Permuted max-algebraic eigenvector problem is NP-complete

P. Butkovič
School of Mathematics
University of Birmingham
Edgbaston
Birmingham B15 2TT
United Kingdom
p.butkovic@bham.ac.uk
http://web.mat.bham.ac.uk/P.Butkovic/

Abstract

Let $a \oplus b = \max(a, b)$ and $a \otimes b = a + b$ for $a, b \in \mathbb{R} := \mathbb{R} \cup \{-\infty\}$ and extend these operations to matrices and vectors as in conventional linear algebra. The following eigenvector problem has been intensively studied in the past: Given $A \in \mathbb{R}^{n \times n}$ find all $x \in \mathbb{R}^n, x \neq (-\infty, ..., -\infty)^T$ (eigenvectors) such that $A \otimes x = \lambda \otimes x$ for some $\lambda \in \mathbb{R}$. The present paper deals with the permuted eigenvector problem: Given $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$, is it possible to permute the components of x so that it becomes a (max-algebraic) eigenvector of A? We prove that this problem is NP-complete using a polynomial transformation from BANDWIDTH.

AMS Classification [2000]: Primary 68Q25, 15A15; Secondary 65F15, 05C38, 15A18.

Keywords: Eigenvector, permutation, NP-complete.

1 Definitions, problem formulation and previous results

Let $a \oplus b = \max(a, b)$ and $a \otimes b = a + b$ for $a, b \in \mathbb{R} := \mathbb{R} \cup \{-\infty\}$. Obviously, $-\infty$ plays the role of a neutral element for \oplus. Throughout the paper we denote $-\infty$ by ε. If $\alpha \in \mathbb{R}$ then the symbol α^{-1} stands for $-\alpha$.

By max-algebra we understand the analogue of linear algebra developed for the pair of operations (\oplus, \otimes), extended to matrices and vectors. That is if $A = (a_{ij}), B = (b_{ij})$ and $C = (c_{ij})$ are matrices of compatible sizes with entries from \mathbb{R}, we write $C = A \oplus B$ if $c_{ij} = a_{ij} \oplus b_{ij}$ for all i, j and $C = A \otimes B$ if
c_{ij} = \sum_k a_{ik} \otimes b_{kj} = \max_k (a_{ik} + b_{kj}) \text{ for all } i, j. \text{ If } \alpha \in \mathbb{R} \text{ then } \alpha \otimes A = (\alpha \otimes a_{ij}).\
We assume everywhere in this paper that } n \geq 1 \text{ is an integer. } P_n \text{ will stand for the set of permutations of the set } \{1, \ldots, n\}. \text{ If } A \text{ is an } n \times n \text{ matrix then the iterated product } A \otimes A \otimes \ldots \otimes A \text{ in which the symbol } A \text{ appears } k\text{-times will be denoted by } A^k \text{ and } \Gamma(A) = A \oplus A^2 \oplus \ldots \oplus A^n.\
Max algebra has been studied by various authors \cite{7,8,9,19,18,6,12,11,1,13,3}. The name "tropical algebra" has also been used in recent years \cite{15,16,17}.

A square matrix } D \text{ is called } \textit{diagonal}, notation } D = \text{diag}(d_1, \ldots, d_n), \text{ if its diagonal entries are } d_1, \ldots, d_n \in \mathbb{R} \text{ and off-diagonal entries are } \varepsilon. \text{ We also denote } I = \text{diag}(0, \ldots, 0). \text{ Obviously, } A \otimes I = I \otimes A = A \text{ whenever } A \text{ and } I \text{ are of compatible sizes. Any matrix arising from a diagonal matrix } [\text{matrix } I] \text{ by permuting its rows and/or columns is called a } \textit{generalised permutation matrix} [\text{permutation matrix}].

For } \pi, \sigma \in P_n \text{ the symbol } A(\pi, \sigma) \text{ stands for the matrix arising from } A \text{ after applying } \pi \text{ [\sigma] to the set of row [column] indices of } A. \text{ Similarly } v(\pi) \text{ for a vector } v. \text{ Hence } A(\pi, \sigma) = Q \otimes A \otimes T \text{ and } v(\pi) = Q \otimes v \text{ for some permutation matrices } Q \text{ and } T.

