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Abstract

Let a ⊕ b = max(a, b) and a ⊗ b = a + b for a, b ∈ R :=R ∪ {−∞} and extend these operations to
matrices and vectors as in conventional linear algebra. The following eigenvector problem has been inten-

sively studied in the past: Given A ∈ R
n×n

find all x ∈ R
n
, x /= (−∞, . . . , −∞)T (eigenvectors) such that

A ⊗ x = λ ⊗ x for some λ ∈ R. The present paper deals with the permuted eigenvector problem: Given

A ∈ R
n×n

and x ∈ R
n
, is it possible to permute the components of x so that it becomes a (max-algebraic)

eigenvector of A? Using a polynomial transformation from BANDWIDTH we prove that the integer version
of this problem is NP-complete.
© 2007 Elsevier Inc. All rights reserved.
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1. Definitions, problem formulation and previous results

Let a ⊕ b = max(a, b) and a ⊗ b = a + b for a, b ∈ R :=R ∪ {−∞}. Obviously, −∞ plays
the role of a neutral element for ⊕. Throughout the paper we denote −∞ by ε. If α ∈ R then
the symbol α−1 stands for −α. If a1, . . . , an ∈ R then the sum a1 ⊕ · · · ⊕ an will be denoted by∑⊕

i=1,...,n ai .

By max-algebra we understand the analogue of linear algebra developed for the pair of oper-
ations (⊕, ⊗), extended to matrices and vectors. That is if A = (aij ), B = (bij ) and C = (cij )
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are matrices of compatible sizes with entries from R, we write C = A ⊕ B if cij = aij ⊕ bij

for all i, j and C = A ⊗ B if cij = ∑⊕
k aik ⊗ bkj = maxk(aik + bkj ) for all i, j . If α ∈ R then

α ⊗ A = (α ⊗ aij ). We assume everywhere in this paper that n � 1 is an integer. Pn will stand
for the set of permutations of the set {1, . . . , n}. If A is an n × n matrix then the iterated product
A ⊗ A ⊗ · · · ⊗ A in which the symbol A appears k-times will be denoted by Ak and �(A) =
A ⊕ A2 ⊕ · · · ⊕ An.

Max algebra has been studied by various authors [1,3,7–10,12–14,19,20]. The name “tropical
algebra” has also been used in recent years [16–18].

A square matrix D is called diagonal, notation D = diag(d1, . . . , dn), if its diagonal entries
are d1, . . . , dn ∈ R and off-diagonal entries are ε. We also denote I = diag(0, . . . , 0). Obviously,
A ⊗ I = I ⊗ A = A whenever A and I are of compatible sizes. Any matrix arising from I by
permuting its rows and/or columns is called a permutation matrix.

For π, σ ∈ Pn the symbol A(π, σ) stands for the matrix arising from A after applying π

[σ ] to the set of row [column] indices of A. Similarly we define v(π) for a vector v. Hence
A(π, σ) = Q ⊗ A ⊗ T and v(π) = Q ⊗ v for some permutation matrices Q and T .

One of basic problems in max-algebra is:
EIGENVECTOR [EV]: Given A ∈ R

n×n
find all x ∈ R

n
, x /= (ε, . . . , ε)T (eigenvectors) such

that A ⊗ x = λ ⊗ x for some λ ∈ R (eigenvalue).
EV has been studied since the 1960s and can now be efficiently solved [1,3,7,8,10,14]. It is

known that an n × n matrix may have up to n eigenvalues. The set of eigenvectors corresponding
to a particular eigenvalue is a max-algebraic linear subspace, whose generators can be found
using polynomial algorithms. For solution methods the reader is referred to [1,6,9,13,14], see
also [12,19].

