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Abstract

Let A = (aij ) ∈ R
n×n

, N = {1, . . . , n} and DA be the digraph

(N, {(i, j); aij > −∞}).
The matrix A is called irreducible if DA is strongly connected, and strongly irreducible if every max-
algebraic power of A is irreducible. A is called robust if for every x with at least one finite component,
A(k) ⊗ x is an eigenvector of A for some natural number k. We study the eigenvalue–eigenvector problem
for powers of irreducible matrices. This enables us to characterise robust irreducible matrices. In particular,
robust strongly irreducible matrices are described in terms of eigenspaces of matrix powers.
© 2006 Elsevier Inc. All rights reserved.
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1. Max-algebra basics

Max-algebra is an analogue of classical linear algebra, developed in the 1960s for the study
of certain industrial production, data-processing and related systems [4,11]. It begins by defining
a ⊕ b = max(a, b) and a ⊗ b = a + b for a, b ∈ R := R ∪ {−∞}. The operations ⊕, ⊗ are
then extended to matrices and vectors exactly as in linear algebra. That is if A = (aij ), B =
(bij ) and C = (cij ) are matrices of compatible sizes with entries from R, we write C = A ⊕ B
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if cij = aij ⊕ bij for all i, j and C = A ⊗ B if cij = ∑⊕
k aik ⊗ bkj = maxk(aik + bkj ) for all

i, j . If α ∈ R then α ⊗ A = (α ⊗ aij ). Here and elsewhere the symbol
∑⊕ indicates as usual a

repeated use of the operator ⊕.
Obviously, −∞ plays the role of a neutral element for ⊕. Throughout the paper we denote

−∞ by ε and for convenience we also denote by the same symbol any vector or matrix all of
whose entries are −∞.

The iterated product a ⊗ a ⊗ · · · ⊗ a in which the element a is used k times will be denoted
by a(k). Clearly a(k) = ka. The symbol a(−1) or just a−1 will denote −a for a ∈ R.

Similarly, if A is a square matrix then the iterated product A ⊗ A ⊗ · · · ⊗ A in which the
symbol A appears k times will be denoted by A(k). We also denote �(A) = A ⊕ A(2) ⊕ · · ·
whenever this terminates finitely.

A square matrix D is called diagonal, notation D = diag(d1, . . . , dn), if its diagonal entries
are d1, . . . , dn and off-diagonal entries are ε. We also define I = diag(0, . . . , 0). Obviously,
A ⊗ I = I ⊗ A = A whenever A and I are of compatible sizes. By definition A(0) = I for any
square matrix A. A matrix arising from I by permuting the rows or columns is called a permutation
matrix. If A is a square matrix and A ⊗ B = I = B ⊗ A for some matrix B then B is called the
inverse of A and denoted by A−1. Every matrix has at most one inverse. If P is a permutation
matrix then P −1 exists and is again a permutation matrix.

An ordered pair D = (N, F ) is called a digraph if N is a non-empty set (of nodes) and
F ⊆ N × N (the set of arcs). A sequence π = (v1, . . . , vp) of nodes is called a path (in D)
if p = 1 or p > 1 and (vi, vi+1) ∈ F for all i = 1, . . . , p − 1. The number p − 1 is called the
length of π . The node v1 is called the starting node and vp the endnote of π , respectively. If p > 1
then the arcs (vi, vi+1) (i = 1, . . . , p − 1) are said to belong to the path π . Note that a path may
consist of a single node. If there is a path in D with starting node u and endnode v then we say
that v is reachable from u, notation u → v. Thus u → u for any u ∈ N . As usual a digraph D

is called strongly connected if u → v and v → u for any nodes u, v ∈ N . A path (v1, . . . , vp) is
called a cycle if v1 = vp and p > 1 and it is called an elementary cycle if, moreover, vi /= vj for
i, j = 1, . . . , p − 1, i /= j .

In the rest of the paper N = {1, . . . , n}. The digraph associated with A = (aij ) ∈ R
n×n

is

DA = (N, {(i, j); aij > ε}).
The matrix A is called irreducible if DA is strongly connected, reducible otherwise. Thus, every
1 × 1 matrix is irreducible.

Notice that an irreducible matrix of order 2 or more has no ε columns and thus we have:

Lemma 1.1. If A ∈ R
n×n

(n � 2) is irreducible and x ∈ R
n − {ε} then also A ⊗ x ∈ R

n − {ε}.

