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RECOGNIZING WEAKLY STABLE MATRICES∗

PETER BUTKOVIČ† , HANS SCHNEIDER‡ , AND SERGEĬ SERGEEV§

Abstract. A max-plus matrixA is called weakly stable if the sequence (orbit) x,A⊗x, A2⊗x, . . .
does not reach an eigenvector of A for any x unless x is an eigenvector. This is in contrast to
previously studied strongly stable (robust) matrices for which the orbit reaches an eigenvector with
any nontrivial starting vector. Max-plus matrices are used to describe multiprocessor interactive
systems for which reachability of a steady regime is equivalent to reachability of an eigenvector by a
matrix orbit. We prove that an irreducible matrix is weakly stable if and only if its critical graph is
a Hamiltonian cycle in the associated graph. We extend this condition to reducible matrices. These
criteria can be checked in polynomial time.
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1. Introduction. Consider the system in which processors P1, . . . , Pn work in-
teractively and in stages [13] and [14]. In each stage all processors simultaneously
produce components necessary for the work of some or all other processors in the
next stage. Let xi(k) denote the starting time of the kth stage on Pi (i = 1, . . . , n)
and let aij denote the duration of the operation at which processor Pj prepares the
component necessary for processor Pi in the (k + 1)st stage (i, j = 1, . . . , n). Then,
avoiding any delay, we have

(1) xi(k + 1) = max(x1(k) + ai1, . . . , xn(k) + ain) (i = 1, . . . , n; k = 0, 1, . . . ).

We refer to such a system as a multiprocessor interactive system (MPIS). The matrix
A = (aij) will be called the production matrix. In order to analyze such systems
transparently and efficiently, we denote a⊕ b = max(a, b) and a⊗ b = a+ b. Then (1)
gets the form

xi(k + 1) = ai1 ⊗ x1(k)⊕ · · · ⊕ ain ⊗ xn(k) (i = 1, . . . , n; k = 0, 1, . . . ).

If, moreover, the pair of operations (⊕,⊗) is extended to matrices and vectors in the
same way as in linear algebra, then we obtain a compact expression

x(k + 1) = A⊗ x(k) (k = 0, 1, . . . ).

We say that an MPIS reaches a steady regime [14] if it eventually moves forward
in regular steps, that is, for some λ and k0 we have x(k+1) = λ⊗x(k) for all k ≥ k0.
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Equivalently, the time between the starts of consecutive stages will eventually be the
same constant for every processor. If this happens, then we have

A⊗ x(k) = λ⊗ x(k) for all k ≥ k0

and so x(k) is an eigenvector of A with respect to the pair of operations (⊕,⊗)
(“max-eigenvector”) with associated value λ (“max-eigenvalue”). Reaching stability
is a desirable goal, and the task of achieving this is of fundamental importance for
any MPIS. Since

x(k) = A⊗ x(k − 1) = A2 ⊗ x(k − 2) = · · · = Ak ⊗ x(0)

for every natural k, the questions that may be of operational interest are as follows:

Q1. Given A ∈ R
n×n

and x ∈ R
n
is there a natural number k such that Ak ⊗ x

is a max-eigenvector of A?
Q2. Characterize matrices A (strongly stable) for which Ak ⊗ x is an eigenvector

for every nontrivial x and sufficiently large k.
Q3. Characterize matrices A (weakly stable) for which Ak⊗x is not an eigenvector

for any x and any k unless x is an eigenvector itself.
Question Q1 for irreducible matrices can be answered using an O(n3 logn) algo-

rithm [32]; see also [6]. It is known that Ak ⊗ x always reaches a max-eigenvector of
some power of A (see Corollary 3.1 below), and the algorithm in [32] in fact finds the
smallest natural number s such that Ak ⊗ x is a max-eigenvector of As.

An efficient characterization of strongly stable matrices is known [8] (note that
in that paper strongly stable matrices are called robust); see also [6]. The aim of
the present paper is to provide a full and efficient characterization of weakly stable
matrices, that is, to solve Q3. We start with an example of an MPIS to which we will
return at the end of the paper in Examples 6.4 and 6.5.

Example 1.1. A vehicle manufacturer has three production units U1–U3. U1
produces cars, U2 trucks, and U3 motorcycles. These units also specialize in certain
components, which they prepare for other units. U1 also specializes in windows, U2 in
gearboxes, and U3 in wheels. U3 does not need windows and these are only prepared
for U1 and U2. Production runs in stages and the delivery of windows, gearboxes, and
wheels is done in batches, one for every new stage. In every stage each unit begins
production as soon as the delivery of the batches of necessary components from all
units is completed. The table below summarizes the delivery times of individual
components between the units. The task is to find the vector of starting times of the
work of individual units so that the production process is stable, that is, the duration
of all stages at every unit is the same (except possibly for a few first stages):

U1 U2 U3
U1 2 5 −∞
U2 3 3 2
U3 3 5 1

The paper is organized as follows: We continue with the definitions of basic con-
cepts of max-algebra and an overview of selected known results in this area (section 2).
Section 3 presents elementary properties of attraction sets and weakly stable matrices.
The main results are presented in sections 4 and 5, where we characterize irreducible
and reducible weakly stable matrices, respectively. Finally, for completeness, a brief
overview of the known results for strongly stable matrices is given in section 6.
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2. Prerequisites.

2.1. Max-algebra: Basic definitions and properties. In this section we
give the definitions and an overview of those results of max-algebra which will be
instrumental for the formulations and proofs of the results of this paper. For the
proofs and more information about max-algebra the reader is referred to [1], [3], [23],
and [6].

We will use the following notation: As usual R is the set of real numbers and the
symbol R will stand for R ∪ {−∞}. If a, b ∈ R, then we set

a⊕ b = max(a, b)

and

a⊗ b = a+ b.

Throughout the paper we denote −∞ by ε (the neutral element with respect to
⊕), and for convenience we also denote by the same symbol any vector all of whose
components are −∞ or a matrix all of whose entries are −∞. If a ∈ R, then the
symbol a−1 stands for −a. We assume everywhere that n ≥ 1 is a natural number
and denote N = {1, . . . , n}.

By max-algebra (recently also called “tropical linear algebra”) we understand the
analogue of linear algebra developed for the pair of operations (⊕,⊗), extended to
matrices and vectors as in conventional linear algebra. That is, if A = (aij), B = (bij),
and C = (cij) are matrices of compatible sizes with entries from R, we write C = A⊕B
if cij = aij ⊕ bij for all i, j ∈ N and C = A⊗B if

cij =
⊕
k∈N

aik ⊗ bkj = max
k

(aik + bkj)

for all i, j ∈ N . If α ∈ R, then α⊗A = (α⊗ aij). Although the use of the symbols ⊗
and ⊕ is common in max-algebra we will use the usual convention of not writing the
symbol ⊗. Thus in what follows the symbol ⊗ will not be used and unless explicitly
stated otherwise, all multiplications indicated are in max-algebra.

A vector or matrix is called finite if all its entries are real numbers. A square
matrix is called diagonal if all its diagonal entries are real numbers and off-diagonal
entries are ε. A diagonal matrix with all diagonal entries equal to 0 is called the unit
matrix and denoted I. Obviously, AI = IA = A whenever A and I are of compatible
sizes. A matrix obtained from a diagonal matrix (unit matrix) by permuting the
rows or columns is called a generalized permutation matrix (permutation matrix ). It
is known that in max-algebra generalized permutation matrices is the only type of
invertible matrices [14], [6].

If A is a square matrix, then the iterated product AA . . . A in which the symbol
A appears k-times will be denoted by Ak. By definition A0 = I.

The following is easily proved: if A,B ∈ R
m×n

and x, y ∈ R
n
, then

A ≥ B =⇒ Ax ≥ Bx,(2)

x ≥ y =⇒ Ax ≥ Ay.