One of basic problems in max-algebra is:

\textbf{EIGENVECTOR [EV]:} Given } A \in \mathbb{R}^{n \times n} \text{ find all } x \in \mathbb{R}^n, x \neq (\varepsilon, \ldots, \varepsilon)^T \text{ (eigenvectors) such that } A \otimes x = \lambda \otimes x \text{ for some } \lambda \in \mathbb{R} \text{ (eigenvalue).}

EV has been studied since the 1960’s and can now be efficiently solved \cite{7,9,6,1,13,3}. It is known that an } n \times n \text{ matrix may have up to } n \text{ eigenvalues. The set of eigenvectors corresponding to a particular eigenvalue is a max-algebraic linear subspace, whose generators can be found using polynomial algorithms. For solution methods the reader is referred to \cite{5,13,1,8} and \cite{12}, see also \cite{19} and \cite{11}.

One of the motivations for studying EV was the following analysis of the steady-state behaviour of production systems: Suppose that machines } M_1, \ldots, M_n \text{ work interactively and in stages. In each stage all machines simultaneously produce components necessary for the next stage of some or all other machines. Let } x_i(r) \text{ denote the starting time of the } r^{th} \text{ stage on machine } i \text{ (} i = 1, \ldots, n \text{) and let } a_{ij} \text{ denote the duration of the operation at which machine } M_j \text{ prepares the component necessary for machine } M_i \text{ in the } (r+1)^{st} \text{ stage } (i, j = 1, \ldots, n). \text{ Then}

\[x_i(r + 1) = \max(x_1(r) + a_{i1}, \ldots, x_n(r) + a_{in}) \] (i = 1, \ldots, n; r = 0, 1, \ldots)

or, in max-algebraic notation

\[x(r + 1) = A \otimes x(r) \] (r = 0, 1, \ldots)

where } A = (a_{ij}) \text{ is called a } \textit{production matrix}. \text{ We say that the system is in a } \textit{steady state} \text{ if it moves forward in regular steps, that is if for some } \lambda \text{ we have } x(r + 1) = \lambda \otimes x(r) \text{ for all } r \geq 0, \text{ r integer. Obviously, the system is in a steady state if and only if } x(0) \text{ is an eigenvector of } A \text{ corresponding to an eigenvalue } \lambda.
However, if a start-time vector \(x \) is given and happens not to be an eigenvector of the production matrix we may wish to renumber (if possible) the individual jobs (that is simultaneously permute the rows and columns of \(A \)) so that \(x \) becomes an eigenvector of \(A \). Equivalently the task is to find an assignment of the given starting times to individual machines so that the process is immediately in a steady-state or to decide that such an assignment does not exist. This leads to the following modification of EV:

PERMUTED EIGENVECTOR [PEV]: Given \(A \in \mathbb{R}^{n \times n} \) and \(x \in \mathbb{R}^n \), is there a \(\pi \in P_n \) such that \(x(\pi) \) is an eigenvector of \(A \)?

The main focus of the present paper is to prove the \(NP \)-completeness of the following integer version of the PEV:

INTEGER PERMUTED EIGENVECTOR [IPEV]: Given \(A \in \mathbb{Z}^{n \times n} \) and \(x \in \mathbb{Z}^n \), is there a \(\pi \in P_n \) such that \(x(\pi) \) is an eigenvector of \(A \)?

Since we do not need to consider the matrices with \(-\infty\) entries we will only summarize a selection of known results on EV for finite matrices. The reader is referred to [9], [1], [13], [3] for information about the general case.

An ordered pair \(D = (N, F) \) is called a digraph if \(N \) is a non-empty set (of nodes) and \(F \subseteq N \times N \) (the set of arcs). A sequence \(\pi = (v_1, \ldots, v_p) \) of nodes is called a path (in \(D \)) if \(p = 1 \) or \(p > 1 \) and \((v_i, v_{i+1}) \in F \) for all \(i = 1, \ldots, p-1 \). A path \((v_1, \ldots, v_p) \) is called a cycle if \(v_1 = v_p \) and \(p > 1 \). If \(\pi = (i_1, \ldots, i_p) \) is a path in \(D \) then the weight of \(\pi \) is \(w(\pi, A) = a_{i_1i_2} + a_{i_2i_3} + \ldots + a_{i_{p-1}i_p} \) if \(p > 1 \) and \(\varepsilon \) if \(p = 1 \). We will only consider digraphs with at least one cycle. The symbol \(\lambda(A) \) stands for the maximum cycle mean of \(A \), that is

\[\lambda(A) = \max_\sigma \mu(\sigma, A), \]

where the maximisation is taken over all cycles in \(D \) and

\[\mu(\sigma, A) = \frac{w(\sigma, A)}{k} \]

denotes the mean of the cycle \(\sigma = (i_1, \ldots, i_k, i_1) \). Note that \(\lambda(A) \) can be found in \(O(n^3) \) time using Karp’s algorithm [14], [9], [13].

