using not more than 0( n2 log n) operations to find a 
trapezoidal matrix equivalent to a given square matrix of order n or to 
indicate that such a matrix does not exist. 

Proof. The correctness is shown by Lemmas 9-11. 
In order to estimate the computational complexity, realize first that to 

arrange each row nonincreasingly we need no more than 0( n log n) oper- 
ations (cf. [7]), and hence 0( mn log n) is an upper bound for the reordering 
of ail rows. We show that aU other steps do not require more than O(mn) 
operations and comparisons. The variables gl(i),g2(i) for all i E M increase 
monotonically from 1,2 respectively to at most n, and thus their evaluation 
does not need more than O(mn) operations. The number of ail other 
operations in one loop (when I is fixed) is not greater than 4m (for com- 
piling and minimizing S) plus 5 [for r(Z), c(Z) and for redefining 
d,fr( r),fc(p,(gl( r)))]. It remains to recall that the number of loops is at most 
n and that T can be compiled by 0( n’) < 0( mn) operations. n 

EXAMPLE 1. We illustrate the algorithm by its application to the follow- 
ing matrix A in .G@r with arbitrary I < 0, u > 5: 

‘5 5 3 l\ 
2 0 3 4 

A= 1 9 5 9 
4 3 2 1’ 
2 1 1 5 

(3 4 0 4 
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In this case our algorithm gives successively: 

5 
+5 1 5 3 l\ 

4 3 2 0 10 0 1: 4 i ;I ’ 

4 3 2 1’ (Pi(j)) 

5 2 1 1 

4 4 3 0 I 

d = 0, minB = 1, 

d =l, min 9 = 2, 

d=2, minP=3, 

=I1 2 3 41; 

(5 0 1 o\ 

I 2 4 4 1 3 1 2 3 i 

r(l) = 3, c(1) = 3; 

T(2) = 2, c(2) = 4; 

r(3) = 4, c(3) = I; 

r(4) = 1, c(4) = 2; 

T= 1: 4 i ii, answer=“yes”. 

EXAMPLE 2. In the same bottleneck algebra we check the strong linear 
independence of columns of the matrix 

A= 
i 2 0 0 1 2 2 1 1 3 2 4 1 

Here we get 

d = 0, min9=2, r(1) = 1, c(1) = 3; 

d = 2, 8=0, answer = “no”. 
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6. MATRICES WITH STRONG PERMANENT ARE 
STRONGLY REGULAR 

In the following, for A = (ai i) E B(n, n) we denote by p(A) the set 

{i~iV; (3k~N) (V~EN- {k}) aik>/per(A)>aij}, 

and the ith row of A will be called a permanent row whenever i E p(A). 

LEMMA 12. lf A and C are equivalent matrices, then 

(4 per(A) = per(C), 

(b) Imax( = Ib=(C)L 
(c) A is strongly regular if and only if C is strongly regular, 

(4 IP( = b(C>l. 
The proof is elementary. 
Note that assertion (b) yields in particular that the property of possessing 

a strong permanent is also an invariant in the class of equivalent matrices. 

LEMMA 13. Let A = (aij) E B(n, n). Zf A is trupezoiduZ, then per(A) = 
a,,@a,,@ . . . @ann (and hence id E max(A)). 

Proof. Let arr = (8 , E Na ii, and take an arbitrary r E P,,. We have to 
show that 

‘i,n(i) G ‘rr 60 

foratleastoneiEN.If rn(i)>iforsornei~R={l,...,r},then~~,~~~~< 
a TT, since A is trapezoidal. If r(i) Q i for all i E R, then, of course, r(i) = i 
for all i E R, yielding equality in (9) for i = r. n 

LEMMA 14. Every matrix with strong permanent contains at least one 
permanent row. 

Proof. Suppose A = (a i j) E B( n, n) has no permanent row. Without loss 
of generality (by Lemma 12) we assume that id E max(A). We have to show 
that Imax( >, 2. Obviously, 2 > 1 satisfying ull > per(A) exists, because 
otherwise the first row would be permanent. Let C = (cij) be the matrix 
obtained from A by interchanging the second and lth rows as well as the 
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columns with the same indices. Then, naturally, id E max(C) and cl2 > 
per(C). If csi >, per(C), then evidently (12)(3) . . . (n) is in max(C), and it is 
different from id, implying Imax( A)1 = Imax( > 2. Now suppose that cai < 
per(C). Since C also has no permanent row (by Lemma 12), there exists 2 
such that 2 < Z< n and czl > per(C). Let D = (di j) be the matrix obtained 
from C by interchanging the third and Zth rows as well as the columns with 
the same indices. Then again id E max(D), d, >, per(D), and D has no 
permanent row. Therefore we can continue by distinguishing whether dSj > 
per(D) for some j E {1,2} or for j E {4,...,n}. After a finite number (at 
most n - 2) of such steps we obtain a matrix, say 2 = (zij) - A, for which 
idEmax(Z), ~~,~+~>/per(Z)fori=l,...,k(k~n-l),andz~+,,~>,per(Z) 
for some j E {1,2,..., k - 1). But then evidently (l)(2) . . . ( j - l)( j j + 1 . . . 
kk+l)(k+2)(k+3)...(n) b 1 g t e on s o max(Z), and it is different from id. 
Thus Imax( = Imax( >, 2. n 

LEMMA 15. Let A = (a i j) E B(n, n). Suppose that A can be written 
blockwise in the form 

A,, A,, 

i i 4.l A22 ’ 

where A,, E B(r, r), 1~ r < n, and 

per(A)> 6 6 uij. 
i=l j=i+l 

(10) 

