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ABSTRACT 

We consider the concept of regularity for square matrices with entries from a 
linearly ordered commutative group (G, 6, a), the algebraic compositions being given 
by x@y= min( xr y), x Q y = x + y. For the case where G is cyclic we derive a 
necessary and sufficient condition for the regularity of a matrix, which can be checked 
in 0jn3) operations using standard dgorithms. 

1. INTRODUCTION 

We suppose throughout that n 2 2 is an integer and B = (G, + , 2) is a 
linearly ordered, commutative group with neutral element 0. The inverse of 
a E G will be denoted by -a. Gn means the set of square matrices of order n 
with entries from G. N stands for the set { 1,2, . . . , n), and P,, for the set of all 
permutations of N. 

We say that A = ( aij) E G,, has well-distributed column minima if’ there 
exists f E P, satisfying 

. 
ai, r(i) = ms ar, r(i) forall iEN. ( 1 1 
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A matrix B = (I$$ E C$ is said to be similar to A (notation A - B), or 

directly similar to A (notation A = B) if 

bij = Ui 9 aij 3 Vj 

or 

b *- = us + aij 
‘3 

respectively, for all i, Jo N and for some 

- uj9 0 3 

u1, . . . . u,, q,..., 17, E G. Clearly, 

both - and 5: are equivalence relations. 
tion of constants to columns does not influence the property iij, and 

thus it is not restrktive to suppose that 

*i.*(i) = 0 for all iEN. 0 4 

Matrices satisfflng both (I) and (4) for some ?r E Bn will be called O-a&c. (This 
is a particular case of doubly 0-astic in the terminology of [3].) O-astic matrices 
play a significant role in solving the well-known assignment problem ( AP) for 
the matrix A, consisting of finding 1 E Pt, satisfying 

&iv 
“i. +(i) ai, o(i)’ 0 5 

a ) = ( TEP,,; ?r satisfies (5)). 

implies ap( A = ap(B), and if A is O-astic 
sfies (1) and (4). ased on these two ideas, the 

for solving AP ([4, 51) actually transforms any 
r to A using Cl($) operations. 

whether a given matrix cannot he trans- 
d to a similar O-astic matrix in w ich all the column minima are strict 

(i.e., each column contains a unique 0). Suck a matrix will be called strictly 
O-a&c; maturely, it does not exist for every matrix, say for a zero matrix, or for 
t &-iX 

in c additive 
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Strictly 0-astic matrices have a special importance in min-algebra theory. 
For a fixed matrix A = (a, J E G,, denote by T( A) the set of all possible 
cardinalities of the solution set to the system of equations 

min aij 

j=l,....n ( + Xj) = bi, i = 1,. . . , n, 

where the hi’s range over the whole of G. It is not difficult to show that either 
T(A) = (O,l,oo) or T(A) = {O,oo) for every AEG,. In the former case A is 
called reguhr, and it is shown in [3] that a matrix is regular if and only if it is 
similar to a strictly 0-astic matrix. This motivates the effort to develop a 
method for recognizing regular matrices. 

We first derive a basic condition for regularity. If A is strictly 0-astic and 
?r E P,, satisfies (l), then 

c 
itsN 

(Q*(i) < C %,0(i) 
. isN 

holds for all u E P,, Q # 1, and hence 1 ap( A) 1 = 1. Thus, we have proved: 

THEOREM 1. A necessary co&it&m for A to be regular is that the AP for A 
has a unique solution. 

It follows from the results in [2] that the regularity condition in Theorem 1 
is also suflicient whenever 2 is dense. This is not the case e.g. for the 
additive group of integers, and the matrix (6) is a corresponding counterexam- 
ple. However, in Section 4 we will present a condition which is necessary and 
sufficient for the regularity of a matrix over the integers. It enables also to find 
the similar strictly 0-astic matrix in 0(n3) operations. 

A (strictly) O-as& matrix will be called (strictly) normal if all its diagonal 
elements are 0. 

It is quite easy to see that the problem of checking the regularity of 
matrices can be reduced to the same question for normal matrices. To see this, 
notice that the Hungarian method applied to A = (aii) E G,, produces as a 
result al,. . . , (Ye, &, . . . , 0, E G and ?r E P, such that the matrix B = (bii) E G,, 
defined by 

bij = Iyi + aij 9 flj for all i,j~N 

‘A E ap( B) [ = ap( A)]. Applying a-’ to the columns of B, we 
cb ld E ap(C), i.e., C is normal. Since 

utation of colu 
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larity, we have reduced our original problem for A to the same problem for a 
normal matrix C. Moreover, if we find ill,. . . , u,, ol, _. . , 0, E G such that 

e F = (~~j> determined by 

Lj = Ui d- Cij + Uj for all i,jEN 

is stnidy Q-atic, then W = (hv) given by 

hij = Ui + bij + Q--I(j) for all i,jEN 

is strictly O-astic and similar to B. Hence 

h *. = Cr: + aij 9 flj 
‘3 

for all i,jEIV, 

2. UNIQUE SBLWBHLITY OF THE ASSIGNMENT PROBLEM 

A cyclic permutation of a subset of N will be called a cycle. The set of all 
cycles will be denoted by C,,. Clearly, each u E Cn coresponds naturally to a 

eoretical cycle (which may be a self-loop) in a complete digraph with 
and it will be convenient to understand the notation and terminology 

of cycles in either sense, according to context. 
en any A = (aij) E Gn and CI E C,, Q = (ir,. . , , ik), we define ~,,(a), the 
of Q, as 

he number k, the let&r. of Q, will be denoted by I(o). 
e show how to check whether { ap( A) { = 1 for a normal matrix A. If 

