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Abstract 

Let Y = (G, @, I ) be a linearly ordered, commutative group and u@u = max(u, t’) for all u, IJEG. 

Extend 0, @ in the usual way on matrices over G. An m x n matrix A is said to have strongly 

linearly independent (SLI) columns, if for some b the system of equations A@x = b has a unique 

solution. If, moreover, m = n then A is said to be strongly regular (SR). This paper is a survey of 

results concerning SLI and SR with emphasis on computational complexity. We present also 

a similar theory developed for a structure based on a linearly ordered set where @ is maximum and 

@ is minimum. 
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Introduction 

A wide class of problems in different areas of scientific research, like graph theory, 

automata theory, scheduling theory, communication networks, etc. can be expressed 

by an attractive formulation language by setting up an algebra of, say, real numbers in 

which the operations of multiplication and addition are replaced by arithmetical 

addition and selection of the greater of the two numbers, respectively. Monographs 

[9, 161 can be used as a comprehensive guide in this field. Specifically, a significant 

effort was developed to build up a theory similar to that in linear algebra, i.e., to study 

systems of linear equations, eigenvalue problems, independence, rank, regularity, 

dimension, etc. As it turned out there is only a thin barrier separating these concepts 

and combinatorial properties of matrices. 
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The aim of the present paper is to offer a survey of results concerning strong 

regularity of matrices which, as we show, is closely related to the assignment problem. 

The emphasis lies in aspects of computational complexity. 

We introduce the theory by the following example: Suppose that a (say chemical) 

factory manufactures products Pi,. . . , P, each of which is made out of some of 

n components prepared on machines M,, . . . , M, (every machine prepares one fixed 

component to be used in several products). It is known that machine Mj finishes the 

preparation of the component for product Pi after aij time units from the beginning of 

its activity (we set Uij = - o if there is no need of the component made on machine 

Mj to produce Pi). 

Denoting by xi, ,x, the starting times of the work of machines Ml,. . . , M, we 

have that all the components necessary for making out Pi are prepared in time 

max (Uij + Xj) 
j=l._ .n 

Any delay of the beginning of processing of the components prepared for products 

Pi, , P, causes losses, on the other hand by technological reasons the processings 

cannot start at any time but only at specified moments br, . . . , b,. Therefore the 

question is to find the starting times x1, . . ,x, in order to fulfil the equations 

max (aij + xj) = hi, i = 1,. . , m. (0.1) 
j= I,...,n 

It should be intuitively clear that in some situations there is a certain freedom in 

moving with xi, . . . ,x, (it suffices if some machines just start at any time before certain 

critical value) however, as it will be apparent later (Section 2), under some circumstan- 

ces it can happen that all starting times are uniquely determined, i.e., there is no option 

for them and the system becomes sensitive and instable. This corresponds exactly to 

situations when the matrix (Uij) has (in terminology introduced in Section 3) strongly 

linearly independent columns (is strongly regular if m = n). Hence the problem of 

strong linear independence can be interpreted as follows: is the system described by 

the matrix (Uij) stable for every m-tuple (b,, . . , b,) of prescribed termination times or 

can it happen that for some 6, , . , b, there is no freedom in the choice of when the 

system should be set in activity? 

After setting @ for maximum and @ for addition, the system (0.1) gets the form 

j~~~Uij~xj=bi, i= l,..., m, 

which, as was already mentioned, motivated the study of problems which are linear 

with respect to 0 and 0. 

Consider now the following small numerical example: 

max(1 + xi, x2) = 3, 

max(xi, x2) = t, 
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where t is a real parameter. If t = 3 then necessarily xa = 3 but xi I 2 can be 

arbitrarily small. If t = 2 then x1 = 2 but x2 2 2 can be arbitrarily small. Finally, if 

2 < t < 3 then necessarily x2 = t and thus x1 = 2. For t < 2 and t > 3 the system has 

evidently no solution. Hence we deduce that the instability arises only for t E (2, 3) and 

would not appear if we would consider only integer entries. This explains why the 

results concerning strong regularity (Section 4) depend on the density of the underly- 

ing linearly ordered group. 

At last a short introduction to Section 5. Being motivated by several practical 

interpretations (cf. Section 5) a theory analogous to that mentioned above was 

developed for problems which are linear with respect to @ = max and @ = min, 

sometimes referred to as a bottleneck algebra. As a consequence of this theory, as we 

show, some computational complexity results follow, e.g. the bottleneck assignment 

problem for n x n matrices is solvable in O(n’log n) operations whenever the optimal 

permutation is unique. 

1. Max-algebra 

We assume throughout the paper that 99 = (G, 0, I ) is a nontrivial linearly 

ordered, commutative group (LOCG) with neutral element e. 

The symbol a < b means a I b and a # b for all a, b E G and (a, b) stands for the 

open interval {c E G: a < c < b}. 93 is called dense if (a, b) # 8 for all a, b E G, a < b and 

99 is called sparse if it is not dense. An element a E G is called positive if a > e. 

The iterated product 

u@u@ .‘. @a 
I 

Y 
J 

k times 

will be denoted by uk and we set (umk) = (u-‘)~ and u” = e. 9 is called cyclic if G = 

{gk: k integer} f or some positive g E G which is called a generator of G. 
93 is called rudicuble if for every UEG and natural number k an element bg G 

satisfying bk = a exists. Such an element b is unique and we denote it by 6. (Note 

that & stands for $). 

One can easily verify that in a radicable group a < b implies 

u<JaOb<b 

and hence we have 

Proposition 1.1. Every rudicable LOCG is dense. 

On the other hand for g > e and arbitrary integer k we have gk < gk+’ yielding 
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Proposition 1.2. Every cyclic LOCG is sparse. 

