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Abstract

An algorithm for solving m × n systems of (max, +)-linear equations is presented. The systems have variables on both sides of
the equations. After O(m4n4) iterations the algorithm either finds a solution of the system or finds out that no solution exists. Each
iteration needs O(mn) operations so that the complexity of the presented algorithm is O(m5n5).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Consider an industrial process in which products P1, . . . , Pm are prepared in n workshops, each workshop contribut-
ing to the completion of each product by producing a semiproduct. It is assumed that every workshop can work for all
products simultaneously and that these works start as soon as the workshops open. Let aij be the duration of the work
of the j th workshop needed to complete the semiproduct for Pi (i = 1, . . . , m; j = 1, . . . , n). Let us denote by xj the
starting time of the j th workshop (j = 1, . . . , n). Then all semiproducts for Pi (i = 1, . . . , m) will be ready at time
max(x1 + ai1, . . . , xn + ain). Now suppose that independently, k other workshops prepare semiproducts for products
Q1, . . . , Qm and the duration and starting times are bij and yj , respectively. Then the synchronisation problem is to
find starting times of all n + k workshops so that each pair (Pi, Qi) (i = 1, . . . , m) is completed at the same time. This
task is equivalent to solving the system of equations

max(x1 + ai1, . . . , xn + ain) = max(y1 + bi1, . . . , yk + bik) (i = 1, . . . , m).

� Research supported by the LMS Grant 4417.
∗ Corresponding author.

E-mail addresses: p.butkovic@bham.ac.uk (P. Butkovič), Karel.Zimmermann@MFF.CUNI.CZ (K. Zimmermann).
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If we denote a ⊕ b = max(a, b) and a ⊗ b = a + b for a, b ∈ R then this system has the form

∑
j=1,...,n

⊕
aij ⊗ xj =

∑
j=1,...,k

⊕
bij ⊗ yj (i = 1, . . . , m).

Therefore, this system is called a system of (max, +) linear equations. It is easily shown [5] that the above system can
be straightforwardly transformed to another one where k = n and xj = yj (j = 1, . . . , n).

Systems of (max, +) or (max, ·)-linear equations were investigated already in the first publications dealing with the
introduction of algebraic structures called (max, +)-algebras (sometimes also extremal algebras or path algebras). In
these publications, systems of equations with variables only on one side were considered [4,7]. Other systems with a
special structure were studied in the context of solving eigenvalue problems in the corresponding algebraic structures or
synchronization of discrete event systems [1,3,4]. Using the (⊕, ⊗)-notation [4], the systems have one of the following
forms: A⊗ x = b, A⊗ x = x or A⊗ x = x ⊕ b, where A is a given matrix, b is a given vector of an appropriate size and
(⊕, ⊗) = (max, +). In this article, we consider systems of equations with general (max, +) -linear functions on both
sides of the systems (i.e. systems of the form A⊗x =B ⊗x, where A, B are m×n matrices with finite rational entries).
However, we do not use the (⊕, ⊗)-notation in the present paper as the method introduced here is purely numerical
and does not use any theoretical results previously obtained in max-algebra.

General two-sided linear systems in max-algebra have been studied in a number of papers, e.g. [2,5,6,8]. A general
solution method was presented in [8], however, no complexity bound was given. In [5] a pseudopolynomial algorithm
has been developed. In [2] it was shown that the solution set is generated by a finite number of vectors. A general
iterative approach suggested in [6] assumes that finite upper and lower bounds for all variables are given. The iterative
method presented in [6] makes it possible to find an approximation of the maximum solution of the given system, which
satisfies the given lower and upper bounds or to find out that no such solution exists. In the latter case, the method
does not answer the question whether no solution exists only because of the lower and upper bounds or whether there
exists no solution of the given system at all (independently of any lower or upper bound). Besides, the method in [6]
is constructed for general equations with residuated functions on both sides and cannot take advantage of the special
structure of (max, +)-linear systems with finite entries. We show that the method suggested in this article answers the
solvability question after at most O(m4n4) iterations and each iteration has a complexity O(mn) (m equations with n
variables), so that the complexity of the suggested algorithm is O(m5n5). If the system has a solution, the method finds
the maximum solution smaller or equal to a given finite upper bound vector; no lower bound is considered. Since the
(max, +)-linear functions are +-homogeneous, it solves the solvability problem completely, because if x=(x1, . . . , xn)

is a solution of the system and � an appropriately chosen rational number, then (x1 + �, . . . , xn + �) is smaller or equal
than the given upper bound and solves the system too (see Lemma 2.1 below).

