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ABSTRACT

We consider the concept of regularity for square matrices with entries from a
linearly ordered commutative group (G, +, =), the algebraic compositions being given
by x ® y = min(x, y), x®y = x + y. For the case where G is cyclic we derive a
necessary and sufficient condition for the regularity of a matrix, which can be checked
in O(n®) operations using standard aigorithms.

1. INTRODUCTION

We suppose throughout that n > 2 is an integer and 9= (G, +, 2)is a
linearly ordered, commutative group with neutral element 0. The inverse of
a € G will be denoted by —a. G, means the set of square matrices of order n
with entries from G. N stands for the set {1,2,..., n}, and P, for the set of all
permutations of N.

We say that A = (a;;) € G, has well-distributed column minima it there
exists 7 € P, satisfying

@ i) = Tei;rla" «py forall ieN. (1)
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A matrix B = (b;;) €G, is said to be similar to A (notation A ~ B), or
directly similar to A (notation A = B) if

b= u;+a;;+ v (2)

or

b;; = u; + a;; — u;, (3)

respectively, for all i, je N and for some u,,...,4,, v,,...,0,€G. Clearly,
both ~ and = are equivalence relations.

Addition of constants to columns does not influence the property (1), and
thus it is not restrictive to suppose that

@ x5 =0 forall ieN. (4)

Matrices satisfying both (1) and (4) for some = € P, will be called 0-astic. (This
is a particular case of doubly 0-astic in the terminology of [3].) 0-astic matrices
play a significant role in solving the well-known assignment problem ( AP) for
the matrix A, consisting of finding x € P, satisfying

iEZNai.x(i) = f’“e},“‘ i%;ai.o(i)‘ (5)

Denote
ap( A) = {xeP,;  satishies (5)}.

One can check easily that A ~ B implies ap( A) = ap(B), and if A is 0-astic
then 7 € ap( A) whenever = satisfies (1) and (4). Based on these two ideas, the
Hungarian (or Kuhn) method for solving AP ([4, 5]) actually transforms any
A€ G, to a O-astic matrix similar to A using O(n®) operations.

One can ask more specifically whether a given matrix cannot be trans-
formed to a similar O-astic matrix in which all the column minima are strict
(i.e.. each column contains a unique 0). Such a matrix will be called strictly

0-astic: naturally, it does not exist for every matrix, say for a zero matrix, or for
the matrix

A= [ o ©

in the additive group of integers.
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Strictly O-astic matrices have a special importance in min-algebra theory.
For a fixed matrix A = (g;;)€G,, denote by T(A) the set of all possible
cardinalities of the solution set to the system of equations

where the b;’s range over the whole of G. It is not difficult to show that either
T(A) = {0,1, »} or T(A) = {0, o} for every A € G,. In the former case A is
called regular, and it is shown in [3] that a matrix is regular if and only if it is
similar tc a strictly O-astic matrix. This motivates the effort to develop a
method for recognizing regular matrices.

We first derive a basic condition for regularity. If A is strictly 0-astic and
x € P, satisfies (1), then

DA x(i) < > @i, (i)
ieN " ieN
holds for all 6€P,, ¢ # =, and hence |ap(A)| = 1. Thus, we have proved:

THEOREM 1. A necessary condition for A to be regular is that the AP for A
has a unique solution.

It follows from the results in [2] that the regularity condition in Theorem 1
is also sufficient whenever > is dense. This is not the case e.g. for the
additive group of integers, and the matrix (6) is a corresponding counterexam-
ple. However, in Section 4 we will present a condition which is necessary and
sufficient for the regularity of a matrix over the integers. It enables also to find
the similar strictly 0-astic matrix in O(n®) operations.

A (strictly) O-astic matrix will be called (strictly) normal if all its diagonal
elements are 0.

