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Abstract 

Let f~ = (G, ®, ~< ) be a linearly ordered, commutative group and (~ be defined by 
a ~ b = min(a, b) for all a, b e G. Extend (~, ® to matrices and vectors as in conventional linear 
algebra. 

An n x n matrix A with columns A1 ..... An is called regular if 

j~U j~V 

does not hold for any 21 ..... 2n ~ G, 0 =~ U, V ~ { 1, 2 ..... n}, U n V -- 0. 
We show that the problem of checking regularity is polynomially equivalent to the even cycle 

problem. 
We also present two other types of regularity which can be checked in O(n 3) operations. 

O. Introduction 

A wide class of  problems in different areas of scientific research, like graph  theory, 

au tomata  theory, scheduling theory, communica t ion  networks, etc. can be expressed 

in an attractive formulat ion language by setting up an algebra of, say, real numbers  in 

which the operat ions of multiplication and addit ion are replaced by arithmetical 
addit ion and selection of the greater of  the two numbers,  respectively. M o n o g r a p h  1-3] 

can be used as a comprehensive guide in this field. Specifically, a significant effort was 
developed to build up a theory similar to that  in linear algebra, i.e. to study systems of 
linear equations, eigenvalue problems, independence, rank, regularity, dimension, etc. 

As it turned out  there is only a thin barrier separating these concepts and combina-  
torial properties of matrices. The aim of the present paper  is to study the time- 
complexity of  the problem of checking regularity of matrices. Since addit ion is now 
not  a group operation,  there are several non-equivalent  ways of  defining the regular- 

ity. We investigate three different such definitions. Two of these can be checked 
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efficiently but the third, which plays a central role in minimal-dimensional realisation 
of the discrete event dynamic systems (see [4]), is shown to be polynomially equiva- 
lent to the problem of the existence of an even cycle in digraphs. 

1. Notation and definitions 

Let f# = (G, ®, ~< ) be a non-trivial linearly ordered, commutative group (LOCG) 
with neutral element e and • be a binary operation on G given by the formula 

a 09 b = min(a, b) for all a, b s G. 

Note that f# is infinite. By f#o we denote (R, + ,  ~< ), i.e. the additive group of reals 
with conventional ordering. 

Extend @, ® to matrices and vectors in the same way as in linear algebra. 
Concepts and theory similar to those in linear algebra can be developed for @, ®, see 
[3]. We shall refer to this as min-algebra. 

Throughout  the paper we assume that all matrices are n x n (n ~> 1 is an integer) and 
their entries are from G. 

We shall denote {1, 2 . . . . .  n} by N and the set of all permutations of N by P..  The 
symbol I XI stands for the number of elements of the set X. 

Cyclic permutations will be written in the form n = (il i2... ip) where N'  = {il . . . . .  ip} 
is some subset of N. The corresponding cycle in the digraph with node set N will be 
denoted by (il, i2 . . . .  , ip). It is well known that 

sgn(n) = ( -  1) p- 1 

Hence, a cyclic permutation of N'  is odd if and only if I N'] is even. 

Lemma 1.1. I f  the permutation n is odd then at least one permutation in the decomposi- 

tion o f  n to cyclic permutations is odd, i.e. it is a cyclic permutation of  a subset o f  N o f  an 

even size. 

Proof. Trivial. [] 

Let us denote 

P+ = {n ~ P.; n even}, 

P~- = {n e P.;  n odd}, 

w(A, n) = a,,~tl) ® a2,~t(2) (~) " ' "  (~) an,n(n) for n e P,.  

The task of finding the permanent of A in min-algebra is 

miper(A) = ~ • w(A,n).  
~ P n  
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In go  this is obviously equivalent  to finding 

min (a1,~1~ + "" + an.~tn~), 
~t~Pn 

which is well known as the ass ignment  p rob lem for A. Mot iva ted  by this, we denote  

ap(A) = (Tz ~ Pn; w(A, rt) = miper(A)},  

ap+(A) = ap(A) n P ~ ,  

a p - ( A )  = ap(A) n P~-. 