2. Formulation of the problem

We will use the following notation, assuming that m and n are given integers:
N = {1, . . . , n}, S = {1, . . . , m}, Q is the set of rational numbers,
Qn = Q × · · · × Q (n-times), x = (x1, . . . , xn) ∈ Qn.
Throughout the paper we assume that aij , bij (i ∈ S, j ∈ N ) are given rational numbers.
We denote for all i ∈ S:

ai(x) ≡ max
j∈N

(aij + xj ),

bi(x) ≡ max
j∈N

(bij + xj ).

The aim of this paper is to develop a strongly polynomial algorithm which finds a solution to the system

ai(x) = bi(x), i ∈ S (1)

or decides that no such solution exists.



P. Butkovič, K. Zimmermann / Discrete Applied Mathematics 154 (2006) 437–446 439

The set of all rational solutions of (1) will be denoted by M. We further define for any x ∈ Qn:

M(x) ≡ {x|x ∈ M & x�x}. (2)

Note that the functions ai(x), bi(x) are +-homogeneous, i.e. if � ∈ Q, x ∈ M then also (x1 + �, . . . , xn + �) ∈ M .

Lemma 2.1. Let x ∈ Qn be given. Then

M �= ∅ if and only if M(x) �= ∅.

Proof. Since M(x) ⊆ M , it remains to prove the “only if” part. If x̃ = (x̃1, . . . , x̃n) ∈ M , we can find � ∈ Q such that
x̃′ = (x̃1 + �, . . . , x̃n + �)�x and since x̃′ ∈ M we have x̃′ ∈ M(x). �

Let L ⊆ Qn, x̃ ∈ L. Then x̃ is called the maximum element of L if x� x̃ for every x ∈ L .

Remark 2.1. The algorithm presented in the next section will either find the maximum element of M(x) for a given
upper bound x or find out that M(x) is empty (and thus by Lemma 2.1 the set M is empty too). If x ∈ M(x), then x is
the maximum element of M(x). Let us note that the existence of the maximum element in M(x), if M(x) �= ∅, was
proved in a much more general context [4].

3. The algorithm

Let us assume that x /∈ M(x). We may also assume w.l.o.g. that

ai(x)�bi(x), i ∈ S (3)

(otherwise we swap the inequality sides appropriately). Let

H(x) ≡ {i ∈ S|ai(x) > bi(x)}.

Since x /∈ M(x), the set H(x) is non-empty. It follows from (3) that ai(x) = bi(x) for all i ∈ S\H(x).
We denote for all i ∈ S:

Fi(x) = {j ∈ N |aij + xj = ai(x)},
Gi(x) = {j ∈ N |bij + xj = bi(x)}.

Variables xj , j ∈ Fi(x) and xj , j ∈ Gi(x) will be called active variables at point x of ai(x), bi(x), respectively.
If we want to find an element of M(x), it is necessary to decrease ai(x) for all i ∈ H(x); for this it is necessary to

decrease all active variables in ai(x), i ∈ H(x), i.e. all variables xj , j ∈ A(x), where

A(x) ≡
⋃

i∈H(x)

Fi(x). (4)

Besides, we need to ensure that in the process of decreasing xj , j ∈ A(x), the equalities for i ∈ S\H(x) will be
preserved. If for instance ai(x) = bi(x) for some i ∈ S\H(x) and Fi(x) ⊆ A(x) and Gi(x)�A(x), then the decrease
of xj , j ∈ A(x) would destroy this equality. To preserve it, we have to include further variables in the set of decreased
variables, namely variables xj , j ∈ Gi(x)\A(x). We will now describe Algorithm I which after at most n−1 iterations
finds the set P(x) of indices of all variables, which have to be decreased, if variables xj , j ∈ A(x)are decreased and
the equalities ai(x) = bi(x) for i ∈ S\H(x) have to be preserved.
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Algorithm I

1 P(x) := A(x).

2 E1 := {i ∈ S\H(x)|Fi(x) ⊆ P(x) & Gi(x)�P(x)},
E2 := {i ∈ S\H(x)|Fi(x)�P(x) & Gi(x) ⊆ P(x)}.

3 If E1 ∪ E2 = ∅, then P(x)is the set of indices of variables to be decreased, STOP.

4 P(x) := P(x) ∪ ⋃
i∈E1

(Gi(x)\P(x)) ∪ ⋃
i∈E2

(Fi(x)\P(x)), go to 2 .