We will often benefit from the close link between matrices and digraphs. A
digraph is an ordered pair D = (V,E), where V is a nonempty finite set (of nodes)
and E ⊆ V × V (the set of arcs). A subdigraph of D is any digraph D′ = (V ′, E′)
such that V ′ ⊆ V and E′ ⊆ E. If e = (u, v) ∈ E for some u, v ∈ V , then we say that
e is leaving u and entering v. Any arc of the form (u, u) is called a loop.



3032 PETER BUTKOVIČ, HANS SCHNEIDER, AND SERGEĬ SERGEEV

Let D = (V,E) be a digraph. A sequence π = (v1, . . . , vp) of nodes in D is called
a path (in D) if p = 1 or p > 1 and (vi, vi+1) ∈ E for all i = 1, . . . , p− 1. The node v1
is called the starting node and vp the endnode of π, respectively. The number p − 1
is called the length of π and will be denoted by l (π) . If u is the starting node and v
is the endnode of π, then we say that π is a u− v path. If there is a u− v path in D,
then v is said to be reachable from u (notation u −→ v). Thus u −→ u for any u ∈ V.

A path (v1, . . . , vp) is called a cycle if v1 = vp and p > 1, and it is called an
elementary cycle if, moreover, vi �= vj for i, j = 1, . . . , p− 1, i �= j. If there is no cycle
in D, then D is called acyclic. An elementary cycle passing through all nodes of D is
called Hamiltonian.

A digraph D is called strongly connected if u −→ v for all nodes u, v in D. A
subdigraph D′ of D is called a strongly connected component of D if it is a maximal
strongly connected subdigraph of D, that is, D′ is a strongly connected subdigraph
of D, and if D′ is a subdigraph of a strongly connected subdigraph D′′ of D, then
D′ = D′′. All strongly connected components of a given digraph D = (V,E) can be
identified in O(|V | + |E|) time [35]. Note that a digraph consisting of one node and
no arc is strongly connected and acyclic; however, if a strongly connected digraph has
at least two nodes, then it obviously cannot be acyclic.

If A = (aij) ∈ R
n×n

, then the symbol FA will denote the digraph with the node
set N and arc set E = {(i, j); aij > ε}. If FA is strongly connected, then A is called
irreducible, and reducible otherwise. Note that every 1×1 matrix is irreducible, even if
it is (ε). This is the only irreducible matrix with an ε column. We will assume in some
statements that the irreducible matrix under consideration is different from ε; this is
merely to exclude the 1× 1 matrix (ε). The following three lemmas are easily seen.

Lemma 2.1. If A ∈ R
n×n

is irreducible and A �= ε, then A has no ε row and
column.

Note that a matrix may be reducible even if it has no ε row and column (e.g., I).

Lemma 2.2. If A ∈ R
n×n

has no ε column and x �= ε, then Akx �= ε for every

nonnegative integer k. Hence if A ∈ R
n×n

has no ε column, then Ak also has no ε
column for every k. This is true in particular when A is irreducible and A �= ε.

Lemma 2.3. If A ∈ R
n×n

has no ε column or no ε row, then FA contains a
cycle.

A weighted digraph is D = (V,E,w), where (V,E) is a digraph and w is a real
function on E. All definitions for digraphs are naturally extended to weighted di-
graphs. If π = (v1, . . . , vp) is a path in (V,E,w), then the weight of π is w(π) =
w(v1, v2) + w(v2, v3) + · · · + w(vp−1, vp) if p > 1 and ε if p = 1. A path π is called
positive if w(π) > 0. In contrast, a cycle σ = (u1, . . . , up) is called a zero cycle if
w(uk, uk+1) = 0 for all k = 1, . . . , p− 1. Since w stands for weight rather than length,
we will use the term “heaviest path/cycle” instead of “longest path/cycle.”

Given A = (aij) ∈ R
n×n

the symbol DA will denote the weighted digraph
(N,E,w), where FA = (N,E) and w(i, j) = aij for all (i, j) ∈ E. The digraph
DA is said to be associated with the matrix A. If π = (i1, . . . , ip) is a path in
DA, then we denote w(π,A) = w(π) and it now follows from the definitions that
w(π,A) = ai1i2 + ai2i3 + · · ·+ aip−1ip if p > 1 and ε if p = 1.

Let S ⊆ R
n
. The set S is called a max-algebraic subspace if

αu ⊕ βv ∈ S

for every u, v ∈ S and α, β ∈ R. The adjective “max-algebraic” will usually be omitted.
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A vector v ∈ R
m

is called a max-combination of a finite set S ⊆ R
m

if

(3) v =
⊕
x∈S

αxx, αx ∈ R.

The set of all max-combinations of S is denoted by span(S). We set span(∅) = {ε}.
It is easily seen that span(S) is a subspace. If span(S) = T , then S is called a set
of generators for T. A subspace T is called finitely generated if there is a finite set of
generators for T.

Let v ∈ R
m
. The max-norm or just norm of v is the value of the greatest compo-

nent of v (notation ‖v‖); v is called scaled if ‖v‖ = 0. The set S is called scaled if all
its elements are scaled.

The set S = {v1, . . . , vn} ⊆ R
m

is called dependent if vk is a max-combination of
{v1, . . . , vk−1, vk+1, . . . , vn} for some k ∈ N. Otherwise S is independent.

Let S, T ⊆ R
m
. The set S is called a basis of T if it is an independent set of

generators for T. The following is of fundamental importance in max-algebra.
Theorem 2.4 (see [37], [38], [6]). If T is a finitely generated subspace, then there

is a unique scaled basis for T.

2.2. Max-algebra: The key tools. Given A ∈ R
n×n

, the symbol λ(A) will
stand for the maximum cycle mean of A, that is,

(4) λ(A) = max
σ

μ(σ,A),

where the maximization is taken over all elementary cycles in DA and

(5) μ(σ,A) =
w(σ,A)

l (σ)

denotes the mean of a cycle σ. Clearly, λ(A) always exists since the number of
elementary cycles is finite. However, it is easy to show [6] that λ(A) remains the same
if the word “elementary” is removed from the definition.

We use the convention max ∅ = ε. It follows that λ(A) = ε if and only if DA is
acyclic.

Example 2.5. If

A =

⎛
⎝ −2 1 −3

3 0 3
5 2 1

⎞
⎠ ,

then the means of elementary cycles of length 1 are −2, 0, 1, of length 2 are 2, 1, 5/2,
and of length 3 are 3 and 2/3. Hence λ(A) = 3.

The maximum cycle mean of a matrix is of fundamental importance in max-
algebra because for any square matrixA it is the greatest (max-algebraic) eigenvalue of
A, and every eigenvalue of A is the maximum cycle mean of some principal submatrix
of A. (See subsection 2.3 for details.)

Computation of the maximum cycle mean from the definition is difficult except for
small matrices since the number of elementary cycles in a digraph may be prohibitively
large in general. There are many algorithms of known or unknown computational
complexity for finding the maximum cycle mean; for references see [6]. An algorithm
with the lowest known computational complexity is probably Karp’s algorithm [24],
see also [6] for details, which finds the maximum cycle mean of an n × n matrix in
O(n|E|) time, where E is the set of arcs of DA.
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Lemma 2.6 (see [6]). If A = (aij) ∈ R
n×n

has no ε row or column, then λ(A) > ε.
This is true in particular when A is irreducible and n > 1.

A matrix A ∈ R
n×n

is called definite if λ(A) = 0 [9], [14]. Thus a matrix is
definite if and only if all cycles in DA are nonpositive and at least one has weight
zero. It is easy to check that λ(αA) = αλ(A) for any α ∈ R. Hence (λ(A))−1A is
definite whenever λ(A) > ε. The matrix (λ(A))−1A will be denoted by Aλ.