In the rest of the paper \(N = \{1, \ldots, n\} \). The digraph associated with \(A = (a_{ij}) \in \mathbb{R}^{n \times n} \) is

\[D_A = (N, N \times N). \]

We now present some results on EV for finite matrices. Here and elsewhere we denote the set of all eigenvectors of \(A \) by \(V(A) \).

Theorem 1.1 (Cuninghame-Green [8]) Let \(A = (a_{ij}) \in \mathbb{R}^{n \times n} \) and \(k \) be the number of columns of \(\Gamma((\lambda(A))^{-1} \otimes A) \) with zero diagonal entries. Then

1. \(\lambda(A) \) is the unique eigenvalue of \(A \),

2. \(k > 0 \) and \(V(A) = \{ \Gamma_0 \otimes x; x \in \mathbb{R}^k \} \) where \(\Gamma_0 \) is the \(n \times k \) matrix consisting of the columns of \(\Gamma((\lambda(A))^{-1} \otimes A) \) with zero diagonal entries.
In this paper we follow terminology introduced in [8]. Being motivated by Theorem 1.1, the columns of $\Gamma((\lambda(A))^{-1} \otimes A)$ with zero diagonal entries are called the fundamental eigenvectors of A (FEV). Two vectors $x, y \in \mathbb{R}^n$ are called equivalent ($x \sim y$) if $x = \alpha \otimes y$ for some $\alpha \in \mathbb{R}$.

Corollary 1.1 \(V(A) = \{\Gamma'_0 \otimes x: x \in \mathbb{R}^d\} \) where d is the maximal number of non-equivalent fundamental eigenvectors of A and Γ'_0 is any matrix consisting of d non-equivalent fundamental eigenvectors of A.

It is known that none of the FEVs can be expressed as a linear combination of other (non-equivalent) FEVs [1], [8]. The number d in Corollary 1.1 is called the dimension of the eigenspace for A and will be denoted by $d(A)$.

Remark 1.1 The PEV can easily be solved when $d = 1$ since $V(A)$ is then the set of multiples of a single FEV, say g. Then deciding for a given $x \in \mathbb{R}^n$ whether $x(\pi) \in V(A)$ for some $\pi \in P_n$ reduces to the ordering of the components of x in the same way as in g and checking whether $x(\pi)$ is a multiple of g. This approach may help when solving the PEV for small values of d but becomes combinatorially too involved when d increases and is practically unusable for non-trivial values of d.

A is called definite if $\lambda(A) = 0$. It is easily seen that $V(\alpha \otimes A) = V(A)$ and $\lambda(\alpha \otimes A) = \alpha \otimes \lambda(A)$ for any $\alpha \in \mathbb{R}$. Hence $(\lambda(A))^{-1} \otimes A$ is definite for every A and $V((\lambda(A))^{-1} \otimes A) = V(A)$. Therefore with respect to solving the PEV we may assume without loss of generality that A is definite.

We denote $E(A) = \{i \in N; \exists \sigma = (i = i_1, \ldots, i_k, i_1) : \mu(\sigma, A) = \lambda(A)\}$. The elements of $E(A)$ are called eigen-nodes (of A), or critical nodes. A cycle σ is called critical if $\mu(\sigma, A) = \lambda(A)$. The critical digraph of A is the digraph $C(A)$ with the set of nodes $\{1, \ldots, n\}$; the set of arcs is the union of the sets of arcs of all critical cycles. It is well known that all cycles in a critical digraph are critical [1].

Theorem 1.2 [8] Suppose that $A \in \mathbb{R}^{n \times n}$, $\Gamma((\lambda(A))^{-1} \otimes A) = (g_{ij})$ and g_1, \ldots, g_n be the columns of $\Gamma((\lambda(A))^{-1} \otimes A)$. Then

- $i \in E(A)$ if and only if $g_{ii} = 0$.
- If $i, j \in E(A)$ then $g_i \sim g_j$ if and only if i and j belong to the same critical cycle of A.