A = (aij) E 6, is nonnegative, we denote by %)A = (IV, E) the digraph with 
node set N and edge set E defined by the formula 

(i? j)EE ifandon yif aij=O and i+j. 

be normal. Then a necessaq and st@cient condi- 
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Proof. If (il,. . . , ik) is an (elementary) cycle in DA, then 

131 

a. . = aiPiJ = l l l = aiLi, = 0, 
‘I 1% 

k > 2, and i, # i, for t # s. Hence, setting 

+) = ir+l for r= I,2 ,..., k- 1, 

r(ib) = ii, 

A(i) = i for iEN- {iI,...,&), 

we have u E ap( A) and ?r # id. 
Suppose now that w E ap( A), ?r + id. Then r can be decomposed into the 

product of cyclic permutations at least one of which, say u, has length I > 2. Q 
is a permutation of some subset, say S, of the set N. Hence ai, o(iJ = 0 for all 
i E S, due to the linearity of 2 . Consequently, taking a (fixed) index i E S, we 
have that 

(i,0(i),g2(i) ,..., J-l(i)) 

is a cycle in DA. 

It is well known that a necessary and sufficient condition for a digraph D 
to be acyclic is that the nodes of D can be numbered so that (i, j) is an edge 
only if i < j. This property can be checked by an 0( n”) algorithm presented 
e.g. in [4]. A renumbering of the nodes in DA corresponds to a reordering of 
the rows and the same reordering of the columns of A and, naturally, does not 
change the set of diagonal elements of A. We get the following 

COROLLARY of Theorem 2. Let A E G,, be d. 
sufiient cmditim for lap(A) 1 = 1 is that A can 

permutation of 
y if i < j. This con&t&m can be verified in 



Ex_AMPLE 1. consi e normal matrix 

A= 

i~teg~~§. Since (cf. 
sing Theorems P and 2) 

ExArmLE 2. Consider the matrix 

in the additive 
z 

of integers. ungarian method will find (say) 
, - 4, - 2) such t 

c= . 
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Since DC is acyclic (see Figure Z), we conclude that 

bP( A)1 =laP(q = 1. 

3. SOME PRELIMINARY RESULTS 

PROPOSITION 3.1. Let A = (aij) E G, be normal. Then A is simih- to a 
strictZy O-a&c matrix (i.e., A is regular) if and only if A is directly similar to a 
strictZy norm.421 matrix. 

Proof. The “if’ part is trivial. For the converse, let A be normal. Then 
id E ap( A), and if, moreover, A is similar to a strictiy 0-astic matrix, then 
ap( A) = (id} by Theorem 1. 

Suppose that B = (bij) is strictly O-astic, satisfying (2) and bi, r(i) = 0 for all 
ieN and some REP,. ence ?r E ap( B) = ap( A) = {id], implying that B is 
strictly normal. Thus we have by (2) 

O=Ui+O+Ui for all i EN 

Let 90 be an element adjoined to 6, and let us introduce the following 
rules for 00: 
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for all a E G’, where G’ = G U {cm). By 6; we denote the set of z x n 

matrices with entries from G’. Given A = (aij) E Gk, the symbol i will stand 
for the matrix (Zij) SUCK that 

Zii =oO for all i E N, 

Zii = aij forail i,jEN, i #j. 
.s 

We now define a particular algebraic structure on 6’ and Gk, following 
well-known principles set out in [3] and elsewhere. Specifically, for A = 
(aij), B = (bij) E G$ we denote 

(i) by A @ 13 the matrix 

and by A TV B the matrix 

("ij @ bij), 

where between elements of G’, e stands for minimum and @ for +; 
(ii) by A’ (S integer) the (necessarily associative) iterated product 

Ht is well known that the elements of AS express the weights of lightest 
ths consisting sf s arcs between any two nodes of the complete n-node 

e arcs of which are weighted by the elements of A and +h-t the __ __ --, -SLY . ..U 
oyd-Warshall algorith (see e.g. [S]) applied to A gives as a result I’( A) in 
( n3) operations. 

does not contain cycles with negative weight, then 

AQF(A) 

lows directly from e results in [3]. 

0 7 
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It follows from this lemma that I’( A) expresses the weights of the lightest 
paths in A, of an arbitrary length whenever AA does not contain cycles with 
negative weight. 

4. TIIE CYCLIC-GROUP CASE 

If k 2 1 is an integer and Q E G, then we define 

ka =a- Oa=O, and (-k)u= -ka. 

k times 

In the rest of the paper we suppose that g is a nontrivial cyclic group, i.e., 
there exists g E G, g > 0 such that 

G = (kg; k integer). 