Note that at the end of Algorithm I Fi(x) ⊆ P(x) if and only if Gi(x) ⊆ P(x) for every i /∈ H(x). Since A(x)

contains at least one index and in each iteration at least one new index from N is added to P(x), Algorithm I terminates
after at most (n − 1) iterations.

We will now describe the process of decreasing variables xj , j ∈ P(x).
Let us define x(t) = (x1(t), . . . , xn(t)) for t �0 as follows:

xj (t) ≡ xj − t if j ∈ P(x),

xj (t) ≡ xj otherwise.

}
(5)

If we increase parameter t, variables xj , j ∈ P(x) will be decreased (i.e. xj (0) = xj , xj (t) < xj for any t > 0 and
j ∈ P(x)).

Note that if we increase t to a value � > 0, where � is sufficiently small, then for all i ∈ S such that Fi(x) ⊆ P(x) we
have

Fi(x(t)) = Fi(x), Gi(x(t)) = Gi(x).

The following hold for any t ∈ (0, �):

Fi(x) ⊆ P(x) ⇒ ai(x(t)) = ai(x) − t, Gi(x) ⊆ P(x) ⇒ bi(x(t)) = bi(x) − t ,

and H(x(t)) = H(x).
Let us first assume that P(x) �= N (it will follow from Theorem 4.2 of the next section that M(x) = ∅, if H(x) �= ∅

and P(x) = N ). Denote

L1 ≡ {i ∈ S|Fi(x) ⊆ P(x)},
L2 ≡ {i ∈ S|Gi(x) ⊆ P(x)},
L3 ≡ {i ∈ H(x)| Gi(x)�P(x)}.

We will increase t until for the first time at least one of the following cases occurs:

(i) Fi(x(t)) �= Fi(x), i.e. ai(x(t)) = �i (x) ≡ maxj∈N\P(x) (aij + xj ) for some i ∈ L1;
(ii) Gi(x(t)) �= Gi(x), i.e. bi(x(t)) = �i (x) ≡ maxj∈N\P(x)(bij + xj ) for some i ∈ L2;

(iii) H(x(t)) �= H(x), i.e. ai(x(t)) = �i (x) for some i ∈ L3.

If P(x) = N , we will set �i (x) = �i (x) = −∞ for all i ∈ S.
We will determine the values t1, t2, t3 at which the cases (i), (ii), (iii) occur.
If P(x) �= N (i.e. P(x) ⊂ N ), �i (x), �i (x) are always finite. Since in the cases (i) and (ii) ai(x(t)) = ai(x) − t and

bi(x(t)) = bi(x) − t respectively, we obtain the following formulae for determining t1, t2:

t1 = min
i∈L1

(ai(x) − �i (x)), (6)

t2 = min
i∈L2

(bi(x) − �i (x)), (7)
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In the case (iii) we obtain t3 as follows:

t3 = min
i∈L3

(ai(x) − �i (x)). (8)

We will set ti = ∞ if Li = ∅ (1� i�3).
We will now set � ≡ min(t1, t2, t3), and use on the next iteration x(�) as the new upper bound. If H(x(�)) �= ∅, we

begin the new iteration with this new upper bound.
If P(x) = N , we will set by definition ti = ∞ for i = 1, 2, 3 and thus also � = ∞. Let us note that if P(x) �= N , it is

always � ∈ (0, ∞) and thus x(�)�x and x(�) �= x. It will be proved in the next section that if H(x(�)) = ∅, then x(�)
is the maximum element of M(x). Further, it will be proved that if P(x)=N , then M(x)=∅. The following algorithm
summarizes the previous considerations.

Algorithm II

1 y := x.

2 If H(y) = ∅ then y is the maximum element of M(x), STOP.

3 Find A(y) and P(y) using Algorithm I (with x replaced by y).

If P(y) = N , then M(y) = ∅, STOP.

4 Define x(t) using (5) and t1, t2, t3 using (6), (7), (8) (with x replaced by y everywhere).

5 � := min(t1, t2, t3), y := x(�), go to 2 .

Remark 3.1. The proofs for steps 2 (i.e. that y is the maximum element of M(x)) and 3 (i.e. that P(y) = N

implies M(x) = ∅) will be given in the next section, and the complexity of Algorithm II will be analysed in Section 5.