As examples we recall some well-known linearly ordered, commutative groups: 

%=(lR+;, I), 

9&j = (Z x z, + ) I ‘), 

where Q, Z, Z2, lR+ and Q’ is the set of rationals, integers, even integers, positive 

reals and positive rationals, respectively. The signs + , . and I stand here for 

conventional arithmetic operations and ordering, respectively (in the case of Y6 the 

addition is to be applied componentwise). The ordering of g6 is defined by the formula 

(a, b) I (c, d) iff a < c or a = c and b I d. 

We see by inspection that 

(i) gl, ~9~ are radicable, 

(ii) g5 is dense but not radicable, 

(iii) Y2, 9s are cyclic, 

(iv) Y6 is sparse but not cyclic. 

Bounded subsets of linearly ordered, commutative groups need not necessarily have 

an infimum, however the following holds: 

Proposition 1.3. The set of all positive elements of a LOCG has an injimum. 

Proof. If I is dense then e is evidently the infimum. 

It suffices now to show that (e, a) = @ for some positive a E G whenever I is sparse. 

Suppose on the contrary that (e, a) # 0 for all a > e and let c, d E G, c < d be arbitrary. 

Since (e, d @ cP ‘) # 0 we have that an element b E G satisfying 

exists and hence 

c<b@c<d, 

a contradiction to the sparseness of 9. 0 

For any 3 the infimum mentioned in Proposition 1.3 will be denoted by cc(%) or 

only c( if no confusion can arise. Clearly, a(9) = e if 9 is dense, E(Y) > e if 3 is sparse 

and a(%) = g if 99 is cyclic with generator g. Note that a(g6) = [0, 11. 
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Let us introduce the operation @ on G by the formula 

a@b = max(a, h} for all a, beG. 

Clearly, associativity, commutativity of @ and @ as well as distributivity in the 

conventional sense hold. From the early 60’s an effort [8,9, 14, 15, 161 was devoted 

for developing a systematic theory on algebraic problems linear with respect to such 

a couple of operations based on LOCG or similar structures under various names 

(like path algebra, extremal algebra, max-algebra). We will make use of the last 

mentioned expression. 

We deal with matrices in max-algebra as well as with permutations related to them. 

For convenience let us introduce the following notation. If m, n 2 1 are integers and 

S a set, we denote by S(m, n) the set of all m x n matrices with entries from S. The 

symbol S, stands for the set S(m, 1) and its elements will be called vectors. We put 

M = {1,2,...,m},N= {1,2,...,n};P,willdenotethesetofallpermutationsofNand 

C, the set of all cyclic permutations (briefly cycles) of nonempty subsets of N. If 

A = (aij) E G(n, n) and c = (ir, . . . , i,) E C, then 1, the length of 0, will be denoted by l(o) 

and w,(a), the weight of 0 with respect to A, is defined as 

uiL i* 0 ui2 is 0 . 0 ai, 1 ir 0 ui, il. 

Since every TC E P, can be decomposed into pairwise disjoint cycles, say gl, ... , CJ~ E C,, 

wA(n), the weight of n with respect to A, can be defined by 

w/J(n) = w,(ar)Ow,(~2)0 “’ Ow,4(cs) (1.1) 

and one can easily see that then 

WA(n) = ul,,~l,Ou2,lr(2)0 “. OU,,.(,,. 

The identity permutation will be denoted by id. 

(1.2) 

2. Linear equations and the eigenproblem in max-algebra 

We extend 0 and @ to operations between matrices and between matrices and 

scalars as in conventional linear algebra, i.e., supposing that A = (Uij), B = (bij) are 

matrices over G of an appropriate size and a E G we define 

A @ B = (aij @ b<j)> 

and 

u 0 A = (U 0 Uij). 

The ordering is extended componentwise. 
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We can now describe the system of equations linear with respect to 0, @ in the 

following equivalent standard ways: 

jzOaij@sj= bi, ieM, (2.1) 

c Qa(j)@ xj = b, 
jEN 

(2.2) 

A@x=b, (2.3) 

where A = (aij) E G(m, n), b = (b,, . . , b,JT E G,, x = (x1, . . , x,JT and a”’ denotes the 

jth column of A. (The symbol T denotes transposition.) 

Solution methods for such systems of equations are well known [9, 15, 161 

and we briefly recall some of the results. For convenience we use the following 

notation: 

S(A, b) = {xEG,: A@x = 6) for AEG(~, n), bEG,, 

Mj(A,b)= {iEM: aij@blrl =ZJ’}. 

The symbol 1x1 stands for the cardinality of the set X. 

Theorem 2.1. Let x = (xl, . , xJT E G,. Then x E S(A, b) if and only if 

(a) .x I X and 

(b) UjeN, Mj(A, b) = M, where N, = (Jo N: xj = Xj}. 

Proof. Can be found e.g. in [9, 151. 0 

Corollary 2.2. The following three statements are equivalent: 

0) S(A, b) Z 8, 
(ii) X = (X1, . . . ,X,JT~S(A, b), 

(iii) Uj~N Mj(A, b) = M. 

Corollary 2.3. IS(A, b)l = 1 if and only if 

(4 u, E N Mj(A, b) = M and 

(b) UIE,,, Mj(A, b) # M for every N’ c N, N’ # N. 

The vector X can be computed from the definition in O(mn) operations and hence 

Theorem 2.1 enables to decide in O(mn) operations whether S(A, b) is empty or 

nonempty and in the latter case to establish one solution to the system (2.3) (which 

is X). 
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Example 2.4. Consider the system (2.1) in %I with the matrix 

and three different right-hand side vectors: 

b’” = (6 9 5 10 7)T >>1 > > 

P’ = (7 9 5 10 7)T ,>> > 3 

bc3’ = (6 9 5 8 7)T ,,>, . 