Clearly, ap+(A)  u a p - ( A )  = ap(A) ~ 0. 
Matr ices  A and B are said to be equivalent (A ,,~ B) if one can be obta ined  f rom the 

other  by 
(a) pe rmut ing  the rows and columns,  
(b) mult iplying of rows and columns by elements of  G. 

Clearly, ,-~ consti tutes an equivalence relation. 
P r o o f  of the following two lemmas  is easy. 

L e m m a  1.2. I f  the matrix A is obtained from B by an exchange of two rows (or columns) 

then there exists a one-to-one mappin9 between ap + (A) and a p - ( B )  as well as between 

a p -  (A) and ap + (B). Consequently, lap + (A)[ = [ a p -  (B)[ and l a p -  (A)] = [ap + (B)[. 

L e m m a  1.3. I f  the matrix A is obtained from B by multiplyin9 the rows (or columns) then 

ap ÷ (A) = ap ÷ (B) and a p -  (A) = a p -  (B). 

As a corol lary we have the following lemma.  

L e m m a  1.4. I f  A ,~ B then either 

lap+(A)l = lap+(B)l and l ap- (A) l  = l ap- (B) l ,  

o r  

l ap+(a) l  = l ap - (n ) l  and l a p -  (h)l -- lap+ (n)l.  

In any case lap(A)l = lap(B)l. 

Mat r ix  A =(a i i )  is called normal in ff if 

a i ~ > ~ a , = e  for a l l i , j E N .  

Clearly, id E ap(A) if A is normal  (id stands for identical permutat ion) .  
The Hunga r i an  me thod  [7] for solving the ass ignment  p rob lem for the matr ix  

A enables us to find in O(n 3) opera t ions  a normal  matr ix  B ,-~ A. 
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Let us denote the columns of A by A 1 . . . . .  A,. They will be called linearly dependent 
in f9 if 

~ 2 j ® A j =  ~ ~ 2 j ® A j  (1.1) 
j eV  j cV  

holds for some ~1 . . . . .  ~ . e G ,  U , V ~ O ,  Uc~ V=O,  U u  V = N .  (Note that 
U u V = N can be replaced equivalently by U u V _ N.) Columns of A are called 
linearly independent in ~ if they are not linearly dependent in fq. Matrix A is called 
regular in ~ if its columns are linearly independent. 

In what follows we omit "in f#" when no confusion can arise. 

Lemma 1.5. I f  A ~ B then A is regular if and only if B is regular. 

Proof. Trivial. [] 

2. Criterion of regularity 

Theorem 2.1. (a) A is regular if and only if 

either ap+(A)=  0 or a p - ( A ) =  0. (2.1) 

(b) Moreover, if n ~ ap + (A), a E ap-(A) are known then the linear dependence of the 
form (1.1) can be found in O(n 2) operations. 

Proof. A proof of (a) was partly given in [5]. We modify those ideas to give a complete 
proof and to prove at the same time the computational complexity bound in (b). 

First we show that if A is not regular then ap ÷ (A) ¢ O and ap-(A) ¢ 0. Due to 
Lemma 1.4 it suffices to prove this property for any matrix equivalent to A. 

Permute the columns of the matrix 

(21 ® A1, . . . ,2 ,  ® A,) 

in such a way that the left-hand side of (1.1) contains only its first (say k) columns and 
denote this matrix by .4 = (-41 . . . . .  ,4,) = (aij). 