4. Theoretical background of Algorithm II

Theorem 4.1. Let y be a current upper bound in Algorithm II, y /∈ M(y), t ∈ (0, �), x̃�y and x̃�x(t) where � is

defined in step 5 of Algorithm II. Then x̃ /∈ M(y).

Proof. Since H(y) �= ∅, it follows from the description of Algorithm II that for any t ∈ (0, �) and all i ∈ S, if
Fi(y) ⊆ P(y) (or, equivalently Gi(y) ⊆ P(y)) then the equalities

H(x(t)) = H(y), Fi(y) = Fi(x(t)), Gi(y) = Gi(x(t)) (9)

hold. Further, we have:

ai(x(t)) > bi(x(t)), ∀i ∈ H(y), (10)

ai(x(t)) = bi(x(t)), ∀i ∈ S\H(y), (11)

ai(x(t)) = ai(y) if Fi(y)�P(y), (12)

bi(x(t)) = bi(y) if Gi(y)�P(y), (13)

ai(x(t)) = ai(y) − t if Fi(y) ⊆ P(y), (14)

bi(x(t)) = bi(y) − t if Gi(y) ⊆ P(y). (15)
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Let us assume now that t ∈ (0, �) is fixed and x̃�x(t), so that N1 ≡ {j ∈ N |x̃j > xj (t)} �= ∅. Let �̃ be defined as
follows:

�̃ ≡ max
j∈N1

(x̃j − xj (t)). (16)

Let N2 ≡ {j ∈ N1 | x̃j − xj (t) = �̃}. We shall investigate the following two cases:
Case I: A(y) ∩ N2 �= ∅.
Case II: A(y) ∩ N2 = ∅.
We shall show that in both cases x̃ /∈ M(y).
Case I. Let p be any element from A(y) ∩ N2. It follows from (4) that p ∈ A(y) implies the existence of an

index k ∈ H(y) such that p ∈ Fk(y). Let us choose t̃ ∈ (0, �) such that xp(t̃) = x̃p. Clearly t̃ − �̃ < t . Let us note
that (5) implies xp(t̃) = yp − t̃ and xp(t) = yp − t , so that �̃ = x̃p − xp(t) = x̃p − (yp − t) = x̃p − yp + t and
xp(t̃) = yp − t̃ = x̃p = xp(t) + �̃. By (5) we have:

xj (t̃) = yj − t̃ , j ∈ P(y),

xj (t̃) = yj otherwise.

Taking into account the definition of �̃ (see (16)), we obtain for any j ∈ N1:

xj (t̃) = xj (t) + �̃�xj (t) + x̃j − xj (t) = x̃j .

Since xj (t̃)�xj (t)� x̃j for all j ∈ N\N1, it follows that

x(t̃)� x̃ (17)

and

ak(x̃)�akp + x̃p = akp + xp(t̃) = ak(x(t̃)), (18)

where the last equality follows from the fact that p ∈ Fk(y)=Fk(x(t̃)). Using relations (18), (10) and (16), we obtain:

ak(x̃)�ak(x(t̃)) > bk(x(t̃))�bk(x̃), (19)

so that ak(x̃) > bk(x̃) and thus x̃ /∈ M(y).
Case II. Let p be any element of (P (y)\A(y)) ∩ N2. Let N3 ⊆ N2 be the set of indices in N2 included in P(x) by

Algorithm I first. We can assume w.l.o.g. that p ∈ N3 (otherwise we could consider instead of p an arbitrary element
of N3). Now, since p ∈ (P (y)\A(y)) ∩ N3, it follows from the description of Algorithm I that there exists an index
r ∈ S\H(y) such that Fr(y) ⊆ P(y), Gr(y) ⊆ P(y) and either p ∈ Fr(y), p /∈ Gr(y) and N2∩Gr(y)=∅ orp /∈ Fr(y),
p ∈ Gr(y) and N2 ∩ Fr(y) = ∅. We can assume w.l.o.g. that the latter case occurs. Since r ∈ S\H(y), the equation
ar(x(t̃)) = br(x(t̃)) holds. It follows further from (16) (note that �̃ > 0) and (17):

xj (t̃) = xj (t) + �̃ = xj (t) + x̃j − xj (t) = x̃j if j ∈ N2; (20)

xj (t̃) = xj (t) + �̃ > xj (t) + x̃j − xj (t) = x̃j if j ∈ N1\N2; (21)

xj (t̃) = xj (t) + �̃ > xj (t)� x̃j if j ∈ P(y)\N1; (22)

xj (t̃) = xj (t) = yj � x̃j if j ∈ N\P(y). (23)