We find easily from the definitions: 

It is easy to see that a nontrivial LOCG has neither maximum nor minimum (because 

uk+ ’ > ak for a E G, a > e and integer k). Based on Theorem 2.1 we then immediately have 

Theorem 2.5. If the system (2.3) has more than one solution then it has an injinite number 

of solutions, i.e., 1 S(A, b)l E (0, 1, cc } for all A E G(m, n) and b E G,. 

An intensive effort was devoted also to the eigenproblem in max-algebra [9, 14, 161 

which has various economical interpretations (cf. e.g. [S]) and can be formulated as 

follows: given A E G(n, n), find x E G,, called extremal eigenvector of A, and 2 E G, 

called extremal eigenvalue of A, satisfying 

A@x=A@x. 

We mention here only one basic result which will be useful later. 

(2.4) 

Theorem 2.6. Let 59 be radicable. Then for every A E G(n, n) there exists a unique 2 E G 

satisfying (2.4) and ,I equals the maximum cycle mean of the matrix A, i.e.: 

The extremal eigenvalue of A will be denoted ,?(A). 
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Example 2.7. Consider the eigenproblem for the matrix 

1 3 -2 

A=20 1 1 I 4 1 -3 

in Yi. From Theorem 2.6 we compute 

1(A) = max 
i 

l,O, 
3+2 l+l 4-2 3+1+4 2+1-2 

- 3, ~ ~ __ 
8 

2’2’2’ 3 3 3 =j. 

Hence A = 8/3 is the extremal eigenvalue of A and one can easily verify that for 

instance x = (l/3,0, 5/3)T is a corresponding extremal eigenvector. 

Several papers are devoted to developing efficient algorithms for computing %(A), 

e.g. [3, 10, 141. The least computational complexity (O(n3)) for general matrices has 

the algorithm presented in [12]. Methods for finding extremal eigenvectors can be 

found e.g. in [9, 161. 

3. Linear independence, rank and regularity in max-algebra 

There are several nonequivalent ways of introducing linear independence in max- 

algebra. One natural definition is as follows. The vectors u(i), a(‘), . , a’“’ E G, are said 

to be linearly dependent if some of them can be expressed as a linear combination of 

the others, i.e., for some k E N the coefficients xi, . , xk_ 1, xk+ I, . . . ,x, satisfying 

&) = 
C” Xi@&’ 

iE.N - (k: 

exist, and they are said to be linearly independent if they are not linearly dependent. It 

was shown in [9] that such definitions lead to dimensional anomalies, e.g. for m > 2 

an arbitrarily large set of linearly independent vectors can be constructed. 

We say that a(‘), . . . , a(“) E G, are strongly linearly independent (SLI), if some h E G, 

can be uniquely expressed as a linear combination of a”‘, . , a’“‘, i.e., if the system 

c @,(j)oxj = b 
, E N 

has a unique solution. If, moreover m = n, then the matrix A = (u(l), . , d”)) is called 

strongly regular (SR). It was proved in [9] that SLI vectors are linearly independent. 

The concept of strong linear independence is in a correspondence with the concept 

of full column rank in conventional linear algebra. For this purpose we denote for any 

A E G(m, n) by T(A) the set 

{I%% h)l: LEG,}. 
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Theorem 2.5 says that T(A) G {0, 1, co } f or all AeG(m, n). We show that actually 

there are only two possibilities for T(A). 

Theorem 3.1. For every A E G(m, n) with m 2 2, n 2 2 there is either T(A) = {O, CC } or 

T(A) = (0, 1, cc }. 

Proof. Let AeG(m, n), m 2 2, n 2 2. Due to Theorem 2.5 it suffices to show that 

S(A, b) = 8 for some be G, and IS(A, b)l = co for some b’EG,. 

We set b = (b,, e, e, . , e)’ E G, where bI is an arbitrary element of G less than 

min{arj@aij’: iEM, i # l,j~N} 

since then 

a,jOb;’ > Uij for all ieM - {l}, jeN 

yielding that 

Mj(A, b) = (1} for all jeN 

and thus 

uMj(A, b) = 11) f M, 

which by Corollary 2.2 implies S(A, b) = 0. 

We set b’ = a(l) because then M 1 (A, b’) = M and by Corollary 2.3 (putting 

N’ = {l} # N) and by Corollary 2.2 we have that 1 S(A, b’) 1 > 1 which using Theorem 

2.5 completes the proof. 0 

Now we can compare the situation with that in conventional linear algebra as it is 

done in Table 1. Here r(A) denotes the usual rank of the matrix A in linear algebra 

which enables one to describe matrices with specified T(A). It is an easy exercise to 

show that classes of matrices 7’(A) = {0}, { 1, cc } or (0, 1, cc } are empty in the case 

of conventional linear algebra. 

The correspondence to the situation in classical linear algebra becomes more 

apparent after introducing the concept of rank of a matrix in max-algebra as follows: 

r(A) = max{k: 3(k x k) SR submatrix of A}. 

Theorem 3.2. Let AcG(m, n). The columns of A are SLI if and only ifr(A) = n, i.e., 

A has full column rank. 

Proof. Can be found in [4]. 0 

Theorem 3.2 reduces the question of SLI into the problem of strong regularity 

which can be solved efficiently as it is shown in the next section. However, this 
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Table 1 

T(A) Linear algebra Max-algebra 

m = r(A) = n 

;0:1; M = r(A) < n 

n = r(A) < m 

PA x ) r(A) < min(m, n) Columns not SLI 

(1, x1 
{O,l, e} Columns SLI 

transformation is apparently not polynomial and it should be noted at this place that 

no efficient method for checking SLI as well as for computing the rank is known to the 

author. 

We say that A = (aij)E G(m, n) is equivalent to B = (bij)E G(m, n), denoted by 

A - B, if B can be obtained from A by a sequence of operations of the following types: 

(i) permuting the rows and/or columns, 

(ii) multiplying (in the sense of 0) of the rows and/or columns by constants from G. 

