Supereigenvectors

Peter Butkovic

April 13, 2012

This text is in max-plus, \otimes is sometimes omitted. Supereigenvectors are the elements of

$$V^*(A,\lambda) = \left\{ x \in \overline{\mathbb{R}}^n; Ax \ge \lambda x, x \ne \varepsilon \right\},$$

where $A \in \overline{\mathbb{R}}^{n \times n}$ and $\lambda \in \overline{\mathbb{R}}$.

We also denote

$$V(A,\lambda) = \left\{ x \in \overline{\mathbb{R}}^n; Ax = \lambda x, x \neq \varepsilon \right\},$$

$$V_*(A,\lambda) = \left\{ x \in \overline{\mathbb{R}}^n; Ax \leq \lambda x, x \neq \varepsilon \right\},$$

$$N = \left\{ 1, ..., n \right\}.$$

A(J) is an abbreviation for A(J, J).

Lemma 1 If $Ax \geq \lambda x$, x finite then $\lambda \leq \lambda(A)$.

Proof. Take any $i = i_1$. Then

$$\lambda + x_{i_1} \le a_{i_1 i_2} + x_{i_2}$$

for some i_2 . Similarly

$$\lambda + x_{i_2} \le a_{i_2 i_3} + x_{i_3}$$

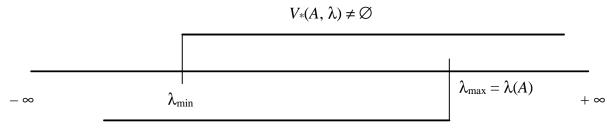
for some i_3 and so on. By finiteness and by omitting, if necessary, a few first indices we get for some k:

$$\lambda + x_{i_k} \le a_{i_k i_1} + x_{i_1}.$$

After adding up and simplifying we have

$$\lambda \leq \frac{a_{i_1 i_2} + \ldots + a_{i_k i_1}}{k} \leq \lambda \left(A\right).$$

Proposition 2 $V^*(A, \lambda) \neq \emptyset$ if and only if $\lambda \leq \lambda(A)$.



 $V^*(A, \lambda) \neq \emptyset$

Proof. Suppose first $Ax \ge \lambda x, x \ne \varepsilon$. Let $J = \operatorname{supp}(x)$, then

$$A(J) x(J) \ge \lambda x(J)$$
.

By Lemma 1 we have $\lambda \leq \lambda\left(A\left(J\right)\right) \leq \lambda\left(A\right)$. Suppose now $\lambda \leq \lambda\left(A\right)$. Let $x \in V\left(A, \lambda\left(A\right)\right)$. Then $x \neq \varepsilon$ and

$$A \otimes x = \lambda(A) \otimes x \ge \lambda \otimes x$$
.

Corollary 3 If $\lambda(A) = \varepsilon$ and $V^*(A, \lambda) \neq \emptyset$ then $\lambda = \varepsilon$ and $V^*(A, \varepsilon) = \mathbb{R}^n - \{\varepsilon\}$.

We will now assume that $\lambda\left(A\right)>\varepsilon$ and so without loss of generality $\lambda\left(A\right)=0\geq\lambda.$

Proposition 4 For every $J \subseteq N$ there exists an $x \in V^*(A, \lambda)$, where $\lambda = \lambda(A(J))$ and $x(N - J) = \varepsilon$.

Proof. Let $J \subseteq N$. Then there exists a $z \neq \varepsilon$ such that $A(J)z = \lambda(A(J))z$. Set x(J) = z and $x(N - J) = \varepsilon$. Then

$$A \otimes x = \begin{pmatrix} A(J,J) & A(J,N-J) \\ A(N-J,J) & A(N-J,N-J) \end{pmatrix} \begin{pmatrix} x(J) \\ \varepsilon \end{pmatrix}$$
$$= \begin{pmatrix} \lambda(A(J))x(J) \\ A(N-J,J)x(J) \end{pmatrix}$$
$$\geq \lambda(A(J)) \begin{pmatrix} x(J) \\ \varepsilon \end{pmatrix}$$
$$= \lambda(A(J))x.$$

2

Proposition 5 If $A \otimes x \geq \lambda(A(J))x$, $x \neq \varepsilon$, where J = supp(x) then there exists a critical cycle $(i_1, i_2, ..., i_k)$ in A(J) such that

$$A(C) x(C) = \lambda(A(J)) x(C), \qquad (1)$$

where $C = \{i_1, i_2, ..., i_k\}$.

Proof. If $\lambda(A(J)) = \varepsilon$ then every cycle is critical and at least one component, say i, of $A(J) \otimes x$ is ε because has an ε column. Then we can take $C = \{i\}$.

Let us now suppose that $\lambda\left(A\left(J\right)\right)>\varepsilon$ and denote $\lambda=\lambda\left(A\left(J\right)\right)$. Let $i_{1}\in J$. Then

$$\lambda + x_{i_1} \le \max_{j} (a_{i_1 j} + x_j) = a_{i_1 i_2} + x_{i_2}$$

for some $i_2 \in J$. Similarly we have

$$\lambda + x_{i_2} \le \max_j (a_{i_2j} + x_j) = a_{i_2i_3} + x_{i_3}$$

for some $i_3 \in J$, and so on. By finiteness and by omitting, if necessary, a few first indices we get for some k:

$$\lambda + x_{i_k} \le \max_{i} (a_{i_k j} + x_j) = a_{i_k i_1} + x_{i_1}.$$

After adding up and simplifying we have

$$\lambda \leq \frac{a_{i_{1}i_{2}}+\ldots+a_{i_{k}i_{1}}}{k} \leq \lambda\left(A\left(J\right)\right).$$

Hence none of the inequalities can be strict and (1) follows. ■ Questions:

- 1. How to find all solutions?
- 2. Generators of $V^*(A, \lambda)$?
- 3. Basis of $V^*(A, \lambda)$?