Then ~ * .4j = E * -~g = ( el,  c2, ".-, Cn)T (2.2) 
j<~k j > k  

for some cl . . . . .  c, e G. Let A = (dij) be defined by 

dlj = c/- 1 ® aij for all i, j E N 

and B = (bij) be obtained from A by an arbitrary permutation of the rows such that 
id e ap(B). Then B has the following properties: 

blj >i e for all i,j ~ N, (2.3) 

(Vi)(3jl ~< k)(3j2 > k)bijl = e = bq2. (2.4) 

(Note that B may not be normal.) 
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N o w  construct  a sequence of  indices i l , i  2 . . . .  as follows: ix = 1; if ir is already 
defined and i, ~< k then ir+x is arbi t rary j > k such that bi.j = e and if i, > k then 

ir+l = j  ~< k such that  bi.j = e. 

By finiteness, ir = i, for some r, s and s < r. Let r, s be the first such indices and 

denote 

L = {is, is+x . . . . .  i , -1} .  

Clearly, if is ~< k then is+ x > k, i~+ 2 ~ k, is+ 3 > k . . . .  and hence (using a similar reason 
if i~ > k) ILl is even. 

Set 

7~(it) = i t+ 1 for t = s, s + 1 . . . . .  r - 1, 

7r(i) = i for i ~ N \ L .  

Hence 

w.(rc) = I ]  ~ bu ® 1--I • bi,.(i) 
iCL i ~ L  

= l-[ ~ bu ® I-[ ~ e (by (2.4)) 
iCL i ~ L  

<<- I-I ~ bu 
i e N  

= wB(id) 

~< wB(rc) (by optimality of  id). 

Therefore, n ~ ap(B) and denot ing n' = n i L  we have sgn(z 0 = sgn(n')  = - 1 since 
ILI is even and n' is a cyclic permutat ion of L. Hence id ~ ap + (B) and n E a p -  (B). 

Suppose now that  n ~ ap+(A), a ~  a p - ( A )  are known. For  an optimal primal 

solution (say n) the corresponding optimal dual solution can be found in O(n) time. 

Hence, we can find in O(n) operat ions ~1, ...,~,,/~1 . . . . .  /~, e G such that  in 

A'  = (a'i~) = (~i ® alj ® flj) 

all elements are greater than or equal to e and miper(A')  = e. Exchange successively 
column i and column n(i) of A'  for i = 1, 2 . . . . .  n (this needs O ( n  2) time). Then for the 
arising matrix A" we have id e ap(A") and a permutat ion o-' e a p -  (A") can be derived 
from a in O(n) time (in fact a '  = a o n -  x ). The odd cyclic permutat ion in the decompo-  

sition of  a' (see Lemma 1.1) can be found in O(n) time. By a simultaneous permutat ion 
(say p) of  the rows and columns of  A" (in O(n 2) time) it can be achieved that  this cycle 
is (12.. .  k) for some even number  k >~ 2. The arising normal  matrix B is of  the form as 
shown in Fig. 1. 



126 

3 

k 

k+ 

P. Butkovik / Discrete Applied Mathematics 57 (1995) 121-132 

1 2 3 . . .  k 

°. e 

P- e 

Fig. 1. 

Assign the indices 1, 3 . . . . .  k - 1 to U, 2, 4 . . . . .  k to V and set 21 = 22 . . . . .  2k = e. 

I f k  = n then (1.1) is satisfied for B. Let  k < n. As we shall see all 2k+1 . . . . .  2, will be 

set to non-negat ive  values, therefore (1.1) will hold  for the first k rows of B indepen-  

dent ly  of the ass ignment  of the columns  k + 1 . . . . .  n to U and  V. To ensure equal i ty  in 

the rows k + 1 . . . . .  n we compu te  first 

Li = m i n b i j ® 2 j ,  (2.5) 
j e U  

Ri = min bij ® 2j (2.6) 
j e v  

(in O(n z) operat ions) .  