Clearly, - constitutes an equivalence relation on G(m, n). 

Theorem 3.3. Zf A, BE G(m, n), A - B and A has SLI columns then also B has SLI 

columns. 

Proof. Trivial. 0 

4. Strong regularity of matrices in max-algebra 

In this section we summarize and unify the results of the preceding research 

concerned with finding efficient algorithms for checking the strong regularity of 

matrices. 

We begin by a combinatorial aspect of this problem. Let A = (Uij)E G(n, n). If A is 

SR then by Corollary 2.3 for some b E G, the sets 

Mr(A, b), M,(A, b), . . . > M,(A, b) (4.1) 

(being subsets of N) form a minimal covering of N. As it is known from combinatorics 

this is possible if and only if the sets (4.1) are one-element and pairwise disjoint, i.e., for 

some permutation 7c of the set N we have 

M,,j,(A, b) = (j} for alljEN, 

which is equivalent to 

aj,n(j,Obj’ > ai,r(j,@bi’ for all i,jEN and i #j. (4.2) 
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By other words the problem of the strong regularity of A is equivalent to the question: 

can we multiply (in the sense of 0) the rows of A by constants in such a way that every 

column maximum will then be achieved in only one row and the maxima of any two 

different columns will lie in different rows? 

It can be seen easily that (4.2) implies 

WA(Z) > WA(T) (4.3) 

for every z E P, - (7~). Hence the max-algebraic permanent of A 

w(A) = Co wA(z) 
TSP. 

(4.4) 

is achieved by unique permutation from P,. In [4] matrices with this property are said 

to have a strong permanent. 

On the other hand, the problem of finding per(A) defined by (4.4) is actually 

a generalisation of the (linear) assignment problem 

max C aj,r(j): ZEP, 
jsN 

to which (4.4) turns in every subgroup of the additive group of reals (e.g. in 9, , g2, 9,). 

Being motivated by this we denote 

ap(A) = {REP,: wA(rc) = per(A)} 

and hence 1 ap(A) 1 = 1 means the same as “A has a strong permanent”. 

It is an easy exercise to prove that the following holds: 

Proposition 4.1. Let A, BE G(n, n). Zf A - B then lap(A) 1 = 1 ap(B) I. 

As it follows from (4.3) we have 

Proposition 4.2. If A is SR then A has a strong permanent. 

The converse implication does not hold in general; the matrix 

A= 

in gz is a possible counterexample. However, using a series of intermediate results the 

following was proved in [4]. 

Theorem 4.3. Let 59 be dense and A E G(n, n). Then A is SR ifand only if A has a strong 

permanent. 
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The matrix A = (aij) E G(n, n) will be called normal if 

aij I aii = e for all i, j E N. 

Clearly, id E ap(A) for every normal matrix A. 

For solving the problem of checking the strong permanent we recall that the 

Hungarian method (e.g. [13]) for the solution of the assignment problem (AP) 

transforms an arbitrary matrix to an equivalent normal matrix in 0(n3) operations. 

Note that the Hungarian method does not use the density of the group. If 

A = (aij) E G(n, n) then DA will denote a digraph with node set N in which an arc (i,j) 

exists if and only if aij = e and i # j. It was shown in [2] that the optimal solution to 

AP for a normal matrix A is unique if and only if DA is acyclic. Hence the uniqueness 

of the optimal solution to AP can be checked by standard algorithms for testing 

whether a digraph is acyclic in only O(n’) operations. Using Proposition 4.1 this 

enables one to answer the question of SR in the dense case in O(n3) + O(n’) = O(n3) 

operations. In addition, a vector b for which 1 S(A, b) 1 = 1 can be found in a dense 

LOCG by a procedure derived in [4] in O(n3) operations. 

Example 4.4. Consider the normal matrix 

-1 0 -3 0 

in any subgroup of Y1 containing all entries of A. Since DA contains the cycle (1,3,4), 

we deduce that A is not strongly regular by Proposition 4.2. 

Example 4.5. Consider the matrix 

] 

-14 -4 

-2 -4 -6 

-4 -6 -4 

in 9’i. By adding constants 2,0,0,2 to the rows and 2,0,4,2 to the columns the 

Hungarian method transforms A to a normal matrix (suitable permutation of col- 

umns is already included): 

-8 -6 -8 

-4 0 -2 0 
c= 

-6 0 0’ 

-6 -2 0 
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Since D, is acyclic, we conclude that C (and A) has a strong permanent and hence A is 

SR in 9,. However it is not clear immediately whether A is also SR in sparse 

subgroups of 9,. 

In order to solve the problem of checking SR in the case of sparse LOCG we now 

adopt the method developed in [Z] for cyclic LOCG. Thereafter we show how it can 

be unified with the dense case. 

Let - x be an element adjoined to G and let us introduce the following rules for 

- cc : 

a2 --x 

and 

for all a E G’, where G’ = G u ( - cc ). By G’(n, n) we denote the set of n x n matrices 

with entries from G’. Given A = (Uij) E G’(n, n) the symbol A” will stand for the matrix 

(~ij) such that 

Zii = - cc for all iE N, 
Eij = aij for all i,jE N, i #j. 

Evidently, we can easily extend already introduced operations @ and @ between 

matrices over G to matrices over G’. For A E G’(n, n) we denote by Ak (k natural) the 

(necessarily associative) iterated product 

A@A@...@A 
v 

k times 

and by T(A) the matrix .4@A2@ ... @A”. The element of T(A) in its ith row andjth 

column will be denoted by Tij(A) (for i, j E N). 
It is known that the elements of Ak express the weights of heaviest paths consisting 

of k arcs between any two nodes of the complete n-node digraph the arcs of which are 

weighted by the elements of A, and that the Floyd-Warshall algorithm (see e.g. 