It follows that x̃j �xj (t̃) for all j ∈ N , which implies brj + x̃j �brj +xj (t̃) for all j ∈ N . Since p ∈ Gr(y)=Gr(x(t̃))

and xp(t̃) = x̃p, we obtain for all j ∈ N :

brj + x̃j �brj + xj (t̃)�brp + xp(t̃) = brp + x̃p, (24)

and thus

br(x̃) = max
j∈N

(brj + x̃j ) = brp + x̃p = brp + xp(t̃) = br(x(t̃)). (25)
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Further, it follows from (20)–(23): arj + x̃j < arj + xj (t̃) for all j ∈ P(y)\N2 and arj + x̃j = arj + xj (t̃) for all
j ∈ N2. Since N2 ∩ Fr(x(t̃)) = ∅, we have j ∈ N2 �⇒ j /∈ Fr(x(t̃)). Since Fr(x(t̃)) = Fr(y) ⊆ P(y), it holds that
Fr(x(t̃)) ∩ (N\P(y)) = ∅. Therefore, we obtain:

arj + x̃j = arj + xj (t̃) < ar(x(t̃)), j ∈ N2 ∪ (N\P(y)) (26)

and according to (21), (22)

arj + x̃j < arj + xj (t̃)�ar(x(t̃)) (27)

otherwise.
Finally, it follows from (25)–(27):

ar(x̃) = max
j∈N

(arj + x̃j ) < ar(x(t̃)) = br(x(t̃)) = br(x̃),

so that ar(x̃) < br(x̃) and thus x̃ /∈ M(y). This completes the proof. �

For z = (z1, . . . , zn) ∈ Qn, � ∈ Q, we denote z[�] = (z1 + �, . . . , zn + �).

Theorem 4.2. If on some current iteration of Algorithm II y /∈ M(y) and P(y) = N , then M(x) = ∅.

Proof. Assume that P(y) = N , so that � = ∞. Let z be any element of M(x). Then there exists an � such that z[�]�y

and z[�] �= y. Since ai(x) , bi(x) are +-homogeneous and ai(z)=bi(z) for all i ∈ S, it is also ai(z[�])=bi(z[�]) for all
i ∈ S and for any � ∈ Q. Therefore, also ai(z[�]) = bi(z[�]) for all i ∈ S, so that z[�] ∈ M(y). Since z[�] �= y,� = ∞,
there exists t ∈ (0, ∞) such that z[�]�x(t), where x(t) is defined as in Algorithm II (since P(y) = N , it means in this
case that xj (t) = yj − t for all j ∈ N ). Then z[�] /∈ M(y) by Theorem 4.1. This contradiction completes the proof of
Theorem 4.2. �

Theorem 4.3. Let y be a current upper bound in Algorithm II, y /∈ M(y). Let � be defined as in Algorithm II and
P(y) �= N . If x(�) ∈ M(y) then x(�) is the maximum element of M(x).

Proof. Let z be any element of M(x) satisfying z�x(�). Since ai(x), bi(x) are +-homogeneous for all i ∈ S, z[�] ∈
M(x) for all ��0. Therefore, we can find �̃�0 such that z[�̃]�y, z(�̃) �= y and z(�̃)�x(�). Let x(�) be defined
as in Algorithm II. Suppose that p is an index from N such that zp[�̃] > xp(�). Let us choose t̃ ∈ (0, �) satisfying
zp[�̃] > xp(t̃) = yp − t̃ > xp(�).Then z[�̃]�x(t̃) and therefore due to Theorem 4.1 z[�̃] /∈ M(y). On the other hand,
since z ∈ M(x) and ai(x), bi(x) are +-homogeneous, we have for any i ∈ S:

ai(z[�̃]) = ai(z) + �̃ = bi(z) + �̃ = bi(z[�̃]).
Since at the same time z[�̃]�y, we have z[�̃] ∈ M(y). This contradiction shows that z�x(�) for any z ∈ M(x). �

Remark 4.1. As another consequence of Theorem 4.1 at least one of the variables xj , j ∈ N has never been decreased
if M(x) �= ∅ and x(�) is the solution obtained in the last iteration of Algorithm II. Indeed, if xj (�) < xj for all j ∈ N ,
then there exists � > 0 such that xj (�) + � < xj for all j ∈ N and (x1(�) + �, . . . , xn(�) + �) ∈ M(x), which would
lead to a contradiction similarly as in Theorem 4.3.