Let  

I =  {i > k ; L i  ~ R i }  (2.7) 

and  s e I be an (arbi t rary)  index satisfying 

Ls 0) Rs = min (Li • Ri). (2.8) 
i a l  
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Set V' = V u  {s}, U' = Ui fLs  < Rs and set V' = V, U' = U u {s} ifLs > Rs. In both 
cases take 2~ = Ls • Rs. Denote 

L'i = min blj ® 2j, 
j e U '  

RI = min bli ® 2j. 
j e V '  

Since b~ ® 2s = e ® 2~ = L,  G R~ we then get L'~ = R's. At the same time 

bis ® 2 s >7 e ® 2~ = L~ G R~ (2.9) 

holds for all i > k and therefore Li = R~ ~< L~ • R~ implies L'~ = R'i. Let q be defined 
by 

! t t ! L'q@Rq=min(LiGR~) ,  q • l ,  l ' = { i > k ; L ~ ¢ R } } .  
i ~ l '  

Then, 

L'q • R'q/> L, ® g~, (2.10) 

because either L ' q O R ' q = b q s ® 2 s  and then (2.10) follows from (2.9), or 
L'q O) R'q < bqs ® 2s, implying q • I and thus (2.10) follows from (2.8). This also shows 
that if we continue in this way after resetting U' -~ U, V' .-r V, L~ -~ Li, R~ -~ Ri,  

I' -~ I, q ~ s then the process will be monotone (L~ • R~ will be non-decreasing) and 
in the row in which the equality was already achieved this will never be spoiled. Hence, 
after at most n - k repetitions I = 0. If U u V = N then (1.1) is completely satisfied, 
otherwise for all j • N \  V u U we set 

2~ = max Li 
i > k  

and assign j to V or U arbitrarily. 
Obviously, all computations for assigning j and setting 2i are O(n), hence, the 

overall performance for finding the linear dependence for B is O(n2). It remains to 
apply p -  1 and zt to the set of column indices and to 2 1  . . . . .  2 n (in O(n) time) in order to 
find the decomposition (1.1) for A'. 

To obtain the same for A we finally multiply 21 . . . . .  2, by fl~-i . . . . .  f12 ~. This 
completes the proof of both parts of Theorem 2.1. [] 

We illustrate the algorithm presented in the proof of Theorem 2.1 on the following 
example in f~0 (points indicate arbitrary non-negative reals and the development of Li, 
Ri (i = 5, 6, 7, 8, 9) is expressed for convenience to the left of the matrix (see Fig. 2). 
Note that here we have k = 4, n = 9. Applying the method, we obtain successively: 

I = { 5 , 7 , 9 } ,  s = 7 ,  V:= V~{7} ,  2 7 =  1, 

I = { 5 , 9 } ,  s = 5 ,  U : = U u { 5 } ,  2 5 = 2 ,  

I = {6,9}, s = 6, V:= V u {6}, 2 6 = 3, 

I = 0 ,  2 8 = 2 9 = 4 ,  U : = U u { 8 , 9 }  (say). 

Hence, we have found U -- {1,3,5,8,9}, V =  {2,4,6,7}. 
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Li Ri 

0 0 

0 0 

0 0 

0 0 

o 0 

~4 ~.~4 

U 

0 

8 

5 

1 

0 

6 

Aj = 0 

V U V 

0 

0 0 

0 0 

0 . 0  . . . .  

3 4 4 0 I 1 

8 6 5 1 0 6 

3 7 4 0 2 0 

0 3 5 2 4 3 0 

7 8 7 2 I 4 0 

0 0 0 2 3 1 4 4 

Fig. 2. 

3. R E G U L A R I T Y  is p o l y n o m i a l l y  equivalent  to E V E N  C Y C L E  

Cons ider  the fol lowing two problems:  

R E G U L A R I T Y :  Given  a l inear ly  ordered,  commuta t i ve  g roup  c~ and  the matr ix  A, 

is A regular  in (#? 

E V E N  C Y C L E :  Given  a d igraph,  does  it con ta in  a cycle of  even length? 

It  was po in ted  out  by  several  au thors  [6, 8-10]  that  nei ther  a po lynomia l - t ime  

a lgor i thm for solving E V E N  C Y C L E  is known,  nor  NP-comple t enes s  of it was 

proved.  