Let A ∈ R
n×n

. A cycle σ in DA is called critical if μ(σ,A) = λ(A). We denote by
Nc(A) the set of critical nodes, that is, nodes on critical cycles. These nodes play an
essential role in solving the eigenproblem (subsection 2.3). If i, j ∈ Nc(A) belong to
the same critical cycle, then i and j are called equivalent and we write i ∼ j. Clearly,
∼ constitutes a relation of equivalence on Nc(A).

The critical digraph of A is the digraph CA with the set of nodes N ; the set of
arcs (notation Ec(A)) is the set of arcs of all critical cycles. The equivalence classes
with respect to ∼ coincide with the strongly connected components of CA. A strongly
connected component of CA is called trivial if it consists of a single node without
a loop, nontrivial otherwise. It is not difficult to prove that all cycles in a critical
digraph are critical [3], [23], [6].

Given A ∈ R
n×n

it is standard [14], [3], [23], [6] in max-algebra to define the
infinite series

(6) A+ = A⊕A2 ⊕A3 ⊕ · · ·
and

(7) A∗ = I ⊕A+ = I ⊕A⊕A2 ⊕A3 ⊕ · · · .

The matrix A+ is called the weak transitive closure ofA, and A∗ is the strong transitive
closure of A. Notice that AA∗ = A+ ≤ A∗ and a+ij = a∗ij if i �= j.

The matrix A+ is of fundamental importance in max-algebra as some of its
columns form an essentially unique basis of the eigenspace if A is irreducible; A∗

for finite subeigenvectors of A is similar (see subsection 2.3).
It is easily seen that the entries of A2 are the weights of heaviest paths of length 2

for all pairs of nodes in DA. Similarly the entries of Ak (k = 1, 2, . . . ) are the weights
of heaviest paths of length k. Therefore diagonal entries of the matrix A+ represent
the weights of heaviest paths of any length, and finite off-diagonal entries represent
the weights of heaviest paths of any positive length. Motivated by this fact A+ is
also called the metric matrix corresponding to A [14]. We deduce that A+ has no ε
entries if A is irreducible, A �= ε. Note that A∗ is often called the Kleene star.

It follows from the definitions that every entry of the matrix sequence⎧⎨
⎩

k⊕
j=0

Aj

⎫⎬
⎭

∞

k=0

is a nondecreasing sequence in R and therefore either it is convergent (when bounded)
or its limit is +∞ (when unbounded). What matters is whether +∞ is the limit of
some entries.

Lemma 2.7 (see [6]). Let A ∈ R
n×n

. Then (6) converges to a matrix with no
+∞ entries if and only if λ(A) ≤ 0. If λ(A) ≤ 0, then

A+ = A⊕A2 ⊕ · · · ⊕ Ak
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and

A∗ = I ⊕A⊕A2 ⊕ · · · ⊕Ak−1

for every k ≥ n. If A is also irreducible and A �= ε, then both A+ and A∗ are finite.
The following can also be immediately deduced.

Lemma 2.8. Let A ∈ R
n×n

be a definite matrix and A+ = (γij). Then γii = 0 if
and only if i ∈ Nc(A). Hence if Nc(A) = N , then A∗ = A+.

A matrix A = (aij) ∈ R
n×n

is called increasing if aii ≥ 0 for all i ∈ N. Obviously,
A = I ⊕ A when A is increasing and so then there is no difference between A+ and
A∗. The following is readily seen.

Lemma 2.9. If A = (aij) ∈ R
n×n

is increasing, then x ≤ Ax for every x ∈ R
n
.

Hence

(8) A ≤ A2 ≤ A3 ≤ · · · .

One of the most striking features of matrices in max-algebra is the periodicity of
matrix powers, which is expressed using the concept of cyclicity. If D′ is a strongly
connected component of a digraph D, then the greatest common divisor of the lengths
of all directed cycles in D′ is called the cyclicity of D′. The cyclicity of D, notation
σ(D), is the least common multiple of the cyclicities of all strongly connected compo-
nents of D. The cyclicity of a digraph consisting of a single node and no arc is 1 by
definition. The cyclicity of a digraph can be found in linear time [16]. A digraph D is

called primitive if σ(D) = 1 and imprimitive otherwise. The cyclicity of A ∈ R
n×n

,
notation σ(A), is the cyclicity of its critical digraph CA. We will use the adjectives
primitive and imprimitive for matrices in the same way as for their critical digraphs.

A matrix A ∈ R
n×n

is called ultimately periodic if there exist natural numbers p
and T such that

(9) Ak+p = (λ (A))
p
Ak

for every k ≥ T. If A is ultimately periodic, then the smallest value of p for which a T
satisfying (9) exists is called the period of A. If p is the period of A, then the smallest
value of T for which (9) holds is called the transient of {Ak} and will be denoted by
T (A).

Theorem 2.10 (cyclicity theorem). Every irreducible matrix A ∈ R
n×n

is ulti-
mately periodic, and its period is equal to the cyclicity of A.

Theorem 2.10 has been proved for finite matrices in [14]. A proof for general
matrices was presented in [10]; see also [11] for an overview without proofs. A proof
in a different setting covering the case of finite matrices is given in [27]. The general
irreducible case is also proved in [2], [3], [21], and [23].

2.3. Max-algebra: The eigenproblem. In this subsection we will give a brief
overview of the methodology for solving the max-algebraic eigenproblem.

The max-algebraic eigenvalue-eigenvector problem (briefly, eigenproblem) is the
following.

Given A ∈ R
n×n

, find all λ ∈ R (eigenvalues) and x ∈ R
n
, x �= ε(eigenvectors)

such that

Ax = λx.
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This problem has been studied since the work of Cuninghame-Green [13]. A full
solution of the eigenproblem in the case of irreducible matrices has been presented by
Cuninghame-Green [14], [15] and Gondran and Minoux [22]; see also Vorobyov [36].
The general (reducible) case was first presented by Gaubert [20] and Bapat, Stanford,
and van den Driessche [4]. See also [8] and [6].

A key role in the solution of the eigenproblem is played by the maximum cy-
cle mean. It is the biggest eigenvalue for any matrix (therefore called the principal
eigenvalue), and although for an n × n matrix there may be up to n eigenvalues in
total, each of them is the maximum cycle mean of some principal submatrix. The
maximum cycle mean of a matrix is the only eigenvalue whose associated eigenvectors
may be finite. Irreducible matrices have no eigenvalues other than the maximum cycle
mean. If the maximum cycle mean is ε, then all eigenvectors can be described in a
straightforward way; we will therefore usually assume that the maximum cycle mean
is finite.

Let A ∈ R
n×n

.We denote by V (A, λ) the set of all eigenvectors of A corresponding
to λ ∈ R, by V (A) the set of all eigenvectors of A, and by Λ(A) the set of all
eigenvalues of A. The set V +(A) consists of all finite eigenvectors of A. It is easily
seen that V (A, λ) ∪ {ε} is a nontrivial subspace for each λ ∈ Λ(A). We will therefore
call V (A, λ) ∪ {ε} the eigenspace of A associated with the eigenvalue λ.

We first summarize how to find all eigenvectors associated with the principal
eigenvalue (principal eigenvectors), and then we proceed with other eigenvalues. Note
that A+

λ stands for (Aλ)
+.

Theorem 2.11 (see [14], [6]). Let A ∈ R
n×n

. Then the following hold:
• λ(A) is the greatest eigenvalue of A.
• If λ(A) > ε, then at least one column of A+

λ has zero diagonal entry and every
such column is an eigenvector of A with associated eigenvalue λ(A).