Corollary 1.2

\[V(A) = \{ \sum_{i \in E^*(A)} x_i \otimes g_i; x_i \in \mathbb{R} \} \]

where $E^*(A)$ is any maximal set of indices of non-equivalent FEVs of A and $d(A) = |E^*(A)|$ is the number of non-trivial strongly connected components of $C(A)$. 4
Let us consider linear systems of the form

$$A \otimes x = b$$

where $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Denote $M = \{1, \ldots, m\}$ and $S = \{x \in \mathbb{R}^n; A \otimes x = b\}$,

$$\bar{x}_j = -\max_i (a_{ij} - b_i) \text{ for all } j \in N,$$

$$\bar{x} = (\bar{x}_1, \ldots, \bar{x}_n)^T,$$

$$M_j = \{k \in M; a_{kj} - b_k = \max_i (a_{ij} - b_i)\} \text{ for all } j \in N.$$

Theorem 1.3 [18], [19], [3] Let $x \in \mathbb{R}^n$. Then $x \in S$ if and only if

(a) $x \leq \bar{x}$ and

(b) \(\bigcup_{j \in N_x} M_j = M\)

where $N_x = \{j \in N; x_j = \bar{x}_j\}$.

It follows immediately that $A \otimes x = b$ has no solution if \bar{x} is not a solution. Therefore \bar{x} is called the principal solution [8]. More precisely we have

Corollary 1.3 The following three statements are equivalent:

(a) $S \neq \emptyset$,

(b) $\bar{x} \in S$,

(c) $\bigcup_{j \in N} M_j = M$.

Corollary 1.4 $S = \{\bar{x}\}$ if and only if

(i) $\bigcup_{j \in N} M_j = M$ and

(ii) $\bigcup_{j \in N} M_j \neq M$ for any $N' \subseteq N, N' \neq N$.

Corollary 1.5 If $m = n$ then $S = \{\bar{x}\}$ if and only if there is a $\pi \in P_n$ such that $M_{\pi(j)} = \{j\}$ for all $j \in N$. Equivalently $a_{i, \pi(j)} - b_i < a_{j, \pi(j)} - b_j$ for all $i, j \in N, i \neq j$.

$A = (a_{ij}) \in \mathbb{R}^{n \times n}$ is called strongly regular [SR] [8], [3] if $A \otimes x = b$ has a unique solution for at least one $b \in \mathbb{R}^n$. If $\pi \in P_n$ then $w(A, \pi)$ denotes \(\sum_{i \in N} a_{i, \pi(i)}\) and

$$\text{maper}(A) = \max_{\pi \in P_n} w(A, \pi).$$

We also denote

$$\text{ap}(A) = \{\pi \in P_n; w(A, \pi) = \text{maper}(A)\}.$$

The following lemma is well known and easily proved:
Lemma 1.1 If \(Q, S \in \mathbb{R}^{n \times n} \) are generalised permutation matrices and \(A \in \mathbb{R}^{n \times n} \) then
\[
|ap(A)| = |ap(Q \otimes A \otimes S)|
\]

Next theorem will be essential for our main result.

Theorem 1.4 [3], [4] \(A = (a_{ij}) \in \mathbb{R}^{n \times n} \) is strongly regular if and only if
\[
|ap(A)| = 1
\]

2 The proof of \(NP \)-completeness

If \(A \in \mathbb{R}^{n \times n} \) then the set \(\{b \in \mathbb{R}^n; A \otimes x = b \text{ has a unique solution}\} \) is called the simple image set (of the mapping \(x \mapsto A \otimes x \)), notation \(\text{sim}(A) \). Hence "\(A \) is strongly regular" means \(\text{sim}(A) \neq 0 \). \(A \) is called normalised if \(\lambda(A) = 0 \) and all diagonal entries of \(A \) are zero. (Note that normalised matrices are called "definite" in [2] and this word is used in the present paper with a different meaning.)

Obviously, \(d(A) = d(\alpha \otimes A) \) for any \(\alpha \in \mathbb{R} \) and so when looking for \(d(A) \) we may restrict our attention to definite matrices.