PROPOSITION 4.1. Zf A, B E G,, are directly sinailar, B is strictly nom&, 
and u E cn, I( a) 2 2, then 

WA(Q) 2 I( 0) g. 

Proof. Suppose that 

a.. = 
0.l 

Ui + b, - Uj 

forall i,jENandsome ur,...,u,~G. Then 

ai*iI + . . l +a,,_,,, + ai*i, 

= Uil + bit il - Ufg + Uis + bi,is - Uix + l * l +UQ + bikii - Ui, 

= bi,i2 + l l . + bi~c, 2 kg forany (i,,...,ik)EC,. 

It is known that any sum of the form ajljl + ajd3 + l l . + ajrjl> where 

jr,..‘, j, E N, can be decomposed into a sum 

l(q) -I- * * s +l(a,) = r. 
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PROPOSITION 4.2. If A, BE Gc are dire& simihr, B is ski& normal, 
and I’( - g + A”) = (gij), t&n gii 2 0 for all i E N. 

Proof. It follows from the definitions that 

for all i E N, where dij = - g + pi. for ail 2’, j E N,and D = (~ij)l Dk = (d$‘j. 
Hence it s&ices to show that LEii id 2 0 for all i, k E N. Taking arbitrary i EN, 
we have either #) = 00 2 0 (which holds only for k = l), or 

for some rr, . . . , rk_ r EN, implying that the last sum does not contain any 
diagonal element. Hence it can be decomposed into the sum of weights of 
cycles q,..., a, of length 2 or more, i.e., by Proposition 4.1 we l-rave 

df) = -kg + aiT, + ” l +fZ,,_,i 

= -kg + w*(q) -b l ** +w*(uJ 

2 -kg + l(u,)g + ‘** +l(uJg 

= Q, 

where the last equality follows from the relation 

l(q) -I- .’ l +I($) = k. 

THEOREM 3. Let A E C$ be normal. Then A is regtdur if and oniy ij di the 

diagonal elements oj ( -g + AI> are nonnegative. 

Proof; The “ordy if” part is an immediate corollary of Propositions 3.1 

and 4.2. 
To prove the “if’ statement it su ces by Proposition 3.1 to show that 

SE strictly normal, -g + Xby D = (dij ence, w,(c) 3 0 for 
now from the earlier lem that D”+’ 2 a(D), 

0 8 
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Denote F ( D j = (~ij). If i,jEN, i #j, th en yii < d!ik + dki < 00 for any k # i 

andyij<dij= -g+a,j< m. Hence all elements of I’(D) are from G. Take 
any column u = (u,, . . . , uJT (say) of P(D), and consider vectors as one-coi- 
umn matrices. Then we have by (3) 

or, equivalently, 

- Ui + dij + Uj ~ 0 

for all i, j E N. Hence for all i, j E N, i f j, we have 

-Ui+aij+Uj>g>O 

and 

- Ui + aii + Ui = Uii = 0. 

The matrix B = (b,j) with 

b . . = 8: -Ui + aij + Uj 0 9 

is strictly normal, and A = B. 

Now we summarize the method for checking regularity of A E G, in the 
cyclic case, and for finding a strictly 0-astic matrix similar to A (if any): 

1. 

2. 

3. 

4. 

5. 

Find a solution to the AP for A by the Hungarian method [as the result we 
have a 0-astic matrix B = (b,) and al,. . . , QI,, &, . . . , /3, such that bij = 
Qi + Uij + pj for all i, j E I;‘]. 
Permute the columns of B so that for the obtained matrix C we have 
id E ap( C) (comment: Cis normal). 
Check whether ap(C) = {id} by the algorithm for testing the acyclicity of 
DC. If not, then stop (A is not regular). 
Put D = -g + t?, and compute I’(D) = (gij) by the Floyd-Warshall 
algorithm. If gii 2 0 for all i E N, then go to step 5, else stop (A is not 
regular). 
Take any column t) = (~1,. . . , tr,JT of l’(D), and put or: = ai - Vi> 0; = Pj 
+ “r-l(j) for all i, j E N. The matrix A’ = ( CY~ + Uij + P;.) is the wanted 
strictly O-astic atrix similar to A. Stop. 
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edormance bounds for the number u.& operations in steps 
O(2), O(n2), 0(n2), O(n3j, O(n2). ence our method is 0( n3). Note 

at step 3 can be omitted; howekxz, 4t is 0 “) and it saves O(n3) operatisns 
in the negative case. 

EXAMPLE 2 (Continued). Since g = 1: we have 

and 

4 

'(D) -1 = 1 375 -2 4 0 -2 4 0 -1 1 * 

\ -151 0 

ence (and A) ake v = (3, - 2, - 2, - 1)’ (say). 
denoting v,-I = (c+I(~), . . . , v,-*~,))‘, we put 

Qf=~-v= 
( -5,2,2, - 1 T, 1 

8’ = 0 + 0,-l = (-4, - 2, - 5, ‘:‘_ 

is a strictly 0-astie matrix similar to 

is not regdar in the the group of even integers, 

33 (as v:ell as g,,) is negative. 
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