• If A is irreducible, then there are no eigenvalues of A other than λ(A), that
is, V (A) = V (A, λ(A)).

Any column of A+
λ with zero diagonal entry will be called a fundamental eigenvec-

tor of A. Clearly, when considering all possible max-combinations of a set of funda-
mental eigenvectors (or, indeed, of any vectors), we may remove from this set vectors
that are multiples of some other. To be more precise, we say that two fundamental
eigenvectors gi and gj are equivalent if gi = αgj for some α ∈ R. We can easily char-
acterize equivalent fundamental eigenvectors using the equivalence of critical nodes in
the next statement. (Note that the relation i ∼ j has been defined in subsection 2.1.)

Theorem 2.12 (see [14]). Suppose that A ∈ R
n×n

, λ(A) > ε, and g1, . . . , gn are
the columns of A+

λ = (γij). Then the following hold:
• i ∈ Nc(A) if and only if γii = 0.
• If i, j ∈ Nc(A), then i ∼ j if and only if gi = αgj for some α ∈ R.

The following theorem identifies an essentially unique basis of the eigenspace of
A corresponding to the principal eigenvalue. Note that this statement for irreducible
matrices was already proved in [14].

Theorem 2.13 (see [2]). Suppose that A ∈ R
n×n

, λ(A) > ε, and g1, . . . , gn are
the columns of A+

λ . Then

V (A, λ (A)) =
{
A+

λ z; z ∈ R
n
, zj = ε for all j /∈ Nc(A)

}
and we obtain a basis of V (A, λ(A)) by taking exactly one gi for each equivalence class
in (Nc(A),∼).
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If A is irreducible, A �= ε, then A+
λ is finite and hence we also deduce the following.

Corollary 2.14 (see [14]). If A ∈ R
n×n

is irreducible, A �= ε, and g1, . . . , gn
are the columns of A+

λ , then all eigenvectors of A are finite and

V (A) = V +(A) =

⎧⎨
⎩

⊕
i∈N∗

c (A)

αigi;αi ∈ R

⎫⎬
⎭ ,

where N∗
c (A) is any maximal set of nonequivalent critical nodes of A.

Corollary 2.15. If A ∈ R
n×n

is irreducible, A �= ε, and Nc(A) = N , then

V (A) = V +(A) =
{
A+

λ z; z ∈ R
n
}
.

We now discuss how to find all max-algebraic eigenvalues of a matrix. It is
important that spectral properties of matrices are preserved by certain types of trans-
formations. The first straightforwardly follows from the definitions.

Lemma 2.16. If α ∈ R and A is a square matrix, then
• Λ(αA) = {αλ;λ ∈ Λ(A)} and
• V (αA) = V (A).

If B = P−1AP for some generalized permutation matrix P , then we say that A
and B are similar (notation A ∼ B). If, moreover, P is a permutation matrix, then A
and B are said to be directly similar (notation A ≈ B). If, on the other hand, P is a
diagonal matrix, then we say that B has been obtained from A by diagonal similarity
scaling (briefly matrix scaling) (notation A ≡ B). Clearly all these relations are
relations of equivalence.

If A ≡ B, then FA = FB ; if A ≈ B, then FA can be obtained from FB by a
renumbering of the nodes or, equivalently, A can be obtained fromB by a simultaneous
permutation of the rows and columns.

Let P be a generalized permutation matrix, Ax = λx, x �= ε. Then(
P−1AP

) (
P−1x

)
= λ

(
P−1x

)
and P−1x �= ε. Hence we deduce the following.

Lemma 2.17. If A and B are square matrices and B = P−1AP, where P is a
generalized permutation matrix, then we have

• Λ(A) = Λ(B) and
• V (B) = {P−1x;x ∈ V (A)}.

The following standard notation will be useful: If

1 ≤ i1 < i2 < · · · < ik ≤ n,K = {i1, . . . , ik} ⊆ N,

then A[K] denotes the principal submatrix⎛
⎝ ai1i1 . . . ai1ik

. . . . . . . . .
aiki1 . . . aikik

⎞
⎠

of the matrix A = (aij) and x[K] denotes the subvector (xi1 , . . . , xik)
T of the vector

x = (x1, . . . , xn)
T ∈ R

n
.

If D = (N,E) is a digraph and K ⊆ N , then D[K] denotes the induced subgraph
of D, that is,

D[K] = (K,E ∩ (K ×K)).
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Every matrixA = (aij) ∈ R
n×n

can be transformed by simultaneous permutations
of the rows and columns in linear time to a Frobenius normal form [28]

(10)

⎛
⎜⎜⎝

A11 ε . . . ε
A21 A22 . . . ε
. . . . . . . . . . . .
Ar1 Ar2 . . . Arr

⎞
⎟⎟⎠ ,

where A11, . . . , Arr are irreducible square submatrices of A. If A is in a Frobenius
normal form, then the corresponding partition subsets of the node set N of DA will
be denoted as N1, . . . , Nr and these sets will be called classes (of A). It follows that
each of the induced subgraphs DA[Ni] (i = 1, . . . , r) is strongly connected and an arc
from Ni to Nj in DA exists only if i ≥ j. As a slight abuse of language we will also
say for simplicity that λ(Ajj) is the eigenvalue of Nj.

If A is in the Frobenius normal form (10), then the condensation digraph, notation
C(A), is the digraph

({N1, . . . , Nr}, {(Ni, Nj); (∃k ∈ Ni)(∃	 ∈ Nj)ak� > ε}).

Observe that C(A) is acyclic and represents a partially ordered set. Any class that
has no incoming arcs in C(A) is called initial, similarly for diagonal blocks.

Recall that the symbol Ni −→ Nj means that there is a directed path from a
node in Ni to a node in Nj in C(A) (and therefore from each node in Ni to each node
in Nj in DA).

Due to Lemma 2.17 we may assume without loss of generality that A is in a
Frobenius normal form, say (10). It is intuitively clear that all eigenvalues of A are
among the unique eigenvalues of diagonal blocks. However, not all of these eigen-
values are also eigenvalues of A. The following key result appeared for the first time
independently in the thesis [20] and [4]; see also [6] and [8].

Theorem 2.18 (spectral theorem). Let (10) be a Frobenius normal form of a

matrix A ∈ R
n×n

. Then

Λ(A) = {λ; (∃j)λ = λ(Ajj) = max
Ni→Nj

λ(Aii)}.

Note that if a diagonal block, say Ajj , has λ(Ajj) = λ, it still may not satisfy the
condition λ(Ajj) = maxNi→Nj λ(Aii) and may therefore not provide any eigenvectors.
It is therefore necessary to identify blocks that satisfy this condition: If

λ(Ajj) = max
Ni→Nj

λ(Aii),

then Ajj (and also Nj or just j) will be called spectral. Thus λ(Ajj) ∈ Λ(A) if j is
spectral but not necessarily the other way round. We can immediately deduce the
following.

Corollary 2.19. All initial blocks are spectral.
Also, it follows that the number of eigenvalues does not exceed n and obviously,

λ(A) = maxi λ(Aii) which confirms that λ(A) is indeed always an eigenvalue.
Lemma 2.20 (see [6]). If x is an eigenvector with xi finite for some i ∈ Ns and

some s, then xj is finite for every j, j −→ i and in particular for every j ∈ Ns.
It remains to explain how to find a basis of the eigenspace associated with a

general eigenvalue λ ∈ Λ. Let A ∈ R
n×n

be in the Frobenius normal form (10) and
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N1, . . . , Nr be the classes of A and R = {1, . . . , r}. Suppose λ ∈ Λ(A), λ > ε and
denote

I(λ) = {i ∈ R;λ(Ni) = λ,Ni spectral}.