Remark 4.2. As we have already mentioned, if we use the (⊕, ⊗)-notation as e.g. in [4], the algorithm suggested
here solves systems of m (⊕, ⊗)-linear equations with n variables of the form A ⊗ x = B ⊗ x, where A, B are given
(m, n)-matrices with finite entries over the (Q ∪ {−∞}, ⊕, ⊗)-algebra with (⊕, ⊗) = (max, +). The algorithm can
be straightforwardly applied in any other (E, ⊕, ⊗)-algebra, where E ⊆ (R ∪ {∞} ∪ {−∞}), E is a semigroup with
respect to ⊕ and group with respect to ⊗, and the order relation � is defined by ��� ⇐⇒ �⊕�=� for any �, � ∈ E.
Such cases are e.g. (Z ∪ {−∞}, max, +)-algebra, where Z is the set of integers, or (R+ ∪ {∞}, min, ·)-algebra, where
R+ is the set of positive reals [6,9].



444 P. Butkovič, K. Zimmermann / Discrete Applied Mathematics 154 (2006) 437–446

5. Computational complexity of the algorithm

Now we analyze the computational complexity C of Algorithm II. This algorithm runs in loops between steps 2 and 5
and will terminate at either step 2 or 3. It calls Algorithm I as a subroutine in step 3. It is easily seen that Algorithm I and
all individual steps of Algorithm II are O(mn) and thus C = O(mnq) where q is the number of iterations of Algorithm
II, that is the number of repetitions of the loop 2–5. We now derive an upper bound for q in terms of m and n.

The iterations between steps 2 and 5 run at three different levels, which we refer to as macroiterations, miniiterations
and microiterations depending on how the value of � in step 4 is attained. We will introduce this terminology precisely
below. A vector found by Algorithm II at the end of any iteration will be called a current solution (during the next
iteration). Let x̄ ∈ Qn be a current solution. A variable xj will be called primary (in that iteration) if j ∈ A(x̄). The
expressions aij + xj , bij + xj will be called terms. If xj is primary, then we call the corresponding term primary.

The set of all iterations between two attainments of � by t3, that is between two successive changes of the set H(·)
will be called a macroiteration. When H(·) is changing at least one of the inequalities becomes an equality. Since the
algorithm maintains existing equalities, once a row index moves from H(x) to S − H(x) for some current solution x it
will not appear in H(y) for any future current solution y and hence the number of macroiterations is at most m. In what
follows we consider the algorithm performance restricted to one macroiteration, thus the set H(x) will be the same for
all current solutions x during this macroiteration. We may therefore denote it by H.

If the value of � is attained by t1 for some i ∈ H , then at least one new variable becomes primary. If a variable
becomes primary, it will remain primary at least until the end of the current macroiteration. The set of all iterations
between two successive attainments of � by t1 for some i ∈ H will be called a miniiteration. Obviously, there can be
at most n − 1 miniiterations in one macroiteration (if all variables become primary for some current solution x then
P(x) = N and thus M(x) = ∅) and the total number of all miniiterations is at most � = m(n − 1).

We will now estimate the number of iterations in one miniiteration.
Consider a miniiteration, that is assume that the set of primary variables is fixed. The symbol x̄ will stand for the

current solution at the beginning of the miniiteration, while x will denote the (changing) current solution during the
miniiteration. We will refer to the individual equations by their row numbers. Since A(x) ⊆ P(x) for every x it is clear
that all primary variables will change by the same value in each iteration within this miniiteration. The following cases
at the beginning of the miniiteration are considered.

(I) If there is no side of any equation i ∈ S −H in which all active variables are primary then none of these equations
is restrictive in the choice of � (that is � will not be attained by either t1 or t2 for any i ∈ S − H ) and therefore all
primary variables will decrease in one iteration

(a) either by � attained by t1 for some i ∈ H , in which case the current miniiteration ends,
(b) or by � attained by t3 for some i ∈ H , in which case the current macroiteration ends,
(c) or by � attained by t2 for some i ∈ H . This last subcase can only happen at most once for each inequality within

one miniiteration, thus at most k�m times in any miniiteration.