It is quite easy to see that the problem of checking the regularity of
matrices can be reduced to the same question for normal matrices. To see this,
notice that the Hungarian method applied to A = (g;;)€ G, produces as a
result a;,..., a,, By, ..., B, €G and 7 € P, such that the matrix B = (b;;) € G,
defined by

bj=oa;+a;+B; forall i, jeN

if
is 0-astic and 7 eap(B) [= ap(A)]. Applying 7~! to the columns of B, we
obtain the matrix C = (¢;;) for which 'deap(C), i.e., C is normal. Since
aeither the transformation (2) nor the permutation of columns changes regu-
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larity, we have reduced our original problem for A to the same problem for a

normal matrix C. Moreover, if we find u,,...,u,, v,,...,v,€G such that
F = (f};) determined by

fij=ui+c;+v; forall i jeN
is strictly O-astic, then H = (h;;) given by
hij= u; + b;; + v,-1;  forall i, jeN
is strictly O-astic and similar to B. Hence
hjj=ai+a;+8; foral i jeN,

where a; =o; + u; B; = 6j + Ug-1(j) for all i, j€eN.

2. UNIQUE SOLUBILITY OF THE ASSIGNMENT PROBLEM

A cyclic permutation of a subset of N will be called a cycle. The set of all
cycles will be denoted by C,. Clearly, each ¢ €C, coresponds naturally to a
graph-theoretical cycle (which may be a self-loop) in a complete digraph with
n nodes, and it will be convenient to understand the notation and terminology
of cycles in either sense, according to context.

Given any A = (g;;)€ G, and 0€C,, 0 = (i},..., it), we define w,(o), the
weight of a, as

ame + aizia 4 v +a"kil.

The number k, the length of o, will be denoted by (o).

We show how to check whether |ap(A)| = 1 for a normal matrix A. if
A = (a;;) € G, is nonnegative, we denote by D, = (N, E) the digraph with
node set N and edge set E defined by the formula

(i.j)€E ifandonlyif ;=0 and i=#j.

THeOREM 2. Let A € G, be normal. Then a necessary and sufficient condi-
tion for |ap(A)| = 1 is that D, is acyclic.
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Proof. If (iy,..., ;) is an (elementary) cycle in D,, then

G, = Gy5, = " =4

k 22, and i, # i, for r # 5. Hence, setting
x(i,) =i for r=1,2,... k-1,
x(ix) = i
w(i)=i for ieN-—{i),..., i},

we have 7 eap(A) and 7 # id.

Suppose now that x eap( A), = # id. Then x can be decomposed into the
product of cyclic permutations at least one of which, say o, haslength [ > 2. ¢
is a permutation of some subset, say S, of the set N. Hence a; ,;, = 0 for all
i€ S, due to the linearity of > . Consequently, taking a (fixed) index i€ S, we
have that

(1 0(3), 2(i). ... a1(3))

is a cycle in D,. B

It is well known that a necessary and sufficient condition for a digraph D
to be acyclic is that the nodes of D can be numbered so that (i, j) is an edge
only if i < j. This property can be checked by an O(n?) algorithm presented
e.g. in [4]. A renumbering of the nodes in D, corresponds to a reordering of
the rows and the same reordering of the columns of A and, naturally, does not
change the set of diagonal elements of A. We get the following

CoroLLARY of Theorem 2. Let A€ G, be normal. Then a necessary and
sufficient condition for |ap(A)| =1 is that A can be transformed by a
permutation of the rows and the same permutation of the columns to a normal
matrix A’ = (a};) in which a}; = 0 only if i < j. This condition can be verified in
O(n?) operations.
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ExampLE 1. Consider the normal matrix

0 4 0 5

{3 6 2 0

A"4500
\0 6 1 0

in the additive group of integers. Since (cf. Figure 1) D, contains the cycle
(1,3, 4), we deduce (using Theorems 1 and 2) that A is not regular.

ExampLE 2. Consider the matrix

12 8 14 4
|2 2 4 6

A= 8 0 4 2
10 4 6 4

in the additive group of integers. The Hungarian method will find (say)
a=(-20,0-2)7 8= (=20, - 4, - 2) such that

B = (b;) = (a; + a;+ B;) =

DO W
OO
cCoOoOOo®
OO

is O-astic and 7 = (4,3,2, 1) eap(B). Applying 7~ ! to the columns of B, we
get a normal matrix

Cow O
SHoO W
oD
oo ®
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Since Dy is acyclic (see Figure 2), we conclude that

jap( 4)] =lap(C)| = 1.