Note that λ(λ−1A) = λ−1λ(A) may be positive since λ ≤ λ(A), and thus (λ−1A)+

= (γij) may now include entries equal to +∞ (see Lemma 2.7). Let us denote

Nc(A, λ) =
⋃

i∈I(λ)

Nc(Aii) =

{
j ∈ N ; γjj = 0, j ∈ ⋃

i∈I(λ)

Ni

}
.

Two nodes i and j in Nc(A, λ) are called λ - equivalent (notation i ∼λ j) if i and
j belong to the same cycle of cycle mean λ.

Theorem 2.21 (see [8], [6]). Suppose that A ∈ R
n×n

and λ ∈ Λ(A), λ > ε. Let
g1, . . . , gn be the columns of (λ−1A)+. Then gj ∈ R

n
(that is, gj does not contain a

+∞ component) for all j ∈ Nc(A, λ),

V (A, λ) =
{
(λ−1A)+z; z ∈ R

n
, z �= ε, zj = ε for all j /∈ Nc(A, λ)

}
,

and a basis of V (A, λ) can be obtained by taking exactly one gj for each ∼λ equivalence
class.

Corollary 2.22. The spectrum Λ(A) and bases of V (A, λ) for all λ ∈ Λ(A) can
be found using O(n3) operations.

Note that if the set I(λ) consists of only one index, then V (A, λ) can alternatively
be found as follows: If I(λ) = {j}, then define

M2 =
⋃

Ni→Nj

Ni,M1 = N −M2.

Hence V +(A[M2]) �= ∅ and

V (A, λ) = {x;x[M1] = ε, x[M2] ∈ V +(A[M2])}.

2.4. Subeigenvectors and visualization scaling. If A ∈ R
n×n

and λ ∈ R,
then a vector x ∈ R

n
, x �= ε satisfying

(11) Ax ≤ λx

is called a subeigenvector of A with associated eigenvalue λ and we denote

V∗ (A, λ) =
{
x ∈ R

n
;Ax ≤ λx, x �= ε

}
.

Finite subeigenvectors are of particular importance and can easily be described.

Theorem 2.23 (see [18], [6]). Let A ∈ R
n×n

, A �= ε. Then the following state-
ments hold:

(a) Ax ≤ λx has a finite solution if and only if λ ≥ λ(A) and λ > ε.
(b) If λ ≥ λ(A) and λ > ε, then

V∗(A, λ) ∩ R
n =

{(
λ−1A

)∗
z; z ∈ R

n
}
.
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Lemma 2.24 (see [6]). Let A ∈ R
n×n

be irreducible. If Ax ≤ λx, x �= ε, then x is
finite, that is,

V∗(A, λ) = {x ∈ R
n;Ax ≤ λx} .

Corollary 2.25. If A is irreducible, and A �= ε, then

V∗(A, λ (A)) =
{
A+

λ z; z ∈ R
n
}
.

Using matrix scaling [19], [29], [30], [31], [34] it is possible to simplify the structure
of a matrix while preserving its spectral properties. In particular, it enables us to
“visualize” some features, such as the entries corresponding to the arcs on critical
cycles.

We say that A = (aij) ∈ R
n×n

is visualized if

(12) aij ≤ λ (A) for all i, j ∈ N.

Since for every (i, j) ∈ Ec(A) the entry aij contributes to an average equal to λ(A) it
is easy to see that (12) actually implies

(13) aij = λ (A) for all (i, j) ∈ Ec (A) .

If x = (x1, . . . , xn)
T ∈ R

n, then the symbol diag(x) stands for the diagonal matrix
whose diagonal entries are x1, . . . , xn.

Theorem 2.26 (see [31], [34]). If A ∈ R
n×n

, λ(A) > ε, x ∈ V∗(A) ∩ R
n, and

X = diag(x), then X−1AX is visualized.
As before, let g1, . . . , gn be the columns of A+

λ . Note that due to Corollary 2.25
for the vector x in Theorem 2.26 we can take for instance

⊕
j∈Ngj.

A matrix A is called strictly visualized if it is visualized and

aij = λ (A) if and only if (i, j) ∈ Ec (A) .

Theorem 2.27 (see [31], [34]). If A ∈ R
n×n

is irreducible, A �= ε, x =
∑

j∈N αjgj
(conventional linear combination), α1, . . . , αn > 0, and X = diag(x), then X−1AX
is strictly visualized.

It follows from this theorem that the identification of the critical digraph can be
done efficiently, in a polynomial number of steps.

Note that the strict visualization scaling for reducible matrices (not needed in
this paper) is slightly more elaborate. The reader is referred to [34] and [6] for details.

Following Lemma 2.17 we will assume in some statements without loss of gener-
ality that the matrix is visualized.

2.5. Max-linear systems. One-sided max-linear systems Ax = b, where A =

(aij) ∈ R
m×n

and b = (b1, . . . , bm)T ∈ R
m
, were historically probably the first problem

studied in max-algebra [12]. We will only need the case when A has no ε columns
and rows and b ∈ R

m. The existence of a solution and unique solution in this case
can easily be expressed in terms of set coverings and minimal set coverings. As before
N = {1, . . . , n}, and we now also denote M = {1, . . . ,m},

S(A, b) =
{
x ∈ R

n
;Ax = b

}
,
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and x = (x1, . . . , xn)
T , where

xj =

(
max
i∈M

aijb
−1
i

)−1

for j ∈ N. Obviously, x ∈ R
n and

xj = min
{
bia

−1
ij ; i ∈ M,aij ∈ R

}
for j ∈ N . We will also denote

Mj =
{
i ∈ M ;xj = bia

−1
ij

}
for j ∈ N.

Theorem 2.28 (see [12], [6]). If A ∈ R
m×n

is a matrix with no ε columns and
rows and b ∈ R

m, then the following three statements are equivalent:
1. S(A, b) �= ∅,
2. x ∈ S(A, b),
3.

⋃
j∈N Mj = M.

The set of all solutions can also be described in combinatorial terms.
Theorem 2.29 (see [13], [39], [6]). If A ∈ R

m×n
is a matrix with no ε columns

and rows and b ∈ R
m, then x ∈ S(A, b) if and only if x ≤ x and

(14)
⋃

j:xj=xj

Mj = M.

The combinatorial aspect of max-linear systems will become even more visible in
the following criterion for unique solvability.

Theorem 2.30 (see [6]). If A ∈ R
m×n

is a matrix with no ε columns and rows
and b ∈ R

m, then S(A, b) = {x} if and only if
1.

⋃
j∈N Mj = M and

2.
⋃

j∈N ′ Mj �= M for any N ′ ⊆ N,N ′ �= N.
Note that finding minimal vectors in the solution set to Ax = b reduces to the

hypergraph transversal problem [26]. Using this observation efficient algorithms for
finding all minimal solutions to Ax = b have recently been published [17].

3. Attraction sets and weakly stable matrices. Given A ∈ R
n×n

and x ∈
R

n
the sequence of vectors Ax,A2x,A3x, . . . is called the orbit (of A with starting

vector x).

For A ∈ R
n×n

we denote by attr (A) the set of all starting vectors from which the
orbit reaches an eigenvector, that is,

attr (A) =
{
x ∈ R

n
; (∃k ≥ 0)Akx ∈ V (A)

}
.

The set attr(A) is called the attraction set of A. We also denote for λ ∈ R

attr (A, λ) =
{
x ∈ R

n
; (∃k ≥ 0)Akx ∈ V (A, λ)

}
.

For stability it is important that once it is reached it can be guaranteed in subse-
quent stages, that is, x ∈ V (A) =⇒ Ax ∈ V (A) and hence also x ∈ V (A) =⇒ Akx ∈
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V (A) for every k ≥ 0. However, this is not true in general for eigenvectors associated
with λ = ε : For instance, if

A =

(
ε ε
0 ε

)

and x = (0, ε)T , then Ax = (ε, 0)T ∈ V (A, ε) but A2x = (ε, ε)T /∈ V (A, ε). Therefore
we will assume everywhere that A has only finite eigenvalues. Equivalently, A has no
ε columns.