[9, 131) applied to A gives as a result T(A) in 0(n3) operations. 

Due to the previous discussion we can suppose without loss of generality that the 

matrix, the strong regularity of which is to be checked, is normal. 

Theorem 4.6. Let 9 be sparse and A E G(n, n) be normal. Their A is SR if and only if 

Proof. It follows all the lines of the proof of the same assertion for cyclic groups in [2] 

since that proof does not fully use the cyclicity of Y but only the existence of the 

minimal positive element. 0 
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Theorem 4.6 enables to compile an 0(n3) method for checking SR in the sparse case 

(O(n3) operations for transforming A to a normal matrix + 0(n3) for computing 

r(a @ A”) + O(n) for the final test of (4.5)). Moreover, as shown in [2], every column 

of r(a @ A”) is an instance of the vector b for which 1 S(A, b) 1 = 1. 

Example 4.7. Consider the same matrix as in Example 4.5 but in gz. Here LX = 1 and 

hence 

r(c! @ C) = 

-3 -7 -5 -4 

2 -4 0 1 

2 -4 0 1 

1 -5 -1 0 

Thus C (and A) is SR and taking (say) d = ( - 3,2,2, l)T we have that the system 

C @ x = d has unique solution. One can then easily find a vector b for which 

A @ x = b has unique solution: 

b = ( - 3 - 2,2, 2, 1 - 2)T = ( - 5,2,2, - l)T. 

Example 4.8. Consider the same matrix as in Examples 4.5 and 4.7 but in s3. Here 

CI = 2 and hence 

@C= 

--co -6 -4 -6 

-2 --co 0 2 

2 -4 -cc 2 

2 -4 0 -a r = (dij). 

Clearly ~~~(a-’ @ c) 2 d34 + dd3 = 2 > 0 and thus A is not SR in 33. 

In the following theorem we unify the results both for the dense and sparse LOCG. 

Theorem 4.9. Let A E G(n, n) be normal. Then A is SR if and only ij’ 

Tii(cC @ 2) < CI for all iE N. (4.6; 

Proof. It is easy to verify that the theorem statement holds for n = 1; therefore we 

suppose n > 1. 

If 93 is sparse then (4.6) follows immediately from Theorem 4.6. 

If 9 is dense then c( = e and hence (4.6) sounds: 

rii(A) < e for all i E N, 
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which means that We < e for all go C,, I(a) 2 2. Since every rt EP, - {id} can be 

decomposed to pairwise disjoint cycles at least one of which has length 2 or more, we 

derive from (1.1) that 

for every n E P, - {id} and hence ap(A) = {id}. 

Conversely, if ap(A) = {id} then ~~(0) < e for every OEC, with l(a) 2 2 because 

otherwise G can be completed by cycles of length 1 to a permutation rc # id, We = e, 

which would be then an other element of ap(A). The theorem statement now follows 

from Theorem 4.3. 0 

Corollary 4.10. Let 3 be radicable and A E G(n, n) be normal. Then A is SR ifund only if 

i(2) < e. (4.7) 

Proof. By Proposition 1.1, 9’ is dense and thus (4.6) sounds: 

rii(A) < e for all iE N 

_ 
which is equivalent to (4.7) because a < e if and only if VQ < e for all a E G and k E Z, 

k>l. 0 

5. Strong regularity in bottleneck algebra 

In this section we summarize the results concerning the strong regularity of 

matrices in a structure where @ stands for minimum and @ for maximum. More 

precisely, we suppose that (B, < ) is a nonempty, linearly ordered set without max- 

imum and minimum and we define binary operations 0, @ on B as follows: 

a @ b = max (a, b), (5.1) 

a @ b = min(a, b) (5.2) 

for all a, b E B. The theory dealing with problems which are linear with respect to 

@ and @ as defined by (5.1) and (5.2)is called a bottleneck algebra based on (B, I ) or 

shortly, a bottleneck algebra (BA). Clearly, basic properties of the operations @ and 

@ follow immediately from the fact that the quadruple (B, I , 0, @ ) is an infinite 

distributive lattice and we will use them without an explicit formulation. 

Investigation of the strong regularity of matrices in BA is not only theoretically 

motivated but as it turns out it enables to formulate some computational complexity 

results. 

We extend 0, @ and I on matrices from B(m, n) in the same way as in 

max-algebra and hence the equation 

A@x=b 
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is a more formidable expression for the system of equations 

max min(aij, xj) = bi, in M. (5.3) 
jtN 

Some practical problems can be conveniently expressed using the concepts of BA. 

Consider, for example, the following transmittance problem. If the transportation 

route consists of two parts U V and VW(say V is a transshipment point), then the total 

route transmittance is equal to the minimum of the transmittances of UV and VW. 

Similarly, in a transportation network with U1, , U, as dispatching points, 

VI, . . . , V, as transship points, and Wi, . , W, as destination points, denoting the 

transmittances of Ui Vk and Vk Wj by Uik and b,j, respectively (i = 1,. . , m; k = 1,. , 1; 

j=l > ... > n) we have that the total transportation transmittance between Ui and Wj is 

equal to 

cij = max min(aik, bkj) 

k=l.. .I 

for all iE M, jE N. This relation can be written as C = A @ B in BA based on the 

set of reals with conventional ordering, where A, B, C denote the matrices 

t”ikh tbkj)> tcij). 

As another example consider the permanent of A = (Uij)E B(n, n) in the same 

BA: 

per(A) = 1” n” Ui,x(iJ = max min Ui,rci,. 
neP, iaN neP, iEN 

Hence to compute per(A) means now to find a weighted matching in a complete 

bipartite graph with the maximal possible lowest score. This corresponds to those 

situations where the overall performance of a team is measured by the worst perform- 

ance of an individual member, e.g., if each of y1 workers performs one of n tasks 

on an assembly line, then the speed of the line equals the speed of the slowest worker. 