One of the motivations for studying EV was the following analysis of the behaviour of produc-
tion systems [8,9]: Suppose that machines M1, . . . , Mn work interactively and in stages. At each
stage all machines simultaneously produce components necessary for the next stage of some or
all other machines. Let xi(r) denote the starting time of the rth stage on machine i(i = 1, . . . , n)

and let aij denote the duration of the operation at which machine Mj prepares the component
necessary for machine Mi at the (r + 1)th stage (i, j = 1, . . . , n). Then

xi(r + 1) = max(x1(r) + ai1, . . . , xn(r) + ain) (i = 1, . . . , n; r = 0, 1, . . .)

or, in max-algebraic notation

x(r + 1) = A ⊗ x(r) (r = 0, 1, . . .)

where A = (aij ) is called a production matrix. We say that the system is in a steady regime if it
moves forward in regular steps, that is if for some λ we have x(r + 1) = λ ⊗ x(r) for all r � 0, r

integer. Obviously, the system is in a steady regime if and only if x(0) is an eigenvector of A

corresponding to an eigenvalue λ. However, if a start-time vector x is given and happens not to be
an eigenvector of the production matrix we may wish to renumber (if possible) the individual jobs
(that is simultaneously permute the rows and columns of A) so that x becomes an eigenvector of
A. This may be quite important since in a production process starting times may be restricted to
particular instances and in general an eigenvector may or may not be “hit” by repeated applications

of A to a given starting vector. For instance when A =
(

1 2
2 1

)
is repeatedly applied to

(
1
0

)
then

the resulting sequence (“orbit”) is
(

2
3

)
,
(

5
4

)
,
(

6
7

)
,
(

9
8

)
, . . . which will obviously never reach an

eigenvector. In fact there is only a small class of matrices for which the orbit hits an eigenvector
for any starting vector (see [5] where such matrices are called robust).
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So we are concerned with the task of finding an assignment of the given (fixed) starting times
to individual machines so that the process is immediately in a steady regime or to decide that such
an assignment does not exist. This leads to the following modification of EV:

PERMUTED EIGENVECTOR [PEV]: Given A ∈ R
n×n

and x ∈ R
n
, is there a π ∈ Pn such

that x(π) is an eigenvector of A?
The main aim of the present paper is to prove the NP−completeness of the following integer

version of the PEV:
INTEGER PERMUTED EIGENVECTOR [IPEV]: Given A ∈ Zn×n and x ∈ Zn, is there a

π ∈ Pn such that x(π) is an eigenvector of A?
Since we do not need to consider the matrices with −∞ entries we will only summarize a

selection of known results on EV for finite matrices. The reader is referred to [1,3,10,14]] for
information about the general case.

An ordered pair D = (N, F ) is called a digraph if N is a non-empty set (of nodes) and
F ⊆ N × N (the set of arcs). A sequence π = (v1, . . . , vp) of nodes is called a path (in D)
if p = 1 or p > 1 and (vi, vi+1) ∈ F for all i = 1, . . . , p − 1. A path (v1, . . . , vp) is called a
cycle if v1 = vp and p > 1. If π = (i1, . . . , ip) is a path in D then the weight of π is w(π, A) =
ai1i2 + ai2i3 + · · · + aip−1ip if p > 1 and ε if p = 1. We will only consider digraphs with at least
one cycle. The symbol λ(A) stands for the maximum cycle mean of A, that is

λ(A) = max
σ

μ(σ, A),

where the maximisation is taken over all cycles in D and

μ(σ, A) = w(σ, A)

k

denotes the mean of the cycle σ = (i1, . . . , ik, i1). Note that λ(A) can be found in O(n3) time
using Karp’s algorithm [10,14,15].

In the rest of the paper N = {1, . . . , n}. The digraph associated with A = (aij ) ∈ Rn×n is

DA = (N, N × N).

We now present some results on EV for finite matrices. Here and elsewhere we denote the set
of all eigenvectors of A by V (A).

Theorem 1.1 (Cuninghame-Green [9]). Let A = (aij ) ∈ Rn×n and k be the number of columns
of �((λ(A))−1 ⊗ A) with zero diagonal entries. Then

1. λ(A) is the unique eigenvalue of A,

2. k > 0 and V (A) = {�0 ⊗ x; x ∈ Rk} where �0 is the n × k matrix consisting of the columns
of �((λ(A))−1 ⊗ A) with zero diagonal entries.

In this paper we follow terminology introduced in [9]. Being motivated by Theorem 1.1, the
columns of �((λ(A))−1 ⊗ A) with zero diagonal entries are called the fundamental eigenvectors
of A (FEV). Two vectors x, y ∈ Rn are called equivalent (x ∼ y) if x = α ⊗ y for some α ∈ R.