So the total number of iterations in this case is C1 �k.
(II) There are equations i ∈ S − H in which on exactly one side all active variables are primary, but there is no

equation in which all active variables on both sides are primary. Let us assume without loss of generality that in all
these equations all active variables on the left are primary (but on the right some active variables are non-primary). Let
R(x) ⊆ S − H be the set of all such equations for a current solution x. We will call an equation i regular if i ∈ R(x).
If i ∈ R(x̄) then in every iteration Gi(x) either grows or remains unchanged, while i ∈ R(x). During a miniiteration,
some of the regular equations may stop being regular, when on the left-hand side a non-primary variable becomes
active. No new equations become regular during a miniiteration.

All non-primary variables active on the right-hand side of at least one regular equation will be called secondary, and
the set of indices of all secondary variables will be denoted by Q(x), that is

Q(x) =
⋃

i∈R(x)

Gi(x) − A(x).

There are two ways a miniiteration can finish: Either all regular equations stop being regular — then we have the
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situation described in (I) and the miniiteration therefore ends after additional at most k iterations (see the case I(c)). Or
all non-primary variables become secondary in which case P(x) = N and thus M(x) = ∅.

We now give (a very rough) upper bound on the number of iterations in one miniiteration. Variables xj , j ∈ P(x)

that are neither primary nor secondary are called tertiary. Variables xj , j ∈ N − P(x) are called ordinary. We will use
the same adjective for the terms aij + xj , bij + xj as for the corresponding variable xj .

Lemma 5.1. At every iteration there is a pair of terms, one of which is secondary (vs) and the other one ordinary (vo)
such that

(a) vs > vo at the beginning of this iteration;
(b) vs = vo at the end of this iteration;
(c) vs �vo at all iterations following this iteration while vs stays secondary.

Proof. (a) and (b) follow immediately from the way P(x) and � are found by Algorithms I and II. Part (c) is due to
the fact that all xj , j ∈ P(x) change by the same value and that indices of secondary variables are in P(x) in every
iteration of a miniiteration, whereas indices of variables that are neither primary nor secondary may be in P(x) in some
but not necessarily all iterations. �

It follows from this Lemma that at every iteration a new secondary term decreases to the level of an ordinary term
and will never exceed it while the corresponding variable remains secondary. The number of secondary and ordinary
terms may change from iteration to iteration, but neither of them exceeds

u = 2(n − 1)(m − k − 1) + (n − 1)k

(2 sides, at most n − 1 non-primary variables, at most m − k − 1 non-regular equations i ∈ S − H and k right-hand
sides for i ∈ H ). Thus, after at most u2 = O(n2m2) iterations the remaining secondary variables can decrease without
being restricted by other than regular equations, thus in the next iteration � = t2 for some i regular, yielding at least one
new secondary variable in at least one regular equation. The set of iterations between two consecutive such attainments
of � will be called a microiteration. Since the number of secondary variables is at most n − 1, there can be at most
(n − 1) microiterations in one miniiteration.

Hence the number of iterations in one miniiteration in this case is

C2 �(n − 1)O(m2n2) = O(m2n3).

(III) There are equations in which all active variables on both sides are primary (“primary equations”). We will
assume without loss of generality that there is an equation in which all active variables on the left-hand side (but not on
the right) are primary, as this would be achieved in at least one equation after at most k iterations (each being determined
by one of the k right-hand side “stoppages” in inequalities i ∈ H ). We now count the number of iterations similarly as
in (II), while all primary equations remain primary (in that period they have no effect on the number of iterations). If a
primary equation stops being primary but all active variables on one side are still primary then we re-start counting the
number of iterations as in (II). This re-starting can take place at most m − k times. If a primary equation stops being
primary and neither side has all active variables primary then no re-starting is necessary.

So the total number of operations in a miniiteration in this case is

C3 �(m − k)O(m2n3) = O(m3n3).

Hence q = �O(m3n3) = O(m4n4) and C = O(m5n5).

6. Conclusions

In this paper a strongly polynomial algorithm for solving systems of two-sided (max, +) linear equations is presented.
It gives an answer to the question of polynomial solvability of such systems which was open for more than 30 years.
Further research may concentrate on the reduction of the number of iterations, thus reducing the overall complexity
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of the method. Polynomial solvability of a range of related problems in max-algebra and its applications in machine-
scheduling is likely to be deduced.
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