The task of finding such an assignment is called bottleneck assignment problem (BAP). 

An O(n2.5 log n) algorithm for solving this problem follows immediately from the 

0(n2,5) algorithm for finding maximum matching in a bipartite graph [13] and 

using the binary search. An O(n2,‘2/logn) algorithm for solving BAP is also 

known [ 111. 

As a consequence of the results which we now present, the BAP can be solved in 

only 0(n2 log n) operations whenever the optimal permutation is unique. 

Formal similarity of the systems of equations linear with respect to 0, 0 in 

both max-algebra and bottleneck algebra leads to a question whether the same 

or similar results as in Sections 3 and 4 can now be proved. For this purpose 

the notation S(A, b) and T(A) as well as the relation < and density are introduced 

in the same way as in max-algebra. Note that the system of linear equations 

in bottleneck algebra (5.3) can be solved by an O(mn) algorithm developed 

in [15]. 
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Consider the system A @ x = b for 

in BA based on (Z, I ) and suppose that x = (x1, x~)~ E S(A, b). Then it follows from 

the first equation that x1 = 2, and the inequalities x2 I 2 and x2 2 1 can be derived 

from the second and third equation, respectively. Hence, 

i( 2 2 
SW@ = 1 > 2 > ( 11 > 

and thus an analogue of Theorem 2.5 does not hold in BA. However, the following 

was proved in [l]. 

Theorem 5.1. Let I he dense on B. Then 

{0, m } G T(A) G {0, 1, x } for all A E B(m, n). 

This result motivates us to define strong linear independence (SLI), strong regularity 

(SR) and rank formally in the same way as in max-algebra. 

Theorem 5.2. A su#icient condition for A to have SLZ columns is that r(A) = n. 

Moreoz;er, if I is dense on B, then this condition is also necessary. 

Proof. Can be found in [l]. 0 

As it was presented in Section 4, the problem of SR in max-algebra can be solved by 

an O(n3) algorithm whereas the problem of SLI of columns of a rectangular matrix 

remains still open. On the other hand, in BA on a dense set both problems are solvable 

simultaneously. To show this we define the following concepts. 

Matrix A = (Uij)E B(m, n), n 2 2 is said to be trapezoidal, if 

ukk ’ aij (5.4) 

for all k = 1,2, . . ,min(m, n); i = I,. . , k; j = i + 1,. . , n. 

Matrices A, C E B(m, n) are called similar (notation A z C), if one of them can be 

obtained from the other by permuting its rows and columns. Clearly, z constitutes 

an equivalence relation on B(m, n). 

Proposition 5.3. If A has SLI columns and A z C then also C has SLI columns. 

Proof. Follows immediately from the definitions. 0 
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Theorem 5.4. Let A E B(n, n). Then a necessary condition for A to be SR is the existence 

of a trapezoidal matrix similar to A. Moreover, if 5 is dense on B, then this condition is 

also suficient. 

Proof. Can be found in [S]. 0 

Corollary 5.5. Let I be dense on B and AE B(m, n), m 2 n. Then A has SLI columns i;f 

and only if A E T, T trapezoidal. 

Proof. The statement follows immediately from Theorems 5.4 and 5.2. 0 

If < is dense on B, then the problem of checking SLI of the columns of a matrix 

over B is turned by Corollary 5.5 to the question whether this matrix is similar to 

a trapezoidal one. In order to derive an algorithm for checking this property realize 

that for every trapezoidal matrix A = (aij)E B(m, n) we have 

aI1 > U,j for all jEN. 

Hence a row of an arbitrary matrix can be considered as a candidate for being the first 

row (up to the order of its elements) of a similar trapezoidal matrix only if it has 

unique maximal element. For convenience, we say that a row of a matrix is regular, if it 

has unique maximal element. In general not every regular row can become the first 

row of a similar trapezoidal matrix. The precise specification is given in the theorem 

below. At first we denote by d(A) the least diagonal element of A and by mi and rn: we 

denote the greatest and second greatest element of the regular row i. 

Theorem 5.6. Let d E B and A = (aij) E B(m, n) be similar to a trapezoidal matrix T with 

d(T) > d. Let the kth row of A be regular and satisfy 

(1) mk > 4 

(2) rn; = min{m:: ith row is regular and mi > d). 

Then A is similar to a trapezoidal matrix T’, d(T’) > d in which its$rst row is the kth 

row of A (up to the order of its elements). 

Proof. Can be found in [l]. 0 

Theorem 5.6 enables to compile an algorithm for checking SLI. It is based on the 

fact that a necessary condition for the columns of A to be SLI is the existence of at 

least one regular row in A. Due to Theorem 5.6 we choose an element, say akl, which is 

unique maximal in its row and for which the second greatest, say akr’ (where &’ < akl), 

is as small as possible and we proceed by considering the same for the submatrix 

A(k, 1) arising from A by deleting its kth row and lth column. It follows again from 

Theorem 5.6 that in some row of A(k, 1) the unique maximal element greater than 

a&,[’ exists whenever the columns of A are SLI. The procedure continues in this way 
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until the whole trapezoidal matrix is found or at some step it is not possible to 

continue because no row exists with unique maximal element greater than all known 

superdiagonal elements. Clearly, the algorithm stops whenever it finds all rows of the 

trapezoidal n x n submatrix. 

Trapezoidal algorithm. 

Input: A = (uij)EB(m, n) with m 2 n 2 2. 

