
This article was downloaded by:[Butkovič, Peter]
[Butkovič, Peter]

On: 2 July 2007
Access Details: [subscription number 779928651]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Optimization
A Journal of Mathematical Programming and
Operations Research
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713646500

A note on the parity assignment problem

Online Publication Date: 01 August 2007
To cite this Article: Butkovič, Peter , (2007) 'A note on the parity assignment
problem', Optimization, 56:4, 419 - 424
To link to this article: DOI: 10.1080/02331930701421038
URL: http://dx.doi.org/10.1080/02331930701421038

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

© Taylor and Francis 2007

http://www.informaworld.com/smpp/title~content=t713646500
http://dx.doi.org/10.1080/02331930701421038
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [B
ut

ko
vi

č,
 P

et
er

] A
t: 

08
:2

4 
2 

Ju
ly

 2
00

7 

Optimization,
Vol. 56, No. 4, August 2007, 419–424

A note on the parity assignment problem

PETER BUTKOVIČ*
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Although the basic version of the linear assignment problem (AP) can be solved very efficiently,
there are variants of this problem which are much harder, some being NP-complete or with
undecided computational complexity. One of them is the parity AP, in which an optimal
permutation of a prescribed parity is sought. A related variant is the weak parity AP, in which
we only need to know whether the set of optimal permutations to the AP contains permutations
of both parities. In this short note, we prove that both these problems are efficiently solvable for
Monge matrices, as well as for diagonally dominant symmetric matrices. We also note that the
parity bottleneck AP is polynomially solvable for any matrix.
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1. Introduction

Classical (linear) assignment problem (AP) is the following: Given an n� n real matrix

A find n entries of A, no two belonging to the same row or column, so that their sum is

maximal. This problem has numerous applications and belongs to basic combinatorial

optimization problems. It has been studied by many authors since the 1950’s.

A thorough overview of the achievements can be found in [3] and [4]. However,

although the basic version of the AP can be solved very efficiently (say by the

Hungarian method in O(n3) steps [14]), there are variants of this problem which are

much harder, some being NP-complete or with undecided computational complexity.

One of them is the parity AP: Obviously, n entries of an n� n matrix, no two belonging

to the same row or column, correspond to a permutation of the set N¼ {1, . . . , n}.

In the classical AP, no additional conditions are set on the optimal permutation. In the

parity AP, this permutation has to be of a prescribed parity. Note that if the additional

requirement is that the permutation be cyclic, then the arising task is the well-known

(NP-complete) travelling salesman problem.
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If A ¼ ðaijÞ 2 R
n�n and Pn is the set of all permutations of the set N then

wðA,�Þ ¼
X
i2N

ai,�ði Þ

for any � 2 Pn. We will use the same notation, if � is a permutation of a subset of N.
Let Pþn ½P

�
n � be the set of all even [odd] permutations of the set N. Let us denote

apðAÞ ¼ � � 2 Pn;wðA,�
�Þ ¼ max

�2Pn

wðA,�Þ

� �
,

apþðAÞ ¼ � � 2 Pþn ;wðA,� �Þ ¼ max
�2Pþn

wðA,�Þ

� �
,

ap�ðAÞ ¼ � � 2 P�n ;wðA,� �Þ ¼ max
�2P�n

wðA,�Þ

� �
:

We can now give definitions of the AP and its variants studied in this article. Note

that apðAÞ � Pþn [ P
�
n ¼ Pn.

Assignment Problem (AP) Given A ¼ ðaijÞ 2 R
n�n, find a permutation � � 2 apðAÞ.

Even Parity Assignment Problem (EPAP) Given A ¼ ðaijÞ 2 R
n�n, find a permutation

� � 2 apþðAÞ.

Odd Parity Assignment Problem (OPAP) Given A ¼ ðaijÞ 2 R
n�n, find a permutation

� � 2 ap�ðAÞ.

Parity Assignment Problem (PAP) Given A ¼ ðaijÞ 2 R
n�n, solve both EPAP and

OPAP.