Then A is equivulmt to 
to a trapezoidal matrix. 

a trapezoidal matrix if and only if A, is equivalent 

Proof. Let C = (cij) be a trapezoidal matrix, C - A. Then A = C(a, r) 
for some u, 7r E P,. Since a,, is the only element in the first row of A greater 
than or equal to per(A) and 

per(A) = per(C) = cl18 . . . @c,, 01) 

(by Lemmas 12 and 13), we have a( 1) = r(l), yielding a(i) # a(l) for all 
i E N - {l}. In particular, u(2) # r(l), and thus, since (11) holds and A is 
trapezoidal, the only value of j satisfying u(2) = a(j) is j = 2. Hence 
u(i) # 7r(2) for all i E N - {2}, and proceeding in this way, we derive that 
u(i)=n(i) for all i=l,..., r. Denote by D the matrix arising from C on 
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deleting the rows and columns with indices a(l), . . . , a( T). Clearly, D as a 
principal submatrix of C is also trapezoidal, and D - A,,. 

Now let us suppose that A, is equivalent to a trapezoidal matrix. Since a 
permutation of the last n - r rows and columns of A does not change the 
validity of the assumptions, we may assume without loss of generality that 
A s2 is trapezoidal, i.e., 

akk’ 6 6 aij 

i=r+l j=i+l 

for all kE N- R, where R= {1,2 ,..., r }. Now it suffices to show that A is 
trapezoidal too. If v E max(A), then it follows from (10) that 7~ is the 
identity on R. Thus if id 4 max(A), i.e. w(A,id) < w( A, a) for some u E 
max( A), then u 1 R is the identity and u r N - R is a permutation, say u’, 
satisfying 

“(A,, a’> > w(A,,,id), 

which contradicts Lemma 13. Hence 

Ukk>Per(A)> 43 4 aij 

i=l j=i+l 

for all k E N. This and (12) complete the proof. a 

THEOREM 5. Let A E B(n, n). A sufficient condition for A to be equiv- 
alent to a trapezoidal matrix is that A has a strong permanent. If n is (less 
than or) equal to 2, then this condition is also necessary. 

Proof. By induction on n. If A E B(2,2) has a strong permanent, then 
take any C = (cij) equivalent to A in which cl2 is the minimal element of C. 
Hence c~~@c~~ > cis@ csi = cis. But this inequality is in fact strict, since C 
has a strong permanent (Lemma 12), implying that cl1 > cl2 and css > cis. 

Now suppose A = (aij) E B(n, n), n > 2, and A has a strong permanent. 
Hence (by Lemma 14) A has at least one permanent row. Let C = (ci j) be 
any matrix equivalent to A for which 

Cl1 >, per(C) > clj (13) 
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holdsforaIIjEN-{l}.LetuswriteCintheform 

where C,, = (4. 

It follows from (13) that per(C) = cii@ per(C,,). Clearly, jmax(C22)1 >, 2 
would imply Imax( > 2, which contradicts the assumption of a strong 
permanent of A (by Lemma 12). Hence C,, E B(n - 1, n - 1) has a strong 
permanent, and thus it is equivalent to a trapezoidal matrix by the induction 
hypothesis. But (13) shows also that all assumptions of Lemma 15 are 
fulfilled. Hence C (and A) is equivalent to a trapezoidal matrix, too. 

It remains to prove the necessary condition for matrices of order 2. 
Without loss of generality (Lemma 12) we suppose that A = (a ij) E B(2,2) is 
trapezoidal. Hence a ii > ui2, a22 > ur2, and thus 

per(A) = a,,@~~~ > ais@~si, 

implying that max( A) = {id}. 

By Theorem 2 we have immediately the desired corollary. 

n 

COROLLARY of Theorems 2 and 5. Let A E B(n, n). 

(a) lf < is dense and A has a strong permanent, then A is strongly 
regular. 

(b) lf n is (less than or) equal to 2 and A is strongly regular, then A has 
a strong permanent. 

REMARK 2. Trapezoidal matrices of order n > 2 need not have a strong 
permanent; e.g., the matrix 

i 
1 0 0 

A= 0 2 1 
0 1 2 

in ?fY8, with 1~ 0, u > 2 is trapezoidal, but it does not have a strong 
permanent. 

REMARK 3. Assertion (a) of the Corollary of Theorems 2 and 5 does not 
hold in general without the assumption of density. This can be demonstrated 
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by the matrix 

P. BUTKOVIC, K. CECHtiROVA, AND P. SZABi> 

in .G?s, which has a strong permanent (and is trapezoidal) but is not strongly 
regular (this can be verified elementarily from the definition). 

THEOREM 6. The bottleneck assignment problem can be solved using not 
more than 0( n2 log n) operations for every matrix of order n equivalent to a 
trapezoidal matrix. In particular, this is true for all matrices with strong 
permunent. 

Proof. If A is a square matrix of order n and a trapezoidal matrix 
equivalent to A exists, then at least one such matrix, say T, can be found in 
0( n2 log n) operations by Theorem 4. But per(A) = per(T) (by Lemma 12), 
and the latter value can be computed in O(n) operations (Lemma 13). 
Moreover, r- ‘c is obviously a solution to the bottleneck assignment problem 
for A, where r and c are permutations found by the trapezoidal algorithm. 

The second assertion follows immediately from this result and from 
Theorem 5. n 

We notice finally that one can investigate properties of “weakly 
trapezoidal matrices” defined in the same way as trapezoidal ones but 
replacing > by >, . It is not difficult to show that the trapezoidal algorithm 
can be appropriately modified to this class of matrices, and hence also 
Theorem 6 can be extended to weakly trapezoidal matrices. 
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