Theorem 2.1 Let \(A \in \mathbb{R}^{n \times n} \) be definite. Then \(d(A) = n \) if and only if \(A \) is normalised and strongly regular.

Proof. If \(A \) is normalised and strongly regular then all non-trivial cycles in \(D_A \) have negative weight and thus the \(n \) loops are the only critical cycles, implying \(d(A) = n \).

If \(d(A) = n \) then there are \(n \) pairwise disjoint critical cycles in \(D_A \), thus the loops are the only critical cycles. Hence all diagonal entries are equal and since \(A \) is definite their value is zero. This means \(A \) is normalised. If \(A \) was not strongly regular than there would be a non-trivial cycle of weight zero or more in \(D_A \) which contradicts the fact that the loops are the only critical cycles. ■

It has been known for some time that there is a strong link between the simple image set of a strongly regular matrix and its eigenspace (note that \(cl(S) \) denotes here the topological closure of the set \(S \)):

Theorem 2.2 [2] If \(A \in \mathbb{R}^{n \times n} \) is normalised and strongly regular then
\[
V(A) = cl(\text{sim}(A)).
\]

Corollary 2.1 If \(A \in \mathbb{R}^{n \times n} \) is normalised and strongly regular then

1. \(A \otimes b = b \) for every \(b \in \text{sim}(A) \).
2. For every \(b \in V(A) \) there is a sequence \(\{b^{(k)}\}_{k=0}^{\infty} \subseteq \text{sim}(A) \) such that
\[
b^{(k)} \longrightarrow b.
\]
Lemma 2.1 Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be normalised and strongly regular. Then $b \in \text{sim}(A)$ if and only if in the matrix $A' = (a_{ij} - b_i)$ the (unique) column maximum in every column is attained on the diagonal. Equivalently

$$a_{ij} - b_i < -b_j \text{ for every } i, j \in N, i \neq j.$$

Proof. By Corollary 1.5 there is a $\pi \in P_n$ such that

$$a_{i,\pi(j)} - b_i < a_{j,\pi(j)} - b_j \text{ for all } i, j \in N, i \neq j.$$

This implies that $b \in \text{ap}(A)$ thus $\pi = id$ and the result follows.

Corollary 2.2 Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be normalised and strongly regular and $b \in \mathbb{R}^n$. Then $b \in V(A)$ if and only if in the matrix $A' = (a_{ij} - b_i)$ a column maximum in every column is attained on the diagonal. Equivalently

$$a_{ij} - b_i \leq -b_j \text{ for every } i, j \in N.$$

Proof. By Corollary 2.1 $b \in V(A)$ if and only if there is a sequence $(b^{(k)})_{k=0}^\infty \subseteq \text{sim}(A)$ such that $b^{(k)} \to b$. By Lemma 2.1 this is equivalent to

$$a_{ij} - b^{(k)}_i < -b^{(k)}_j \text{ for every } i, j \in N, i \neq j \text{ and } k = 0, 1, \ldots.$$

The result now follows by taking $k \to \infty$.

Corollary 2.3 Let $A = (a_{ij}) \in \mathbb{Z}^{n \times n}$ be normalised and strongly regular and $b \in \mathbb{Z}^n$. Then $b \in V(A)$ if and only if in the matrix $A' = (a_{ij} - b_i)$ a column maximum in every column is attained on the diagonal. Equivalently

$$a_{ij} - b_i \leq -b_j \text{ for every } i, j \in N.$$

Proof. Follows immediately from Corollary 2.2.

Theorem 2.3 Let $A = (a_{ij}) \in \mathbb{Z}^{n \times n}$ be normalised, strongly regular, $b \in \mathbb{Z}^n$ and $\pi \in P_n$. Then $b(\pi) \in V(A)$ if and only if $C = (c_{ij}) = A(\pi, \pi)$ satisfies

$$c_{ij} \leq b_i - b_j \text{ for every } i, j \in N.$$

Proof.

$$A \otimes b(\pi) = b(\pi)$$

is equivalent to

$$A \otimes (Q \otimes b) = Q \otimes b$$

for some permutation matrix Q. This is equivalent to

$$(Q^{-1} \otimes A \otimes Q) \otimes b = b.$$

Hence $b \in V(C)$ for $C = Q^{-1} \otimes A \otimes Q$. Since $Q^{-1} \otimes A \otimes Q = A(\pi, \pi)$ the rest now follows from Corollary 2.3.