Weak Parity Assignment Problem (WPAP) Given A ¼ ðaijÞ 2 R
n�n, is there both

apðAÞ \ Pþn 6¼ ; and apðAÞ \ P�n 6¼ ;? Equivalently, is

max
�2Pþn

wðA,�Þ ¼ max
�2P�n

wðA,�Þ?

Note that WPAP plays an important role in recognizing regular matrices in

max-algebra, which is a theory developed for the pair of operations ð�,�Þ ¼ ðmax,þÞ

in the same way as linear algebra [8,9,12]. A matrix A 2 R
n�n with columns a1, . . . , an is

called regular (in max-algebra) if real numbers �j and two non-empty, disjoint subsets S

and T of N, such that X
j2S

��j � aj ¼
X
j2T

��j � aj

do not exist. Gondran and Minoux [11] proved the following criterion for the regularity

of a matrix, see also [6].

THEOREM 1 A 2 R
n�n is regular if and only if every permutation yielding the maximum

value for the linear AP with cost matrix A has the same parity, that is

max
�2Pþn

wðA,�Þ 6¼ max
�2P�n

wðA,�Þ:

Note that max-algebraic regularity of matrices plays a crucial role in solving the

minimal-dimensional realization problem for discrete-event dynamic systems [1,10].

420 P. Butkovič
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A matrix A ¼ ðaijÞ 2 R
n�n is called normal if aij � aii ¼ 0 for all i, j 2 N. We say that

A is diagonally dominant, if id 2 apðAÞ. It is obvious that every normal matrix

is diagonally dominant. A normal matrix A 2 R
n�n is called a normal form of a

matrix B 2 R
n�n if there is a constant z 2 R and a 1-1 mapping ! of Pn onto itself,

such that

wðA,�Þ ¼ zþ wðB,!ð�ÞÞ

for every � 2 Pn.
Every n� n matrix B can be transformed in O(n3) steps to one of its normal forms by

adding constants to the rows and columns of B and using suitable row and/or column

permutations (see the Hungarian method [3] and [14]). Hence, there is an easily

identifiable 1-1 mapping between ap(A) and ap(B). Since swapping two rows or columns

changes the sign of all permutations, there is also such a 1-1 mapping either between

apþ(A) and apþ(B) and between ap�(A) and ap�(B) or between apþ(A) and ap�(B) and

between ap�(A) and apþ(B). Therefore, the Hungarian method solves AP and one of

OPAP and EPAP for any matrix in O(n3) steps. It also implies that when solving any of

the earlier mentioned problems for general matrices we may assume without loss

of generality that they are in a normal form. Since for a normal matrix id is an optimal

solution to both AP and EPAP, PAP for a matrix B reduces to OPAP for a normal

form of B. Yet, to the author’s knowledge no polynomial method is known for PAP in

general.
Note that a diagonally dominant matrix can be transformed to a normal form by

adding constants to the rows and/or columns and no permutations of the rows or

columns are needed. These constants can be found in a straightforward way, without

using the Hungarian method or other method for solving the AP [7]. In this case

apþ(A)¼ apþ(B) and ap�(A)¼ ap�(B) and since id 2 apþðAÞ, PAP reduces to OPAP.
A ¼ ðaijÞ 2 R

n�n is called Monge if

aij þ akl 	 ail þ akj

for every i, j, k, l, such that 1� i� k� n and 1� j� l� n.
It is well known [2] that every Monge matrix is diagonally dominant. It is easy to see

that adding constants to the rows and columns does not change the Monge property.

Hence, PAP for Monge matrices reduces to OPAP for matrices which are both Monge

and normal.
As usual, A ¼ ðaijÞ 2 R

n�n is called symmetric, if aij ¼ aji for every i, j 2 N. Every

diagonally dominant symmetric matrix has a symmetric normal form [5]. Hence, PAP

for diagonally dominant symmetric matrices reduces to OPAP for matrices which are

symmetric and normal.
Note that for any matrix a solution to PAP solves WPAP and that the positive

answer to WPAP solves PAP.
It is also easily seen that after transforming a matrix B to its normal form A, WPAP

reduces to the question: Is w(A,�)¼ 0 for some � 2 P�n ? The parity of a cyclic

permutation is odd, if and only if the cycle it represents contains an even number of

nodes. Hence, a necessary condition for the affirmative answer to WPAP (for a normal

matrix) is the existence of an even cycle in the digraph DA ¼ ðN, fði, jÞ; aij ¼ 0gÞ.