The max-algebraic eigenvalue–eigenvector problem (briefly eigenproblem) is the following:
Given A ∈ R

n×n
, find λ ∈ R, x ∈ R

n
, x /= ε such that A ⊗ x = λ ⊗ x.

This problem has been studied since the 1960s [4]. One of the motivations was the following
analysis of the steady-state behaviour of production systems: Suppose that machines M1, . . . , Mn

work interactively and in repetitive stages. At each stage all machines simultaneously produce
components necessary for the next stage of some or all other machines. Let xi(r) denote the
starting time of the rth stage on machine i (i = 1, . . . , n) and let aij denote the duration of the
operation at which machine Mj prepares the component necessary for machine Mi in the (r + 1)st
stage (i, j = 1, . . . , n). Then
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xi(r + 1) = max(x1(r) + ai1, . . . , xn(r) + ain) (i = 1, . . . , n; r = 0, 1, . . .)

or, in max-algebraic notation

x(r + 1) = A ⊗ x(r) (r = 0, 1, . . .),

where A = (aij ) is called a production matrix. We say that the system reaches a steady state if it
eventually moves forward in regular steps, that is if for some λ and r0 we have x(r + 1) = λ ⊗ x(r)

for all r � r0. Obviously, a steady state is reached immediately if x(0) is an eigenvector of A

corresponding to an eigenvalue λ. However, if the choice of a start-time vector is restricted we
may need to find out for which vectors a steady state will be reached. A particular task is to
characterise those production matrices for which a steady state is reached with any start-time
vector. Such matrices are called robust and it is the primary objective of the present paper to
provide a characterisation of robust irreducible matrices.

If π = (i1, . . . , ip) is a path in DA then the weight of π is w(π, A) = ai1i2 + ai2i3 + · · · +
aip−1ip if p > 1 and ε if p = 1. The symbol λ(A) stands for the maximum cycle mean of A, that
is if DA has at least one cycle then

λ(A) = max
σ

μ(σ, A), (1)

where the maximisation is taken over all cycles in DA and

μ(σ, A) = w(σ, A)

k
(2)

denotes the mean of the cycle σ = (i1, . . . , ik, i1). Note that λ(A) remains unchanged if the
maximisation in (1) is taken over all elementary cycles. If DA is acyclic we set λ(A) = ε. Various
algorithms for finding λ(A) exist. One of them is Karp’s [10] of computational complexity O(n3).

A is called definite if λ(A) = 0. It is easily seen that λ(α ⊗ A) = α ⊗ λ(A) for any α ∈ R.
Hence λ(A)−1 ⊗ A is definite whenever λ(A) > ε.

The notation A = (c1, . . . , cn) means that c1, . . . , cn are the column vectors of A. If A is
definite then �(A) = A ⊕ A2 ⊕ · · · ⊕ An [5]. In this case �(A) = (gij ) is the matrix of the
weights of the heaviest paths in DA and so, specifically, if �(A) = (γ1, . . . , γn) then γi is the
vector of the weights of the heaviest paths with endnode i (i = 1, . . . , n). �(A) is called a metric
matrix; it can be found using the Floyd–Warshall algorithm using O(n3) operations [6].

We also denote E(A) = {i ∈ N; ∃σ = (i = i1, . . . , ik, i1) : μ(σ, A) = λ(A)}. The elements
of E(A) are called eigen-nodes (of A), or critical nodes. A cycle σ is called critical if μ(σ, A) =
λ(A). The critical digraph of A is the digraph C(A) with the set of nodes E(A); the set of arcs is
the union of the sets of arcs of all critical cycles. All cycles in a critical digraph are critical (this
follows from Lemma 2.3 and Theorem 2.1 below).

Note that λ(A) > ε if n � 2 and A is irreducible.

Theorem 1.1 [5]. If A ∈ R
n×n

(n � 2) is an irreducible matrix then A has a unique eigenvalue
equal to λ(A), all eigenvectors of A are finite and the set of all eigenvectors is

⎧⎨
⎩

⊕∑
i∈E(A)

αi ⊗ γi; αi ∈ R

⎫⎬
⎭ ,

where �(λ(A)−1 ⊗ A) = (γ1, . . . , γn).
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We will denote the set of all eigenvectors of A by V (A). A set S ⊆ R
n

is called a (max-
algebraic) subspace if x ⊕ y ∈ S and α ⊗ x ∈ S for any x, y ∈ S and α ∈ R. It follows from
Theorem 1.1 that V (A) is a subspace for any irreducible matrix A and in this case we call V (A)

the eigenspace (of A). Note that the set V (A) is in general not a subspace for reducible n × n

matrices which may have up to n eigenvalues [7].
Being motivated by Theorem 1.1, γi , i ∈ E(A) are called the fundamental eigenvectors of the

irreducible matrix A (FEV).
The following are also known [5]:

• i ∈ E(A) ⇐⇒ gii = 0 (here �(λ(A)−1 ⊗ A) = (gij )).
• If i, j ∈ E(A) then γi = α ⊗ γj if and only if i and j belong to the same critical cycle of A.