Output: “yes” for the variable named answer and a trapezoidal 

submatrix T = (tij) E B(n, n), if A has SLI columns; “no” for the 

variable answer otherwise. 

d:=min{aij: iEM,jEN}, s:=l, answer:=“no”; 

R := {i E M: row i of A is regular and mi > d}; 

if R = 0 then stop; 

Let k be an arbitrary index satisfying m; = min{m:: i E R} and let I, 1’ be 

defined by the fOrIllUhS akl = max(&j: jEN}, akl’ = max{&j: 

jeN - {q}; 

(comment: m; and 1’ are undefined for s = n) 

n(s) := k, z(s) := 1; 

if s = n then go to 5; 

M:=M - (k}, N:=N - {I}; 

d:=d @ ukl’, A:=A(k, I); 

s:= s+ l,goto2; 

answer : = “yes”; 

tij:=Un(i),r(j) for all i,j= l,...,n; 

stop. 

Theorem 5.7. The trapezoidal algorithm is correct and terminates after using at most 

O(mn*) operations. 

Proof. Correctness follows from Theorem 5.6. 

The number of loops 2-4 is at most n and in every loop O(mn) operations suffice to 

find the necessary regular rows. Steps 1 and 5 are O(n*). 0 

Example 5.8. Consider the matrix 

1 

4 

0 

1 

5 

4 r 

in an arbitrary dense subset of the set of reals containing all entries of A. 
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The trapezoidal algorithm gives successively: 

s = 1, d = 0, R = (2, 3,4, 5}, k = 3 = n(l), rn; = 1, 1 = 3; 

s = 2, d = 1, R = {2,4, 5}, k = 2 = 7c(2), rn; = 2, 1 = 4; 

s = 3, d = 2, R = (4, 6}, k = 4 = n(3), rnk = 3, 1 = 1; 

s = 4, d = 3, R = { 1, 6), k = 1 = 7c(4), 1 = 2. 

Hence we have 

T= 

Example 5.9. Consider the matrix r 2 0 0 1 2 2 1 1 2 4 3 1 1 
in the same bottleneck algebra as in Example 5.8. 

Hence we get 

s = 1, d = 0, R = (1, 43, k = 1 = n(l), rn; = 2, 1 = 3; 

s = 2, d = 2, R = 8, answer = “no”, stop. 

In [l] a more sophisticated version of this algorithm is presented and it was shown 

in the same paper that the pre-ordering of the rows of A leads to a reduction of the 

computational complexity to O(mn log n). 

In connection with the corresponding results in max-algebra a natural question 

arises, namely whether there is any relation between SR and strong permanent 

in BA too. To answer this question consider at first the permanent of a trapezoidal 

matrix A = (aij)~B(n, n). Let uq4 = d(A) and TLEP, - {id}. If rc(i) > i for some 

i E Q = { 1, 2, . , 4) then Ui, n(i) < a44 and hence wA(n) < wA(id). If n(i) I i for all 

igQ then n(i) = i for all i E Q and hence wA(rc) I uq4 = w,.,(id). We proved 

Proposition 5.10. Let A = (uij)E B(n, n) be trapezoidal. Then id E ap(A) (and hence 

per(A) = minieN Uii). 



The connection between SR and strong permanent is in BA not as strong as in 

max-algebra even if the ordering is dense, e.g. the matrix 

in BA based on the set of reals is trapezoidal (and hence SR) but it does not have 

a strong permanent since ap(A) = {id, (1)(23)}. However, we have 

Theorem 5.11. Let AEB(~, n). A sujjicient conditionfor A to be equivalent to a trap- 

ezoidal matrix is that A have a strong permanent. This condition is also necessary for 

matrices sf order n = 2. 

Proof. Can be found in [l]. 0 

Corollary 5.12. Let < be dense on B and AE B(n, n). Zf‘A has a strong permanent then 

A is SR. 

Proof. The statement follows from Theorems 5.4 and 5.11. q 

Note that the statement of Corollary 5.12 does not remain true after omitting the 

assumption of density as it is shown by the matrix 

in BA on the set of integers. Here A has a strong permanent (and is trapezoidal) but it 

is not SR. 

To see that A is not SR suppose that (X1, X,)T~S(A, b) for some b = (b,, b2)T; if 

XI > 0 then XI 2 1 and (x1, XJT6S(A, b) for all x1 2 XI. By the same argument for 

X1 we can assume that XI 2 0, X1 I 0 and hence the left-hand side value in each 

equation is max(Z,, X2), yielding bI = b,. Therefore either (x1, %JT E S(A, b) for all 

x1 i XI or (X1, x~)~ E S(A, b) for all x2 I X2. 

Corollary 5.13. The bottleneck assignment problem can be solved using no more than 

O(n2 log n) operations for every matrix of order n similar to a trapezoidal matrix. In 

particular, this is true,for all matrices with strong permanent. 

Proof. It follows from Proposition 5.10, Theorem 5.11 and from the 0(n2 logn) 

version of the trapezoidal algorithm in [l]. 0 

As we have just seen, the negative answer in checking the uniqueness of the optimal 

solution to BAP for the matrix A is not helpful in deciding whether A is SR. However 
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the question whether BAP has one or more optimal solutions can be interesting itself 

and as it now turns out, it can be answered by less operations than it is necessary to 

use for finding the optimal solution in general. 

Theorem 5.14. Let A = (aij)E B(n, n) be a matrix found by the trapezoidal algorithm. 

A necessary and sufficient condition for A to haz;e a strong permanent is that 

d(A) > aij for all i, j, E N, i < j. (5.5) 

Proof. If d(A) > aij then wA(rt) < d(A) = wA(id) for every KEP, - {id} because 

x(i) > i for at least one iE N. 

Suppose now that d(A) I ars for some r, s E N, r < s. Without loss of generality we 

may assume 

ars = lTlaX{a,j: r <j) 

and clearly a,, < arr. Let C = (Cij) be a matrix arising from A by deleting its first r - 1 

rows and first r - 1 columns. Then ars lies in its first row. 