A note on the parity assignment problem 421
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Conversely, if there is an even cycle in DA then it can be extended (if necessary) by loops
to an odd permutation � of N satisfying w(A, �)¼ 0. Thus, we have [6]:

THEOREM 2 Let A be a normal matrix. Then

max
�2Pþn

wðA,�Þ ¼ max
�2P�n

wðA,�Þ

if and only if the digraph DA contains an even cycle.

The question whether a given digraph contains an even cycle is known as the even
cycle problem or, sometimes, as Pólya’s permanent problem. Its polynomial solvability
was unclear for some 30 years, until the late 1990’s when a polynomial method was
discovered [13,16].

2. PAP for special matrices

For A ¼ ðaijÞ 2 R
n�n we denote

ap �ðAÞ ¼ � � 2 Pn � fid g;wðA,�
�Þ ¼ max

�2Pn�fidg
wðA,�Þ

� �
:

Note that by id we understand the identity on an appropriate set. For instance, in the
next statement it is the identity on N� {k, l}. Also note that in the statement and
proof of the next theorem kþ 1 is meant mod n. In what follows, the symbol 
 will
denote the product (composition) of two permutations.

THEOREM 3 If A ¼ ðaijÞ 2 R
n�n is Monge and normal then there exists a permutation

� 2 ap �ðAÞ and k 2 N, such that

� ¼ ðk, kþ 1Þ 
 id:

Proof Let � 2 ap �ðAÞ, � ¼ �1 
 �2 
 � � � 
 �s where �1,�2, . . . ,�s are permutations of
subsets of N. Then there is a t 2 f1, . . . , sg, such that

wðA,�i Þ ¼ 0 for all i ¼ 1, . . . , s; i 6¼ t:

Hence, without loss of generality

�i ¼ ði Þ for all i ¼ 1, . . . , s; i 6¼ t:

Let �t ¼ ð j1, j2, . . . , jpÞ and suppose that p>2. For convenience of this discussion and
without loss of generality, suppose that j2 ¼ maxf j1, j2, . . . , jpg. Then

aj1j3 ¼ aj1j3 þ aj2j2 	 aj1j2 þ aj2j3 :

Hence, if �0t ¼ ð j1, j3, . . . , jpÞ then wð�0t,AÞ 	 wð�t,AÞ and thus, wð�0t,AÞ ¼ wð�t,AÞ,
yielding that �0 ¼ �0t 
 id is in ap�(A). By repeating this argument p� 2 times we find an
element of ap�(A) which is the product of a cycle of length 2 and id. Let us denote this
permutation again by �, so that � ¼ ðk, l Þ 
 id for some k, l 2 N. Let without loss of
generality k< l. If l¼ kþ 1 then the theorem statement follows. If l> kþ 1 then since A
is Monge, we have

ak,kþ1 þ akþ1,l 	 akl þ akþ1,kþ1 ¼ akl:

422 P. Butkovič
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Hence,

ak,kþ1 	 akl:

By a similar argument, it is easily proved that akþ1,k 	 alk. Therefore, ak,kþ1þ
akþ1,k 	 akl þ alk, which implies that the permutation ðk, kþ 1Þ 
 id 2 ap �ðAÞ. g

The permutation � in the statement of Theorem 3 is odd and therefore is a solution to
OPAP. This enables also to solve PAP and WPAP. Hence, all these problems can be
solved by checking

ak,kþ1 þ akþ1,k ¼ ak,k þ akþ1,kþ1

for all k¼ 1, . . . , n� 1. This requires O(n) operations.

THEOREM 4 If A ¼ ðaijÞ 2 R
n�n is symmetric and normal then there exists a permutation

� 2 ap �ðAÞ and k, l 2 N, such that � ¼ ðk, l Þ 
 id.