3. SOME PRELIMINARY RESULTS

ProrosiTION 3.1. Let A = (a;;)€G, be normal. Then A is similar to a
strictly 0-astic matrix (i.e., A is regular) if and only if A is directly similar to a
strictly normal matrix.

Proof. The “if” part is trivial. For the converse, let A be normal. Then
id eap( A), and if, moreover, A is similar to a strictly 0-astic matrix, then
ap(A) = {id} by Theorem 1.

Suppose that B = (b;;) is strictly 0-astic, satisfying (2) and b; ,(;, = O for all
ieN and some w€P,. Hence xe€ap(B) = ap(A) = {id}, implying that B is
strictly normal. Thus we have by (2)

O0=u;+0+v; forall ieN

and so B = A. ]

Let oo be an element adjoined to G, and let us introduce the following
rules for oo:

and

g+ o =00 +a= o9,
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for all aeG’, where G’ = GU {oo}. By G, we denote the set of i X n

773

matrices with entries from G'. Given A = (a;;) € G;, the symbol A will stand
for the matrix (d;;) such that

.. = oo forall ieN,

aij - a"j fOl‘ aii i,jEN, i *j.

We now define a particular algebraic structure on G’ and G, following
well-known principles set out in [3] and elsewhere. Specifically, for A =
(a;;), B = (b;;) € G;, we denote

(i) by A® B the matrix

( ) (a,-k®bkj))

and by A @ B the matrix
(a;; ® by),

where between elements of G, @ stands for minimum and ® for +;
(ii) by A® (s integer) the (necessarily associative) iterated product

ARA® - ®A;
S

s times

(iii) by I'(A) the matrix A @ A’ ® -+ @ A™
(iv) a+ A=(a+a)foraeG.

It is well known that the elements of A* express the weights of lightest
paths consisting of s arcs between any two nodes of the complete n-node
digraph A the arcs of which are weighted by the elements of A, and that the

Floyd-Warshall algorithm (see e.g. [5]) applied to A gives as a result I'( A) in
O(n®) operations.

Lemma.  If A, does not contain cycles with negative weight, then
A > I‘(A) forall s>1. (7)

Proof. This follows directly from the results in [3].
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It follows from this lemma that I'( A) expresses the weights of the lightest

paths in A, of an arbitrary length whenever A, does not contain cycles with
negative weight.

4. THE CYCLIC-GROUP CASE

If k > 1 is an integer and a € G, then we define

ka=a+a+ " +a, 0a =0, and (—k)a=—ka.
N —

k times

In the rest of the paper we suppose that ¥ is a nontrivial cyclic group, i.e.,
there exists g€ G, g > 0 such that

G = {kg; k integer}.

ProrosiTioN 4.1. If A, Be G, are directly similar, B is strictly normal,
and 0€C,, l(0) > 2, then

wy(c) = (o)g.
Proof. Suppose that

(IU= u,+b,J— uJ

for all i, je N and some u,, ..., u,€G. Then
Byip + 770 Oy i Gy,

= 0‘1 + biliz - u(2 + u‘2 + bi ui3 L +ui=‘ -+ biiii -— "‘i

ofy 1

=b,, + - +b, 2kg forany (i),....i)€C,. @

tiz

It is known that any sum of the form a;; +a;; + - +a;;, where
jis- - -» jr €N, can be decomposed into a sum

wy(07) + wy(03) + *++ +wy(o)

where 0,...,0,€C, and l(g)) + - +l(0) = 1.
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ProrositioN 4.2. If A, Be G, are directly similar, B is strictly normal,
and I'(—g + A) = (g:;), then g; 2 0 for all ieN.

Proof. 1t follows from the definitions that

8ii = ‘,:‘e‘;,‘ dz(nk )

for all ie N, where d;; = —g + d;; for all i, jeN,and D = (d,)), D* = (d',-(}")).