Corollary 1.1. V (A) = {�′
0 ⊗ x; x ∈ Rd} where d is the maximal number of non-equivalent

fundamental eigenvectors of A and �′
0 is any matrix consisting of d non-equivalent fundamental

eigenvectors of A.
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It is known that none of the FEVs can be expressed as a linear combination of other (non-
equivalent) FEVs [1,9]. The number d in Corollary 1.1 is called the dimension of the eigenspace
for A and will be denoted by d(A).

Remark 1.1. The PEV can easily be solved when d = 1 since V (A) is then the set of multiples
of a single FEV, say g. Then deciding for a given x ∈ Rn whether x(π) ∈ V (A) for some π ∈ Pn

reduces to the ordering of the components of x in the same way as in g and checking whether
x(π) is a multiple of g. This approach may help when solving the PEV for small values of d but
becomes combinatorially too involved when d increases and is practically unusable for non-trivial
values of d.

A is called definite if λ(A) = 0. It is easily seen that V (α ⊗ A) = V (A) and λ(α ⊗ A) = α ⊗
λ(A) for any α ∈ R. Hence (λ(A))−1 ⊗ A is definite for every A and V ((λ(A))−1 ⊗ A) = V (A).

Therefore with respect to solving the PEV we may assume without loss of generality that A is
definite.

We denote E(A) = {i ∈ N; ∃σ = (i = i1, . . . , ik, i1) : μ(σ, A) = λ(A)}. The elements of
E(A) are called eigen-nodes (of A), or critical nodes. A cycle σ is called critical if μ(σ, A) =
λ(A). The critical digraph of A is the digraph C(A) with the set of nodes {1, . . . , n}; the set of
arcs is the union of the sets of arcs of all critical cycles. It is well known that all cycles in a critical
digraph are critical [1].

Theorem 1.2 ([9]). Suppose that A ∈ Rn×n, �((λ(A))−1 ⊗ A) = (gij ) and let g1, . . . , gn be the
columns of �((λ(A))−1 ⊗ A). Then

• i ∈ E(A) if and only if gii = 0.

• If i, j ∈ E(A) then gi ∼ gj if and only if i and j belong to the same critical cycle of A.

Corollary 1.2. V (A) = {∑⊕
i∈E∗(A) xi ⊗ gi; xi ∈ R} where E∗(A) is any maximal set of indices

of non-equivalent FEVs of A and d(A) = |E∗(A)| is the number of non-trivial strongly connected
components of C(A).

Let us consider linear systems of the form

A ⊗ x = b

where A = (aij ) ∈ Rm×n and b ∈ Rm. Denote M = {1, . . . , m} and

S = {x ∈ Rn; A ⊗ x = b},
x̄j = − max

i
(aij − bi) for all j ∈ N,

x̄ = (x̄1, . . . , x̄n)
T ,

Mj = {k ∈ M; akj − bk = max
i

(aij − bi)} for all j ∈ N.

Theorem 1.3 ([3,19,20]). Let x ∈ Rn. Then x ∈ S if and only if

(a) x � x̄ and
(b)

⋃
j∈Nx

Mj = M

where Nx = {j ∈ N; xj = x̄j }.
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It follows immediately that A ⊗ x = b has no solution if x̄ is not a solution. Therefore x̄ is
called the principal solution [9]. More precisely we have

Corollary 1.3. The following three statements are equivalent:

(a) S /= ∅,

(b) x̄ ∈ S,

(c)
⋃

j∈N Mj = M.

Corollary 1.4. S = {x̄} if and only if

(i)
⋃

j∈N Mj = M and
(ii)

⋃
j∈N ′ Mj /= M for any N ′ ⊆ N, N ′ /= N.

Corollary 1.5. If m = n then S = {x̄} if and only if there is a π ∈ Pn such that Mπ(j) = {j} for
all j ∈ N. Equivalently ai,π(j) − bi < aj,π(j) − bj for all i, j ∈ N, i /= j.

A = (aij ) ∈ Rn×n is called strongly regular [SR] [3,9] if A ⊗ x = b has a unique solution for
at least one b ∈ Rn. If π ∈ Pn then w(A, π) denotes

∑
i∈N ai,π(i). The task of finding a π ∈ Pn

maximising w(A, π) is the classical assignment problem for A. We therefore denote

ap(A) = {σ ∈ Pn; w(A, σ) = max
π∈Pn

w(A, π)}.
The next theorem will be essential for our main result.