Consider now an arbitrary row of C, say the kth. If it is not regular then ckk < ckt for 

some t # k and clearly ckk > ars. If it is regular then the existence of an index t # k 

satisfying ars I ckt is a consequence of the work of the trapezoidal algorithm which in 

Step 3 chooses a regular row of the remaining matrix with the least second greatest 

element. Hence in every row of C at least one nondiagonal element greater than or 

equal d(A) exists. Thus in the set {r, r + 1,. . . ,n} there exists a cycle (T, l(o) 2 2, with 

wA(cr) 2 d(A) because this situation corresponds to a digraph without loops in which 

a leaving arc from each node exists. The cycle g completed by loops to a permutation 

7c yields that wA(rc) 2 d(A) = per(A) and thus rc~ap(A), 7c # id. 0 

Corollary. 5.15. For every AE B(n, n) it is possible to check in O(n2 logn) operations 

whether the bottleneck assignment problem for A has a unique optimal solution. 

Proof. Apply the trapezoidal algorithm on A. If it terminates by “no” then by 

Theorem 5.11 the optimal solution to BAP for A is not unique. If it terminates by 

finding a trapezoidal matrix similar to A then it suffices to check the condition (5.5) 

which can be done in O(n’) steps. 0 

We summarize the main results in Tables 2 and 3. Here the letters N and S 

stand for the words “necessary” and “sufficient”, respectively; T means a trapezoidal 

matrix. 

In constrast to max-algebra, in BA the ordering is not necessarily discrete (i.e., every 

element is a predecessor and a successor of some other element), if it is not dense. This 

has motivated a special research of discrete BA in [6, 71. In the latter work an 

O(n2 log n) algorithm for checking SR of matrices is proved and also the eigenprob- 

lem in BA is studied. 
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Table 2 

Max-algebra Bottleneck algebra 

General Dense General Dense 

Full column rank is for SLI 

SP is for SR 

Similarity to T is for SR 

Efficient algorithm for checking SLI 

Efficient algorithm for checking SR 

N, S 
N 
_ 

? 

O(n3) 

N, S S N, S 
N, S neither S 
_ N N, S 
? ? O(mn log n) 
O(n3) ? O(n*log n) 

Table 3 

Max-algebra Bottleneck algebra 

Algorithm for per(A) 

Algorithm for per(A) if strong 

Algorithm for checking SP 

W’) O(n=Jlogn) 

W3) O(nZ log n) 

O(n3) + O(n2) O(?? log n) + o(n*) 

As indicated in Tables 2 and 3 some questions remain still open as a challenge for 

further research. We would like to draw the attention to three particular questions: 

(1) Is it possible in max-algebra to avoid checking SR of all (y) square submatrices 

of the matrix A of order n to check SLI of its columns? 

(2) Is it possible to develop a faster algorithm for solving the linear assignment 

problem for matrices with strong permanent than for general matrices (as it is in the 

case of the bottleneck assignment problem)? 

(3) Is it possible to check the strong permanent in max-algebra by a faster algo- 

rithm than the algorithm for solving AP (as it is in BA)? 

References 

[l] P. ButkoviE, K. Cechlarovh and P. Szabo, Strong linear independence in bottleneck algebra, Linear 

Algebra Appl. 94 (1987) 1333155. 

[2] P. ButkoviE and R.A. Cuninghame-Green, On the regularity of matrices in min algebra, Linear 

Algebra Appl. 145 (1991) 1277139. 
[3] P. ButkoviE and R.A. Cuninghame-Green, An 0(n2) algorithm for the maximum cycle mean of an 

n x n bivalent matrix, Discrete Appl. Math. 35 (1992) 157- 162. 

[4] P. Butkovic and F. Hevery, A condition for the strong regularity of matrices in the minimax algebra, 

Discrete Appl. Math. 11 (1985) 209-222. 

[S] P. ButkoviE and P. Szabb, An algorithm for checking the strong regularity of matrices in the 

bottleneck algebra, Res. Rept. F-1404-1, University of KoSice (1985). 
[6] K. Cechlarovi, Strong regularity of matrices in a discrete bottleneck algebra, Linear Algebra Appl. 

128 (1990) 35550. 

[7] K. Cechlirova, Matrices in the bottleneck algebra, Thesis, University of KoSice (1991). 



68 P. Butkmi? 

[S] R.A. Cuninghame-Green, Describing industrial processes with interference and approximating their 

steady-state behaviour, Oper. Res. Quart. 13 (1962) 95 100. 

[9] R.A. Cuninghame-Green, Minimax Algebra, Lecture Notes in Economics and Mathematical Systems 

166 (Springer, Berlin, 1979). 

[lo] R.A. Cuninghame-Green and Y. Lin, Maximum cycle-means of weighted digraphs, Preprint 2/90, 

School of Mathematics and Statistics, The University of Birmingham, Birmingham (1990) 

[l l] H.N. Gabow and R.E. Tarjan, Algorithms for two bottleneck optimization problems, Algorithms 

9 (1988) 411-417. 

[12] R.M. Karp, A characterization of the minimum cycle mean in a digraph, Discrete Math. 23 (1978) 

3099311. 

1131 C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization ~ Algorithms and Complexity 

(Prentice-Hall, Englewood Cliffs, NJ, 1982). 

1141 N.N. Vorobyev, Extremal algebra of positive matrices, Elektron. fnformationsverarbeitung und 

Kybernetik 3 (1967) (in Russian). 
[15] K. Zimmermann, Extremal Algebra (Ekonomicky tistav CSAV, Praha, 1976) (in Czech). 

[16] U. Zimmermann, Linear and Combinatorial Optimization in Ordered Algebraic Structures, Annals 

of Discrete Mathematics 10 (North-Holland, Amsterdam, 1981). 