On the other hand if λ > ε, then x ∈ V (A, λ) implies Ax ∈ V (A, λ) since
A(Ax) = A(λx) = λAx and Ax �= ε since Ax = λx and x �= ε. Hence if A has no ε
columns we have

V (A) ⊆ attr(A) ⊆ R
n − {ε}.

Following the definitions introduced in Q2–Q3 of section 1 we have that A is
strongly stable (robust in [8]) if attr(A) = R

n−{ε} and it is weakly stable if attr(A) =
V (A). Note that in the definition of attraction sets the exponent k starts from 0 and
thus the 1 × 1 matrix A = (ε) is both strongly and weakly stable since V (A) =
R

n − {ε} = attr(A).
A remarkable feature of irreducible matrices is that although orbits with matrix

A do not necessarily reach an eigenvector of A, they are guaranteed to reach an
eigenvector of some power of A.

Corollary 3.1. If A ∈ R
n×n

is irreducible and x ∈ R
n
, x �= ε, then Akx ∈

V (Aσ(A)) for some natural number k.
Proof. By the cyclicity theorem we have Ak+σ(A)x = (λ(A))σ(A)Akx, which can

also be written as

Aσ(A)
(
Akx

)
= (λ (A))

σ(A) (
Akx

)
.

It remains to add that Akx �= ε by Lemma 2.2 and λ(Ar) = (λ(A))r for any natural
r (see [6], Theorem 4.5.10).

The basic reachability question Q1 (see section 1) is solved by an O(n3 logn)
algorithm presented in [32]. In fact that algorithm finds the smallest value of s for
which a given orbit reaches V (As) by converting this question to finding the exact
period of a periodic number sequence.

The aim of this paper is to characterize matrices whose attraction set coincides
with the set of eigenvectors, that is, the weakly stable matrices. Note that a brief
overview of the known characterization of strongly stable matrices [8], [6] is given in
section 6.

Suppose that A is weakly stable. Let P be a generalized permutation matrix, B
be the matrix P−1AP , and suppose that Bkz ∈ V (B). Then for x = Pz we have

(
P−1AP

)k
z =

(
P−1AkP

)
P−1x

= P−1Akx ∈ V (B) .

Then by Lemma 2.17 Akx ∈ V (A). Hence x ∈ V (A), and by the same lemma P−1x ∈
V (B). Thus z ∈ V (B) and B is weakly stable. We have proved the following.

Lemma 3.2. If A and B are square matrices, A ∼ B, then A is weakly stable if
and only if B is weakly stable.
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At the same time V (αA) = V (A) for α ∈ R by Lemma 2.17 and (αA)k = αkAk

and so we deduce the following.
Lemma 3.3. If A and B are square matrices, B = αA, then A is weakly stable if

and only if B is weakly stable.
When we investigate weak stability, due to the last two lemmas we may if neces-

sary assume without loss of generality that the matrix under consideration is definite
and visualized. Note that every 1× 1 matrix A is weakly stable since then V (A) = R.

Lemma 3.4. Let A ∈ R
n×n

. Then the following are equivalent:
(a) A is weakly stable.
(b) For any x, if Ax ∈ V (A), then x ∈ V (A).
Proof. (a) =⇒ (b) Follows from the definition immediately.
(b) =⇒ (a) If Akx ∈ V (A), then Ak−1x ∈ V (A), . . . , x ∈ V (A), hence A is weakly

stable.
Recall that the set of subeigenvectors of A associated with λ ∈ R is

V∗(A, λ) =
{
x ∈ R

n
;Ax ≤ λx, x �= ε

}
.

It will be helpful also to work with the set of supereigenvectors of A associated with
λ ∈ R :

V ∗(A, λ) =
{
x ∈ R

n
;Ax ≥ λx, x �= ε

}
.

Lemma 3.5. V (A, λ(A)) ⊆ V ∗(A, λ(A)) ⊆ attr(A, λ(A)) for every A ∈ R
n×n

with λ(A) > ε.
Proof. The first inclusion is trivial. For the second suppose that Ax ≥ λ(A)x, x �=

ε. Then

x ≤ Aλx ≤ A2
λx ≤ · · · ≤ An

λx ≤ An+1
λ x ≤ · · · .

Since Aλ is definite we have A+
λ x = An

λx = An+1
λ x �= ε, hence An

λx ∈ V (Aλ, 0) =
V (A, λ(A)) by Lemma 2.17. Therefore Anx = (λ(A))nAn

λx ∈ V (A, λ(A)) and so
x ∈ attr(A, λ(A)).

Lemma 3.6. If A ∈ R
n×n

is weakly stable and λ(A) > ε, then

V (A, λ (A)) = V ∗(A, λ (A)) = attr (A, λ (A)) .

Proof. Suppose V (A) = attr(A). Due to Lemma 3.5 we only need to prove
attr(A, λ(A)) ⊆ V (A, λ(A)). Let x ∈ attr(A, λ(A)). Hence Akx ∈ V (A, λ(A)) for
some k, that is,

(15) Ak+1x = λ (A)Akx and Akx �= ε.

Since attr(A, λ(A)) ⊆ attr(A) = V (A) we also have that

Ax = μx

for some μ ∈ R. This implies that

Ak+1x = μAkx

which together with (15) yields μ = λ(A) and thus x ∈ V (A, λ(A)).
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attr(A)

V*(A,λλλλ(A))

V(A)

V*(A,λλλλ(A))

Fig. 1. Sub- and supereigenvectors of irreducible matrices.

4. Weakly stable matrices: The irreducible case. If A is irreducible, then
V (A) = V (A, λ(A)) and so attr(A) = attr(A, λ(A)). Also, recall that A can only have
finite subeigenvectors (Lemma 2.24), in particular V∗(A, λ(A)) ⊆ R

n.

Lemma 4.1. V (A) ⊆ V∗(A, λ(A)) ⊆ attr(A) if A ∈ R
n×n

is irreducible.
Proof. The first inclusion is trivial. For the second suppose Ax ≤ λ(A)x, x �= ε,

and then we have by the cyclicity theorem (for k big enough)

Ap+kx ≤ λ (A)Ap+k−1x ≤ · · · ≤ (λ (A))p Akx = Ap+kx.

Hence all inequalities are satisfied with equality and (using also Lemma 2.2)Ap+k−1x ∈
V (A), thus x ∈ attr(A).

The next statement follows from Lemmas 3.5 and 4.1.
Corollary 4.2. If A is irreducible, then (see Figure 1)

V (A) = V∗(A, λ (A)) ∩ V ∗(A, λ (A)) ⊆ V∗(A, λ (A)) ∪ V ∗(A, λ (A)) ⊆ attr (A) .

Lemma 4.3. Let A ∈ R
n×n

be irreducible, A �= ε. Then V (A) = V∗(A, λ(A)) if
and only if every node in DA is critical (that is, Nc(A) = N).

Proof. Without loss of generality suppose that A �= ε and let A be definite.
Suppose that V (A) = V∗(A, λ(A)) and a node, say k, is not critical. Then a+kk <

0 = a∗kk and AA∗
k ≤ A∗

k �= ε but

AA∗
k = A+

k �= A∗
k.

Hence A∗
k ∈ V∗(A)− V (A).

If all nodes are critical, then A∗ = A+ and the statement follows from

V (A) =
{
A+z; z ∈ R

n
}
,

V∗(A) = {A∗z; z ∈ R
n}

due to Corollary 2.25 and Corollary 2.15, respectively.