Theorem 1.4 ([3,4]). A = (aij ) ∈ Rn×n is strongly regular if and only if |ap(A)| = 1.

2. The proof of NP -completeness

If A ∈ Rn×n then the set {b ∈ Rn; A ⊗ x = b has a unique solution} is called the simple
image set (of the mapping x 
−→ A ⊗ x), notation sim(A). Hence “A is strongly regular” means
sim(A) /= ∅. A is called normalised if λ(A) = 0 and all diagonal entries of A are zero. (Note that
normalised matrices are called “definite” in [2] but in the present paper this word is used with a
different meaning.) We will prove that IPEV is NP -complete for the class of normalised, strongly
regular matrices and the NP -completeness for all integer matrices then immediately follows.

Recall that d(A) stands for the number of non-trivial strongly connected components of the
critical digraph of A. Obviously, d(A) = d(α ⊗ A) for any α ∈ R and so when looking for d(A)

we may restrict our attention to definite matrices.

Theorem 2.1. Let A ∈ Rn×n be definite. Then d(A) = n if and only if A is normalised and
strongly regular.

Proof. If A is normalised and strongly regular then all non-trivial cycles in DA have negative
weight and thus the n loops are the only critical cycles, implying d(A) = n.

If d(A) = n then there are n pairwise disjoint critical cycles in DA, thus the loops are the
only critical cycles. Hence all diagonal entries are equal and since A is definite their value is
zero. This means A is normalised. If A was not strongly regular than there would be a non-trivial
cycle of weight zero or more in DA which contradicts the fact that the loops are the only critical
cycles. �
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It has been known for some time that there is a strong link between the simple image set of a
strongly regular matrix and its eigenspace (note that cl(S) denotes here the topological closure of
the set S):

Theorem 2.2 ([2]). If A ∈ Rn×n is normalised and strongly regular then

V (A) = cl(sim(A)).

Corollary 2.1. If A ∈ Rn×n is normalised and strongly regular then

1. A ⊗ b = b for every b ∈ sim(A).

2. For every b ∈ V (A) there is a sequence {b(k)}∞k=0 ⊆ sim(A) such that b(k) −→ b.

Lemma 2.1. Let A = (aij ) ∈ Rn×n be normalised and strongly regular. Then b ∈ sim(A) if and
only if in the matrix A′ = (aij − bi) the (unique) column maximum in every column is attained
on the diagonal. Equivalently

aij − bi < −bj for every i, j ∈ N, i /= j.

Proof. By Corollary 1.5 there is a π ∈ Pn such that

ai,π(j) − bi < aj,π(j) − bj for all i, j ∈ N, i /= j.

This implies that π ∈ ap(A) thus π = id and the result follows. �

Corollary 2.2. Let A = (aij ) ∈ Rn×n be normalised and strongly regular and b ∈ Rn. Then b ∈
V (A) if and only if in the matrix A′ = (aij − bi) a column maximum in every column is attained
on the diagonal. Equivalently

aij − bi � −bj for every i, j ∈ N.

Proof. By Corollary 2.1 b ∈ V (A) if and only if there is a sequence {b(k)}∞k=0 ⊆ sim(A) such
that b(k) −→ b. By Lemma 2.1 this is equivalent to

aij − b
(k)
i < −b

(k)
j for every i, j ∈ N, i /= j and k = 0, 1, . . . .

The result now follows by taking k −→ ∞. �

Corollary 2.3. Let A = (aij ) ∈ Zn×n be normalised and strongly regular and b ∈ Zn. Then b ∈
V (A) if and only if in the matrix A′ = (aij − bi) a column maximum in every column is attained
on the diagonal. Equivalently

aij − bi � −bj for every i, j ∈ N.

Proof. Follows immediately from Corollary 2.2. �

Theorem 2.3. Let A = (aij ) ∈ Zn×n be normalised and strongly regular, b ∈ Zn and π ∈ Pn.

Then b(π) ∈ V (A) if and only if C = (cij ) = A(π, π) satisfies

cij � bi − bj f or every i, j ∈ N.
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Proof

A ⊗ b(π) = b(π)

is equivalent to

A ⊗ (Q ⊗ b) = Q ⊗ b

for some permutation matrix Q. This is equivalent to

(Q−1 ⊗ A ⊗ Q) ⊗ b = b.

