Permuted linear system problem and permuted eigenvector problem are \(NP \)-complete

P. Butković*

Abstract

Using a polynomial transformation from \textsc{Partition} we prove that the following modifications of two basic linear-algebraic problems are \(NP \)-complete:

(1) Given \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \), is it possible to permute the components of \(b \) so that for the arising vector \(b' \) the system \(Ax = b' \) has a solution?

(2) Given \(A \in \mathbb{R}^{n \times n} \), \(\lambda \in \sigma(A) \) and \(x \in \mathbb{R}^n \), is it possible to permute the components of \(x \) so that the arising vector \(x' \) is an eigenvector of \(A \) corresponding to \(\lambda \)?

The second problem is polynomially solvable for positive matrices if \(\lambda \) is the Perron root, however the complexity remains unresolved for general non-negative matrices.

AMS Classification [2000]: Primary 15A18; 15A18; 68Q25.

Keywords: Linear equation; Eigenvector; Permutation; \(NP \)-complete.

1 Problem formulation

For a positive integer \(n \) the symbol \(P_n \) stands for the set of all permutations of the set \(N = \{1, \ldots, n\} \). For \(\pi \in P_n \) and \(x = (x_1, \ldots, x_n)^T \in \mathbb{R}^n \) we denote by \(x(\pi) \) the vector \((x_{\pi(1)}, \ldots, x_{\pi(n)})^T \). In what follows the letters \(m, n \) will denote positive integers.

We analyse the following two problems.

\textbf{Permuted linear system problem (PLS):} Given \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \), is there a \(\pi \in P_m \) such that the system

\[Ax = b(\pi) \]

has a solution?

\textbf{Permuted eigenvector problem (PEV):} Given \(A \in \mathbb{R}^{n \times n} \), \(\lambda \in \sigma(A) \) and \(x \in \mathbb{R}^n \), is there a \(\pi \in P_n \) such that \(x(\pi) \) is an eigenvector of \(A \) corresponding to the eigenvalue \(\lambda \)?

*School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom, p.butkovic@bham.ac.uk
The aim of this paper is to prove that the integer versions of these two problems are NP-complete. In fact we will prove that both problems are NP-complete even for square matrices with entries from $T = \{0, 1, -1\}$ and (for PEV) when $\lambda = 1$. More precisely we consider the following:

Integer permuted linear system problem (IPLS): Given $A \in T^{n \times n}$ and $b \in \mathbb{Z}^n$, is there a $\pi \in P_n$ such that the system

$$Ax = b(\pi)$$

has a solution?

Integer permuted eigenvector problem (IPEV): Given $A \in T^{n \times n}$ and $x \in \mathbb{Z}^n$, is there a $\pi \in P_n$ such that

$$Ax(\pi) = x(\pi)?$$

In both cases the polynomial transformation will be constructed using the following basic NP-complete problem [2]:

PARTITION: Given positive integers $a_1, a_2, ..., a_n$, is there a subset $S \subseteq N$ such that

$$\sum_{j \in S} a_j = \sum_{j \in N - S} a_j?$$

(1)

Note that both IPLS \in NP and IPEV \in NP are easily verified.

Theorem 1.1 IPLS is NP-complete.

Theorem 1.2 IPEV is NP-complete.

2 Proof of Theorem 1.1

Let $a_1, a_2, ..., a_n$ be an instance of PARTITION and define

$$A = \begin{pmatrix}
1 & & & 0 \\
& \ddots & & \\
& & 1 & 0 \\
1 & & & 0 \\
& & & & & & \ddots & \\
& & & & & & 1 & 0 \\
1 & \cdots & -1 & -1 & \cdots & -1 & 0
\end{pmatrix}$$

(2)

(the blank entries are 0) and

$$b = (b_1, ..., b_{2n+1})^T = (a_1, a_2, ..., a_n, 0, ..., 0)^T$$

where A is of order $2n + 1$. Clearly $r(A) = 2n$ and for any $\pi \in P_n$ we can easily transform the extended matrix of the system (with $b(\pi)$ standing in the last
column) to the row-echelon form

\[
\begin{pmatrix}
1 & 0 & b_{\pi(1)} \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1 \\
0 & \cdots & 0 & 0 & \cdots & 0 & 0 & v
\end{pmatrix}
\]

where

\[v = - \sum_{1 \leq \pi(i) \leq n} b_i + \sum_{n+1 \leq \pi(i) \leq 2n+1} b_i\]

or, equivalently

\[v = - \sum_{i \in S} a_i + \sum_{i \in N \setminus S} a_i\]

where \(S = \{ i \in N; \pi(i) \leq n \}\). Clearly, \(Ax = b\) has a solution if and only if \(v = 0\), that is if and only if

\[\sum_{i \in S} a_i = \sum_{i \in N \setminus S} a_i.\]

Note that the expressions on either side are non-vacant as all \(a_i\) are positive. Hence the set \(S = \{ i \in N; \pi(i) \leq n \}\) is a solution to PARTITION once \(\pi\) is a solution to IPLS for \(A, b\) and conversely, if (1) holds for some \(S\) then for \(\pi\) we can take any permutation from \(P_{2n+1}\) such that \(\pi(i) \leq n\) for all \(i \in S\). The construction of the instance of IPLS is clearly \(O(n^2)\), thus the transformation is polynomial.

3 Proof of Theorem 1.2

Let \(a_1, a_2, \ldots, a_n\) be an instance of PARTITION. Let \(A\) be the matrix defined by (2) and

\[x = (x_1, \ldots, x_{2n+1})^T = (a_1, a_2, \ldots, a_n, 0, \ldots, 0)^T.\]

Note that \(1 \in \sigma(A)\). Let \(\pi \in P_n\), then \(Ax(\pi) = x(\pi)\) comprises \(2n\) trivial identities of the form \(x_{\pi(i)} = x_{\pi(i)}\) and the following equation:

\[\sum_{1 \leq \pi(i) \leq n} x_i - \sum_{n+1 \leq \pi(i) \leq 2n+1} x_i = 0.\]

We deduce that \(Ax(\pi) = x(\pi)\) if and only if

\[\sum_{i \in S} a_i = \sum_{i \in N \setminus S} a_i.\]
where $S = \{ i \in N; \pi (i) \leq n \}$. Hence the set $S = \{ i \in N; \pi (i) \leq n \}$ is a solution to PARTITION once π is a solution to IPEV for A and conversely, if (1) for some S then for π we can take any permutation from P_{2n+1} such that $\pi (i) \leq n$ for all $i \in S$. The construction of the instance of IPEV is clearly $O(n^2)$, thus the transformation is polynomial.

4 Some related question

As usual some special cases are easily solvable.

If $A \in \mathbb{R}^{n \times n}$ and $r (A) = n$ then the answer to PLS is always yes, thus PLS is solvable in $O(1)$ time in this case. Similarly if $r (A) = 1$ then the column space of A is formed by multiples of a single vector v (any non-zero column of A can be used). PLS can be solved by ranking the components of v and b in the same way. A simple check then verifies whether they are multiples of each other.

For similar reasons PEV is easily solvable if the eigenspace corresponding to the given eigenvalue is one-dimensional, in particular for eigenvectors corresponding to the Perron root of positive matrices. For non-negative matrices this question remains open since the eigenspace corresponding to the Perron root may be multi-dimensional and the matrix used in the proof of Theorem 1.2 is not non-negative.

Note that the max-algebraic versions of both PLS and PEV have also been proved to be NP-complete [1].

References