Corollary 4.4. If A ∈ R
n×n

is irreducible and weakly stable, then Nc(A) = N.
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Lemma 4.5. If A ∈ R
n×n

is definite, Nc(A) = N , and Ax ∈ V (A), then Ax ≥ x.
Proof. A+ is increasing since Nc(A) = N . Also, Ax ∈ V (A) implies Ax = A2x =

A3x = · · · and hence by Lemma 2.9

x ≤ A+x = Ax⊕A2x⊕A3x⊕ · · · = Ax.

Lemma 4.6. If A ∈ R
n×n

is irreducible and weakly stable, then CA is strongly
connected.

Proof. Suppose CA is not strongly connected. Take any strongly connected com-
ponent of CA and renumber the nodes so that this component consists of the first, say
k, nodes. By the corresponding simultaneous permutation of the rows and columns
of A we obtain the matrix (

A11 A12

A21 A22

)
,

where A11 is k × k, k < n, λ(A11) = λ(A) and CA11 is strongly connected. Let
z ∈ V (A11). Then

A

(
z
ε

)
=

(
A11z ⊕A12ε
A21z ⊕A22ε

)
=

(
λ (A) z
A21z

)
≥ λ (A)

(
z
ε

)
.

Since
(
z
ε

)
/∈ V (A) (because V (A) contains only finite vectors) and

(
z
ε

) ∈ V ∗(A, λ(A)),
we have by Lemma 3.6 that A is not weakly stable.

A digraph with one node and no arc is called trivial, otherwise it is called non-
trivial.

Lemma 4.7. If D is a nontrivial strongly connected digraph and D is not an
elementary cycle, then there is a node in D with two or more incoming arcs. It is
similar for outcoming arcs.

Proof. If there is exactly one incoming arc at every node, then an elementary cycle
can be constructed (following the arcs backwards) starting from any node. Since D is
not an elementary cycle there is a node, say x, not on this cycle. But then the nodes
on the cycle are not reachable from x as these nodes have no more than one incoming
arc. This is a contradiction with the strong connectivity of D.

The next statement is a key result of this paper. In the proof v(α) denotes the
vector whose every component is α.

Theorem 4.8. An irreducible matrix A ∈ R
n×n

, A �= ε, is weakly stable if and
only if its critical digraph is an elementary cycle containing all nodes of the associated
digraph, that is, CA is a Hamiltonian cycle in DA.

Proof. Due to Corollary 4.4 and Lemmas 3.4, 3.3, 3.2, and 4.6 it is sufficient to
prove that if A is definite and visualized, Nc(A) = N , and CA is strongly connected,
then the following two statements are equivalent:

1. For any x, if Ax ∈ V (A), then x ∈ V (A).
2. CA is an elementary cycle.

If CA is strongly connected, Nc(A) = N , and A is visualized, A ≤ 0, then all
nodes in DA are accessible from each other by a zero path. Hence the weights of
heaviest paths between any pair of nodes is 0. Therefore A+ = 0 and all eigenvectors
are v(α), α ∈ R.

Suppose that CA is an elementary cycle, say σ. All arcs on σ have weight 0 since
A is visualized. If any arc not on σ also had weight 0, then it would be on some
critical cycle and consequently, CA is not an elementary cycle. Hence A is actually
strictly visualized, all column maxima are unique and of value 0, and column maxima
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in different columns are in different rows. Hence Ax = v(α) has a unique solution
(Theorem 2.30), namely, x = v(α), yielding that x ∈ V (A).

Suppose that CA is not an elementary cycle. Since CA is strongly connected by
Lemma 4.7 there is a node with two or more incoming arcs, thus there is a column
of A with two or more zeros, implying that the system of the sets of column maxima
indices is a covering of the set of row indices but is not minimal. Hence there is a
solution to Ax = v(α) whose components are ≤ α with at least one equality and one
strict inequality (Theorem 2.29). This solution is not in V (A).

It follows from Theorem 2.27 that CA can be found in a polynomial number of
steps. It is then easy to check whether CA is a Hamiltonian cycle in DA. We can
however formulate a problem in terms of weakly stable matrices equivalent to the
Hamilton cycle problem, which thus embodies the hardness of the Hamilton cycle
problem: Given a strongly connected digraph D, is it possible to assign the weights
to the arcs of D so that the obtained weighted digraph is DA for some weakly stable
matrix A?

5. Weakly stable matrices: The reducible case. We will now suppose with-

out loss of generality that A ∈ R
n×n

is in the Frobenius normal form (10) and denote
R = {1, . . . , r}. Let N1, . . . , Nr be the partition of N determined by the Frobenius
normal form. Recall (see subsection 2.3) that Ns, s ∈ R and in fact also the index
s is called a class and that all initial classes are spectral (Corollary 2.19). A class
s ∈ R is called weakly stable if Ass is weakly stable. As usual for x ∈ R

n
we denote

supp(x) = {j ∈ N ;xj �= ε}.
If x is an eigenvector, then the set T = supp(x) is the union of certain classes,

inaccessible from any j ∈ N − T [6]. Clearly, λ = λ(A[T ]). Any set T = supp(x) for
some eigenvector x will be called spectral. (Note that every spectral set contains as a
subset the union of a number of classes, including at least one spectral.) A set T ⊆ N
will be called weakly stable if A[T ] is weakly stable.

Lemma 5.1. If A∈R
n×n

is weakly stable, then every spectral set is weakly stable.
Proof. Let B = A[T ], where T = supp(x) and x is an eigenvector. Suppose that

Bku is an eigenvector of B. Since the indices in T are inaccessible from any j ∈ N−T,
we can simultaneously permute the rows and columns of A so that we get

D =

(
C ε
. . . B

)
.

The corresponding permutation of x yields y =
(
ε
u

)
. We then have Dky =

(
ε

Bku

)
. The

matrix D is weakly stable (Lemma 3.2). Also, Dky is an eigenvector of D since Bku
is an eigenvector of B. Hence y is an eigenvector of D, and thus u is an eigenvector
of B, and so B is weakly stable.

Lemma 5.2. If A ∈ R
n×n

is weakly stable, then every initial class is also weakly
stable.

Proof. Every initial class is spectral (Corollary 2.19) and so the statement imme-
diately follows from Lemma 5.1.

Theorem 5.3. Let A ∈ R
n×n

. Then A is weakly stable if and only if every
spectral class is initial and weakly stable.

Proof. In this proof we suppose without loss of generality (Lemma 3.2) that A is
in the Frobenius normal form (10).

Suppose that A is weakly stable. Due to Lemma 5.2 for the first implication it is
sufficient to prove that every spectral class is initial. To obtain a contradiction suppose
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that a class, say s, is spectral but not initial. Let λ be the associated eigenvalue and
S be the set of all spectral classes from which s is accessible; thus S −{s} �= ∅. Then
there is an x ∈ V (A, λ) such that x[Ns] �= ε and x[Ni] = ε for i /∈ S. By Lemma 2.20
every such eigenvector has x[Ni] finite for all i ∈ S. Let us denote

T =
⋃
i∈S

Ni.

Clearly λ = λ(A[T ]) = λ(A[Ns]),

A [T ]x [T ] = λx [T ] ,

and T is weakly stable by Lemma 5.1. The matrix A[Ns] = Ass is irreducible. Let
us take any vector z ∈ R

n
such that z[Ns] ∈ V (A[Ns]) ⊆ R

n and zi = ε for i /∈
Ns. Then A[Ns]z[Ns] = λz[Ns], yielding A[T ]z(T ) ≥ λz(T ) and consequently, z ∈
V ∗(A[T ], λ(A[T ])). However, by Lemma 2.20 z /∈ V (A[T ], λ(A[T ])) since z[Ns] is
finite and zi = ε for at least one index i ∈ T because S − {s} �= ∅. This contradicts
the weak stability of A[T ] since by Lemma 3.6 V ∗(A[T ], λ(A[T ])) = V (A[T ], λ(A[T ]))
if A[T ] is weakly stable.