Hence b ∈ V (C) for C = Q−1 ⊗ A ⊗ Q. Since Q−1 ⊗ A ⊗ Q = A(π, π) the rest now fol-
lows from Corollary 2.3. �

The following problem [BW] is known to be NP -complete ([11], Problem GT40 BAND-
WIDTH):

Problem 2.4. Given an undirected graph G = (N, E) and a positive integer K � n, is there a
π ∈ Pn such that |π(u) − π(v)| � K for all uv ∈ E?

In matrix terminology BW is:

Problem 2.5. Given an n × n symmetric 0 − 1 matrix M = (mij ) with zero diagonal, and a
positive integer K � n, is there a π ∈ Pn such that |π(i) − π(j)| � K whenever mij = 1?

Equivalently:

Problem 2.6. Given an n × n symmetric 0 − 1 matrix M = (mij ) with zero diagonal, and a
positive integer K � n, is there a π ∈ Pn such that |i − j | � K whenever mπ(i),π(j) = 1?

Theorem 2.7. IPEV is NP -complete for the class of normalised, strongly regular matrices (and
hence also for all integer matrices).

Proof. IPEV is in NP since π (certificate) can be described polynomially and

A ⊗ b(π) = b(π)

can be checked in a polynomial number of steps (O(n2)).
We now show that Problem 2.6 polynomially transforms to IPEV. Let M = (mij ) and a positive

integer K � n be an instance of Problem 2.6. Let A = (aij ) ∈ Zn×n be defined as follows:

aij = −K if mij = 1

aij = −n if mij = 0, i /= j

aij = 0 if i = j

Obviously A is a normalised, strongly regular matrix. Let b = (1, . . . , n)T . Then by Theorem
2.3 the answer to IPEV for A and b is “yes” if and only if there is a π ∈ Pn such that

aπ(i),π(j) � i − j for all i, j ∈ N.

This is equivalent to

−K � i − j if mπ(i)π(j) = 1,
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that is by symmetry of M

K � |i − j | if mπ(i)π(j) = 1,

which is equivalent to the answer “yes” for Problem 2.6. �

Theorem 2.7 enables us to easily derive NP -completeness of the permuted version of another
basic problem. Let us consider the following:

LINEAR SYSTEM [LS]: Given A = (aij ) ∈ Rm×n and b ∈ Rm, is there an x ∈ Rn such that

A ⊗ x = b?

PERMUTED LINEAR SYSTEM [PLS]: Given A = (aij ) ∈ Rm×n and b ∈ Rm, is there a
π ∈ Pm and an x ∈ Rn such that

A ⊗ x = b(π)?

INTEGER PERMUTED LINEAR SYSTEM [IPLS]: Given A = (aij ) ∈ Zm×n and b ∈ Zm,
is there a π ∈ Pm and an x ∈ Zn such that

A ⊗ x = b(π)?

Note that if A and b are integer then the principal solution is also integer. Therefore in the
formulation of the IPLS it does not matter whether x ∈ Zn or x ∈ Rn.

Theorem 2.8. IPLS is NP -complete.

Proof. IPLS is clearly in NP. Now it suffices to polynomially transform IPEV to IPLS. Let
A ∈ Zn×n and z ∈ Zn be an instance of the IPEV. We may assume without loss of generality that
A is definite. By Theorem 1.1 z(π) ∈ V (A) for some π ∈ Pn if and only if

�0 ⊗ x = z(π) (1)

has a solution x ∈ Rk where �0 is the matrix consisting of the columns of �(A) with zero diagonal
entries. Since �(A) is integer, x may be assumed to be integer too and so (1) is an instance of
IPLS. It remains to say that �(A) and therefore also �0 can be found in O(n3) time using the
Floyd–Warshall algorithm. �

3. Conclusions

We have studied the permuted max-algebraic eigenvector problem and we have proved that
for a class of integer matrices this problem is NP -complete by a polynomial transformation from
BANDWIDTH. We deduce that this problem is NP -complete for all integer matrices. As a by-
product a similar result has been proved for the permuted linear system problem in max-algebra.
These results stimulate to look for heuristic methods for solving PEV and PLS. In the cases when
the answer to the above mentioned permutation problems is negative a polynomial method may
be useful for finding a permutation that is best with respect to a specified criterion.
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