The following problem [BW] is known to be NP-complete ([10], Problem GT40 BANDWIDTH):
Problem 2.4 Given an undirected graph $G = (N, E)$ and a positive integer $K \leq n$, is there a $\pi \in P_n$ such that $|\pi(u) - \pi(v)| \leq K$ for all $uv \in E$?

In matrix terminology BW is:

Problem 2.5 Given an $n \times n$ symmetric $0-1$ matrix $M = (m_{ij})$ with zero diagonal, and a positive integer $K \leq n$, is there a $\pi \in P_n$ such that $|\pi(i) - \pi(j)| \leq K$ whenever $m_{ij} = 1$?

Equivalently:

Problem 2.6 Given an $n \times n$ symmetric $0-1$ matrix $M = (m_{ij})$ with zero diagonal, and a positive integer $K \leq n$, is there a $\pi \in P_n$ such that $|i - j| \leq K$ whenever $m_{\pi(i),\pi(j)} = 1$?

Theorem 2.7 IPEV is NP-complete for normalised, strongly regular matrices.

Proof. IPEV is in NP since π (certificate) can be described polynomially and

$$A \otimes b(\pi) = b(\pi)$$

can be checked in a polynomial number of steps ($O(n^2)$).

We now show that Problem 2.6 polynomially transforms to IPEV. Let $M = (m_{ij})$ and a positive integer $K \leq n$ be an instance of Problem 2.6. Let $A = (a_{ij})$ be defined as follows:

$$a_{ij} = -K \text{ if } m_{ij} = 1$$
$$a_{ij} = -n \text{ if } m_{ij} = 0, i \neq j$$
$$a_{ij} = 0 \text{ if } i = j$$

Obviously A is a normalised, strongly regular matrix. Let $b = (1, \ldots, n)^T$. Then by Theorem 2.3 the answer to IPEV for A and b is "yes" if and only if there is a $\pi \in P_n$ such that

$$a_{\pi(i),\pi(j)} \leq i - j \text{ for all } i, j \in N.$$

This is equivalent to

$$-K \leq i - j \text{ if } m_{\pi(i),\pi(j)} = 1,$$

that is by symmetry of M

$$K \geq |i - j| \text{ if } m_{\pi(i),\pi(j)} = 1,$$

which is equivalent to the answer "yes" for Problem 2.6.

Theorem 2.7 enables us to easily derive NP-completeness of the permuted version of another basic problem. Let us consider the following:

LINEAR SYSTEM [LS]: Given $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, is there an $x \in \mathbb{R}^{n}$ such that

$$A \otimes x = b?$$
PERMUTED LINEAR SYSTEM [PLS]: Given $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, is there a $\pi \in P_m$ and an $x \in \mathbb{R}^n$ such that

$$A \otimes x = b(\pi)?$$

INTEGER PERMUTED LINEAR SYSTEM [IPLS]: Given $A = (a_{ij}) \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$, is there a $\pi \in P_m$ and an $x \in \mathbb{Z}^n$ such that

$$A \otimes x = b(\pi)?$$

Note that if A and b are integer then the principal solution is also integer. Therefore in the formulation of the IPLS it does not matter whether $x \in \mathbb{Z}^n$ or $x \in \mathbb{R}^n$.

Theorem 2.8 IPLS is NP-complete.

Proof. IPLS is clearly in NP. Now it suffices to polynomially transform IPEV to IPLS. Let $A \in \mathbb{Z}^{n \times n}$ and $z \in \mathbb{Z}^n$ be an instance of the IPEV. We may assume without loss of generality that A is definite. By Theorem 1.1 $z(\pi) \in V(A)$ for some $\pi \in P_n$ if and only if

$$\Gamma_0 \otimes x = z(\pi) \quad (1)$$

has a solution $x \in \mathbb{R}^k$ where Γ_0 is the matrix consisting of the columns of $\Gamma(A)$ with zero diagonal entries. Since $\Gamma(A)$ is integer, x may be assumed to be integer too and so (1) is an instance of IPLS. It remains to say that $\Gamma(A)$ and therefore also Γ_0 can be found in $O(n^3)$ time using the Floyd-Warshall algorithm. \blacksquare

References