The fol lowing simple l emma  will be useful. 

L e m m a  3.1. L e t  D = ( N , E )  be a digraph, N = {1,2 . . . . .  n} and A = (aij) be an n x n  

zero-one matr ix  defined as follows: 

all = 0 f o r  i ~ N; 

i f  i ~ j then a 0 = 0 ¢¢. (i,j) E E. 

Then D contains an even cycle  i f  and only ifWa(n) = 0 in f#o fo r  some n ~ P ~  . 

Proof.  Let  01 , . . . , i k )  be an even cycle in D and  n e Pn be defined as follows: 

n O r ) = i , + l  f o r t =  1,2 . . . . .  k - l ,  

~Z(ik) = i l ,  

~z(i)----i f o r i ~ { i l  . . . .  , ik} .  
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Then WA(n) = 0 in f#o and n e P~- since ~ is a product  of n - k trivial cycles and cyclic 

permutat ion (ix i2.. .  ik) which is odd. 
Let WA(n) = 0 in fqo for some rt e P~- and let n = re1 . . . . .  rcs be its decomposi t ion to 

cyclic permutations.  Then at least one of nx . . . . .  ns, say rot = (ix i2 ..... ik) is an odd 
cyclic permutat ion,  hence (il . . . . .  ik) is an even cycle in D (Lemma 1.1). [] 

Theorem 3.1. R E G U L A R I T Y  and E FEN C Y C L E  are polynomially equivalent. 

Proof. Suppose A is given. By the Hungar ian  method we find a normal  matrix B ~ A. 

Since id ~ ap÷ (B), by Theorem 2.1 the matrix B (and hence by Lemma 1.5 also A) is 

not  regular if and only if 

w(B,n) = e for some n ~ P ~ .  (3.1) 

Let C = (co) be an n x n zero-one matrix defined by 

ci j= O i f b i j = e ,  

c i j = l  i fb  o > e .  

Clearly, C is a normal  matrix in ~o and (3.1) holds if and only if 

w(C, ~) = 0 (3.2) 

or, equivalently (Lemma 3.1), the digraph D = (N, {(i,j); c o = 0}) contains an even 
cycle. Hence, A is not  regular if and only if D contains an even cycle and D can be 

constructed from A in 

O(n 3) (for the Hungar ian  method) 

+ O(n a) (construction of  C and D) 

= O(n 3) operat ions 

To transform polynomial ly E V E N  C Y C L E  to R E G U L A R I T Y ,  suppose that  

a digraph D = (N,E),  N = {1,2 . . . . .  n}, E _~ N x N, is given. Let A = (aij) be an n x n 

zero-one matrix defined by 

a l l = 0  for a l l i ~ N ;  

f o r i ¢ j :  ai j=O ~ (i,j) e E .  

Clearly, in f~o we have id ~ ap ÷ (A) and by Lemma 3.1 a p -  (A) ~ 0 ¢~ D contains an 
even cycle. It follows now from Theorem 2.1 that  A is not  regular in ~o ¢~ D contains 
an even cycle. It remains to ment ion that  A was constructed from D in 
O(n 2) ~< O(([N]  + IE]) 2) operations. [] 
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4. Other types of regularity 

At least we mention briefly two other types of regularity. 
Matrix A with columns A1 . . . . .  A. is called weakly regular (WR) if 

AR= ~ 2j®A~ 
jeN 
j~:k 

does not hold for any k e N and 21 . . . .  , 2 k - l ,  •k+l . . . . .  A n E G. 
Matrix A is called strongly regular (SR) if for some vector b the system of equations 

A ® x = b  

has a unique solution. 

Lemma 4.1. I f  A ~ B then A is SR (WR) if and only if B is SR (WR). 

Proof. Can be done straightforwardly from the definitions. [] 

Clearly, regularity implies weak regularity and it will follow from a later result that 
strong regularity implies regularity. 