Suppose now that each spectral class of A is initial and weakly stable. If Ax ∈
V (A, λ) for some λ, then (Ax)[Ni] is finite for i ∈ S ⊆ R, where S is a set of spectral
classes with eigenvalue λ. Also (Ax)[Ni] = ε for i /∈ S since all spectral classes are
initial. Then by Lemma 2.2 x[Ni] = ε for i /∈ S. Hence (Ax)[Ni] = Aiix[Ni] ∈
V (Aii, λ) for all i ∈ S. Since Aii is weakly stable x[Ni] ∈ V (Aii, λ) for every i ∈ S
and thus x ∈ V (A, λ). Using Lemma 3.4 we conclude that A is weakly stable.

Corollary 5.4. A ∈ R
n×n

is weakly stable if and only if every initial class is
weakly stable and the (unique) eigenvalue of every noninitial class is strictly less than
the eigenvalue of any initial class from which it is accessible. See Figure 2.

…

1 2 s

< 1 < 1 < 2
< s < sλ λ λ λ λ

λλλ

Fig. 2. Condensation digraph of a weakly stable matrix.
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4 4

3

2 22

1 1

Fig. 3. Condensation digraph of a strongly stable matrix.

6. Strongly stable matrices. In order to provide a balanced picture on reach-
ability in this section we present the main results on strongly stable matrices [8], [6],
that is, the matrices for which attr(A) = R

n − {ε}.
Lemma 6.1. If A ∼ B, then A is strongly stable if and only if B is strongly

stable.
Due to this lemma we may without loss of generality investigate strong stability

of the matrix arising from a given matrix by a simultaneous permutation of the rows
and columns, that is, in a Frobenius normal form.

Theorem 6.2 (see [7]). Let A ∈ R
n×n

be irreducible. Then A is strongly stable
if and only if A is primitive.

A Frobenius normal form class is called trivial (primitive) if the corresponding
diagonal block is the 1× 1 matrix (ε) (primitive).

Theorem 6.3. Let A ∈ R
n×n

be a matrix with no ε columns and in the Frobenius
normal form (10) with classes N1, . . . , Nr and R = {1, . . . , r}. Then A is strongly
stable if and only if the following hold:

1. All nontrivial classes N1, . . . , Nr are spectral and primitive.
2. For any i, j ∈ R, if Ni, Nj are nontrivial mutually inaccessible classes, then

λ(Ni) = λ(Nj).
A typical condensation digraph of a strongly stable matrix can be seen in Figure 3,

where λ1 < λ2 < λ3 < λ4. In general it consists of layers of classes. Classes in each
layer have the same eigenvalues and these values are strictly increasing with layers.
Also, any two consecutive layers form a complete bipartite digraph with all arcs
directed from the layer with smaller eigenvalues to that with greater eigenvalues.

Example 6.4 (1.1 continued). Production matrix is

A =

⎛
⎝ 2 5 ε

3 3 2
3 5 1

⎞
⎠ .
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It is easily seen that λ(A) = 4, that is, the duration of every stage at the periodic
regime (if reached) is 4; there is only one critical cycle, namely, (1, 2, 1) which is non-
Hamiltonian, hence A is not weakly stable; σ(A) = 2 and so A is also not strongly

stable; the dimension of the eigenspace is d(A) = 1, A+
λ =

( 0 1 −1
−1 0 −2
0 1 −1

)
, and all

eigenvectors are multiples of (1, 0, 1)T ; orbits of A will reach the eigenspace with some
but not all starting vectors outside V (A) (for instance, A⊗ x ∈ V (A) if x = (1, 0, 0)T

but not with x = (0, 0, 0)T ).
Example 6.5. Let us examine some other matrices. If the production matrix is

B =

⎛
⎝ 2 5 ε

2 3 4
3 2 1

⎞
⎠ ,

then λ(B) = 4 and there is only one critical cycle, namely, (1, 2, 3, 1) which is Hamil-

tonian, and hence B is weakly stable; σ(B) = 3; d(B) = 1, B+
λ =

( 0 1 1
−1 0 0
−1 0 0

)
, and all

eigenvectors are multiples of (1, 0, 0)T ; orbits of B will not reach the eigenspace with
any starting vector outside V (B).

If the production matrix is

C =

⎛
⎝ 2 5 ε

3 3 2
3 6 1

⎞
⎠ ,

then λ(C) = 4, critical cycles are (1, 2, 1) and (2, 3, 2), σ(C) = 2, and hence C is

neither weakly nor strongly stable; d(C) = 1, C+
λ =

( 0 1 −1
−1 0 −2
1 2 0

)
, and all eigenvectors

are multiples of (1, 0, 2)T ; orbits of C will reach the eigenspace with some but not all
starting vectors outside V (C) (for instance, C ⊗ x ∈ V (C) if x = (1, 0, 0)T but not
with x = (0, 0, 0)T ).

If the production matrix is

D =

⎛
⎝ 2 5 ε

2 3 4
3 2 4

⎞
⎠ ,

then λ(D) = 4, critical cycles are (1, 2, 3, 1) and (3, 3), σ(D) = 1, and hence D is

strongly stable; d(D) = 1, D+
λ =

( 0 1 1
−1 0 0
−1 0 0

)
, and all eigenvectors are multiples of

(1, 0, 0)T ; orbits of A will reach the eigenspace with every nontrivial starting vector.
If the production matrix is

E =

⎛
⎝ 2 5 ε

3 3 2
3 5 4

⎞
⎠ ,

then λ(E) = 4, critical cycles are (1, 2, 1) and (3, 3), σ(E) = 2, and hence E is neither

weakly nor strongly stable; d(E) = 2, E+
λ =

( 0 1 −1
−1 0 −2
0 1 0

)
, and all eigenvectors are

max-combinations of (1, 0, 1)T and (1, 0, 2)T ; orbits of E will reach the eigenspace
with some but not all starting vectors outside V (E) (for instance, E ⊗ x ∈ V (E) if
x = (1, 0, 0)T but not with x = (0, 0, 0)T ).
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7. Conclusions and further research. This paper fully characterizes weakly
stable matrices, that is, matrices whose orbit never reaches an eigenvector unless it
starts in one. The characterization enables us to check that a matrix is weakly stable
in a polynomial number of steps. As a by-product the paper offers a new view of
eigenspaces as intersections of super- and subeigenspaces, which proves to be a useful
tool when considering periodic properties of matrices.

In general, the set of vectors x such that Akx is an eigenvector for a fixed k
includes all eigenspaces, and the sequence of such sets grows with k, stabilizing at
some stage if A is irreducible due to the cyclicity theorem. It may be interesting to
ask for a combinatorial criterion characterizing sequences that would stabilize in no
more than m steps (m-weakly stable matrices). The hypergraph transversal problem
[17], [26] might be useful in answering this question.

Attraction sets are discussed in [6] and [33] in a more general setting where the
orbit is required to have an ultimate period not exceeding a given number. These sets
can be characterized as solution sets of max-algebraic two-sided systems. The concept
of an attraction set was inspired by earlier works [5] and [25]. The concept in [25] is
more general, asking for geometrical description and classification of all possible limit
cycles and their attraction sets. These areas are still unexplored.

Supereigenspaces, in contrast to subeigenspaces, seem to be much harder to de-
scribe and to our knowledge no such description has been found yet.
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[7] P. Butkovič and R. A. Cuninghame-Green, On matrix powers in max-algebra, Linear Al-
gebra Appl., 421 (2007), pp. 370–381.
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