Hence it suffices to show that d¥ > 0 for all i, k€ N. Taking arbitrary i€ N,
we have either d{f) = oo > 0 (which holds only for k = 1), or
o > d,('k) = min{dul 4 0 = djk-li; jl""’jkEN}

=dirl+ et +d

rk_ll‘

for some r),...,r,_; €N, implying that the last sum does not contain any
diagonal element. Hence it can be decomposed into the sum of weights of
cycles ay,..., 0, of length 2 or more, i.e., by Proposition 4.1 we have

diP = ~kg+a, + ' +a

i

= ~kg + wy(0y) + +++ +uy(q,)
> ~kg+1(o)g+ - +l(o)g
=0,

where the last equality follows from the relation
o)) + + +1(o) = k. B

Tueorem 3. Let A€ G, be normal. Then A is regulur if and only if all the
diagonal elements of T'(—g + A) are nonnegative.

Proof. The “only if” part is an immediate corollary of Propositions 3.1
and 4.2.

To prove the “if” statement it suffices by Proposition 3.1 te show that
A = B, B strictly normal. Denote —g + Aby D = (d;;). Hence, wp(o) 2 0 for
every 6 € C,, and it follows now from the earlier lemma that D"*! > I'(D).
Consequently,

D®T(D)=D%e --- ® D"*' >T(D). (8)
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s
Dengcte I'(

(7{1) Ifi,jeN,i#j then y; < d; + dy; < o forany k +# i
and v;; € d —g + a;; < =. Hence all elements of I'(D) are from G. Take

any column v = (vy,...,0,)7 (say) of (D), and consider vectors as one-col-
umn matrices. Then we have by (8)

Dev=2v

or, equivalently,
-v;+d;; +v;20
for all i, je N. Hence for all i, jeN, i # j, we have
—v,-+a,-j+vj>g>0
and
-v;,+a;,+v,=a;=0.

The matrix B = (b;;) with

is strictly normal, and A = B. |

Now we summarize the method for checking regularity of A€ G, in the
cyclic case, and for finding a strictly 0-astic matrix similar to A (if any):

1. Find a solution to the AP for A by the Hungarian method [as the result we

have a 0-astic matrix B = (b‘j) and a,,..., &, B),..., B, such that b;; =
a; + a;; + B; for all i, jeN].

2. Permute the columns of B so that for the obtained matrix C we have
id e ap(C) (comment: Cis normal).

3. Check whether ap(C) = {id} by the algorithm for testing the acyclicity of
Dc. If not, then stop (A is not regular).

4. Put D= —g+ C, and compute I'(D) = (g;;) by the Floyd-Warshall
algorithm. If g; > 0 for all ieN, then go to step 5, else stop (A is not
regular).

5. Take any column v = (v,,...,v,)T of T'(D), and put o} = a; — v;, Bj = B;
+ 0,15 for all i, jeN. The matrix A" = (a; +a;+ B}) is the wanted
strictly 0-astic matrix similar to A. Stop.
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The worst-case performance bounds for the number uf operations in steps
1-5 are O(n%), O(n?), O(n?), O(n®), O(n?). Hence our method is O(n%). Note
that step 3 can be omitted; however, it is O(n?) and it saves O(n®) operaticns
in the negative case.

ExampLE 2 (Continued). Since g = 1, we have

feo 7 5 7 \
- _ A 3 e 1 -1
D=-g+C=1", 5 o -2
-1 5 1 ce
and
{ 3 7 5 4
-2 4 0 -1
(D) = ' -2 4 0 -1
\-1 51 o

Hence D (and A) are regular. Take v = (3, — 2, — 2, — 1)T (say). Hence,

denoting v,-1 = (0g-1(3) - - +» Og-1(y) ', We put
o =a-v=(-522-1),
B =B+v,-=(-4-2-51)"
Actually,
3 1 4 0
A = (a; +aij+BJ'-) = g (2) i g
5 1 0 4

is a strictly O-astic matrix similar to A.

On the other hand, A is not regular in the additive group of even integers,
because here g = 2 and

/ o 6 4 6
D= - > = )= 2 o 0 -2
e+C={dy)=1 5 % o -2

\—2 4 0 o

Thus d3y + dy3 = —2, implying that g;; (as well as g,,) is negative.
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In conclusion, we remark on some interesting similarities between the

present paper and [1], although of course the algebraic structure and the
application field are quite different.
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