Both weak and strong regularities (the first under a different name) were introduced 
in [3]. At the same place an O(n 3) method, the so-called d- tes t ,  for checking weak 
regularity was presented. 

Investigations concerning strong regularity were summarised in [1]. We present 
now some of the results showing that strong regularity can be essentially also checked 
in O(n 3) operations thus making our inability of checking regularity efficiently more 
striking. 

Matrix A = (aij) is said to be strictly normal if 

alj > au = e for a l l i , j 6 N ,  i ~ j. 

Clearly, ap(A) = {id} for every strictly normal matrix A. 
It was shown in [3] and elsewhere that a necessary and sufficient condition that 

A be strongly regular is that A ~ B, where B is strictly normal. Using Lemma 1.4 we 
then have the following theorem. 

Theorem 4.1. I r A  is SR then lap(A)l = 1. 

Corollary. I f  A is SR then A is regular. 

Proof of Corollary. If lap(A)[ = 1 then either ap+(A) = 0 or ap-(A) = 0 and the 
result follows now from Theorem 2.1. [] 
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The condition of strong regularity in Theorem 4.1 is not sufficient in general e.g. the 
matrix 

A(°0 10) 
in the additive group of integers is not equivalent to a strictly normal matrix though 
ap(A) = {id}. However, considering the same matrix in the additive group of rationals 
after subtracting ½ from column 2 and adding ½ to row 2 we get 

which is strictly normal. 
This observation was generalised as follows. 

Theorem 4.2. I f  f f  is dense (i.e. i f  a < b then a < c < b for  some c ~ G) and lap(A)l = 1 
then A is SR. 

Proof. Can be found in [2]. [] 

Clearly (9o is dense as well as f¢1 = (Q, + ,  ~< ). 
A typical class of non-dense L O C G  are cyclic groups, like if2 = (Z, + ,  ~< ). 

A simple example of a L O C G  which is neither dense nor cyclic is 

.~3 -~- ( Z x Z ,  -1--, ~ * ) ,  

where (a, b) ~< * (c, d) if and only if a < c or a = c and b ~< d. 
Clearly, in a L O C G  a bounded set may not have an infimum in general. However, it 

is not difficult to prove the following statement [1]. 

Lemma 4.2. Let  f f  be a non-trivial LOCG.  Then the set {a e G; a > e} has an infimum. 

The infimum mentioned in Lemma 4.2 will be denoted by ct(~) or only a. Evidently 
a((¢) = e if and only if ~¢ is dense, a(~¢) = g if f¢ is cyclic with generator g > e, 
~(~¢~) = [ 0 , 1 ] .  

The metric matrix  corresponding to A is 

F(A) = A (~ A 2 (~ ... • A n 

and its entry in row i and column j will be denoted by Fu(A). F(A) can be computed by 
the Floyd-Warshal l  algorithm in O(n 3) operations provided that the digraph asso- 
ciated with A has no negative cycles. 

We adjoin + ~ to G by the rules 

a~< + o0 f o r a l l a E G ,  a ®  ~ = oo @ a =  oo, 
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ISTRONG REGULARITY] =¢:" [REGULARITY] ::~ [WEAK REGULARITY I 
(cc = O(n3)) (Polyn. equivalent (cc = O(na)) 

to EVEN CYCLE) 

Fig. 3. 

and we denote by A the matrix arising from A after replacing all diagonal elements by 
(X3. 

Theorem 4.3. Let  A be normal. Then A is SR ¢~ Fu(a ® A)  > c~ for  all i E N. 

Proof. Can be found in [1]. [] 

Theorem 4.3 shows that SR of a normal matrix can be checked in O(n 3) operations, 
whenever a(f#) is known. Using Lemma 4.1 and by the Hungarian method which 
enables us to find an equivalent normal matrix in O(n 3) time we have then the same 
result for an arbitrary matrix. 

Finally, we summarise our observations (cc stands for computational complexity) 
as shown in Fig. 3. 
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