Proof Take any � 2 ap �ðAÞ and let maxfai,�ði Þ; i 2 Ng ¼ akl. Set � ¼ ðk, l Þ 
 id. Then
wðA,�Þ ¼ akl þ alk ¼ 2akl 	 wðA, �Þ. Thus, � 2 ap �ðAÞ and the theorem statement
follows. g

The permutation � in Theorem 4 is odd and therefore is a solution to OPAP. It can be
found by maximizing 2akl þ

P
i6¼k, l aii. Hence, using the pre-computation of all

ð
n
2Þ ¼ Oðn2Þ sums

P
i6¼k, l aii, the OPAP (and therefore also PAP and WPAP) for

symmetric, diagonally dominant matrices can be solved in O(n2) steps.

3. Parity bottleneck assignment problem

The bottleneck assignment problem (BAP) differs from the classical one by the
definition of the weight of a permutation:

wðA,�Þ ¼ min
i2N

ai,�ði Þ:

If w� is an optimal value to BAP, that is

w� ¼ max
�2Pn

wðA,�Þ ¼ max
�2Pn

min
i2N

ai,�ði Þ

then there is a permutation � 2 Pn such ai,�ði Þ 	 w for w¼w� but not for any w>w�.
Since

w � 2 faij; i, j 2 Ng,

there are no more than n2 possible values for w�. Therefore, BAP can be solved by
examining for all these values w whether

ai,�ði Þ 	 w ði ¼ 1, . . . , nÞ

holds for some � 2 Pn. This condition easily translates to the question of the existence
of a perfect matching in the bipartite graph Bw ¼ ðU [ V,EwÞ with U ¼ fu1, . . . , ung,
V ¼ fv1, . . . , vng, Ew ¼ fðui, vjÞ; aij 	 wg. There is an Oðn2:5=

ffiffiffiffiffiffiffiffiffiffi
log n

p
Þ algorithm for solving

the bipartite maximum matching problem and thus an Oðn4:5=
ffiffiffiffiffiffiffiffiffiffi
log n

p
Þ algorithm for

solving BAP immediately follows. The search of up to n2 candidates for the optimal
value can be simplified by first sorting all n2 entries in O(n log n) time and by using a

A note on the parity assignment problem 423
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binary search which then only needs O(log n2)¼O(log n) steps, yielding total complexity
improved to Oðn2:5

ffiffiffiffiffiffiffiffiffiffi
log n

p
Þ. In fact, a more sophisticated approach [15] leads to an

algorithm of complexity O(n2.5).
The definitions of OPAP, EPAP, PAP and WPAP are formally repeated for BAP,

yielding OPBAP, EPBAP, PBAP and WPBAP. For the same reasons as before we may
concentrate on OPBAP for normal matrices. It may be interesting to notice here that
unlike for the classical AP, in the case of BAP all these problems are polynomially
solvable, as now we only have to recognize the biggest value of w for which

ai,�ði Þ 	 w ði ¼ 1, . . . , nÞ

holds for some � 2 P�n . If c(n) is the computational complexity of a (polynomial)
algorithm for solving the even cycle problem then this can be done (using pre-ordering
of the entries and binary search) in O(c(n)log n) operations (we assume here that
c(n)	 n3).
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[5] Burkard, R.E. and Butkovič, P., 2003, Max algebra and the linear assignment problem. Mathematical
Programming Series B, 98, 415–429.

[6] Butkovic, P., 1995, Regularity of matrices in min-algebra and its time-complexity. Discrete Applied
Mathematics, 57, 121–132.

[7] Butkovic, P., 2003, Max-algebra: the linear algebra of combinatorics? Linear Algebra and its Applications,
367, 313–335.

[8] Cuninghame-Green, R.A., 1979, Minimax Algebra. Lecture Notes in Economics and Mathematical
Systems, Vol. 166 (Berlin: Springer).

[9] Cuninghame-Green, R.A., 1995, Minimax algebra and applications. In: Advances in Imaging and
Electron Physics, Vol. 90 (New York: Academic Press), pp. 1–121.
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