If i, j ∈ E(A) and γi = α ⊗ γj then γi and γj are called equivalent. Consequently,

V (A) =
⎧⎨
⎩

⊕∑
i∈E∗(A)

αi ⊗ γi; αi ∈ R

⎫⎬
⎭ , (3)

where E∗(A) is any maximal set of non-equivalent FEV of A. The number of maximal sets of
equivalent FEVs (or, equivalently the number of strongly connected components of C(A)) is
called the dimension of the eigenspace and will be denoted by dim(A), or just d. The sets of
nodes of the strongly connected components of C(A) will be denoted by E1, E2, . . . , Ed . Hence
E(A) = ∪d

j=1Ej .

The sets E1, E2, . . . , Ed will be called the equivalence classes of the set E.

2. Eigenspaces of powers of irreducible matrices

In this section we aim at providing information about the eigenspaces of the powers of irre-
ducible matrices. Since the powers of an irreducible matrix may in general not be irreducible
we need to assume this explicitly. A matrix A ∈ R

n×n
is called strongly irreducible if A(k) is

irreducible for every k = 1, . . . . Note that every finite matrix is strongly irreducible.
We start by describing some matrix operations that do not essentially change the eigenprob-

lem. For simplicity we will assume that the matrices considered are irreducible although some
statements are true for any matrices.

Lemma 2.1. Let A, B ∈ R
n×n

, A irreducible and B = α ⊗ A, where α ∈ R. Then

1. μ(B, σ) = α ⊗ μ(A, σ) for every cycle σ,

2. λ(B) = α ⊗ λ(A),

3. B is irreducible and E(A) = E(B),

4. dim(A) = dim(B),

5. E(A) and E(B) have the same equivalence classes,
6. V (A) = V (B).

Proof. All statements are proved straightforwardly from the definitions. �
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Corollary 2.1. Let A ∈ R
n×n

be irreducible and λ(A) > ε. Then λ(A)−1 ⊗ A is definite.

Lemma 2.2. Let A, B ∈ R
n×n

and B = P −1 ⊗ A ⊗ P, where P is a permutation matrix.
Then

1. A is irreducible if and only if B is irreducible,
2. the sets of cycle lengths in DA and DB are equal,
3. A and B have the same eigenvalues and
4. there is a bijection between V (A) and V (B) described by:

V (B) = {P −1 ⊗ x; x ∈ V (A)}.

Proof. To prove (1) and (2) note that B is obtained from A by a simultaneous permutation of
the rows and columns. Hence DB differs from DA by the numbering of the nodes only and the
statements follow. For (3) and (4) we observe that B ⊗ z = λ ⊗ z if and only if A ⊗ P ⊗ z =
λ ⊗ P ⊗ z, that is if and only if z = P −1 ⊗ x for some x ∈ V (A). �

Note that if D = diag(d1, . . . , dn), d1, . . . , dn ∈ R then D−1 = diag(d−1
1 , . . . , d−1

n ).

Lemma 2.3. Let A, B ∈ R
n×n

, A irreducible and B = D−1 ⊗ A ⊗ D, where D =
diag(d1, . . . , dn), d1, . . . , dn ∈ R. Then

1. w(A, σ) = w(B, σ) for every cycle σ,

2. λ(A) = λ(B),

3. B is irreducible and E(A) = E(B),

4. dim(A) = dim(B),

5. E(A) and E(B) have the same equivalence classes,
6. �(B) = D−1 ⊗ �(A) ⊗ D.

Proof. The first property is well known and easily proved. The remaining statements follow
immediately from the first one. For instance in the case of the last one we have:

�(B) =
⊕∑

j=1,...,n

(D−1 ⊗ A ⊗ D)(j) =

D−1 ⊗
⎛
⎝ ⊕∑

j=1,...,n

A(j)

⎞
⎠ ⊗ D =

D−1 ⊗ �(A) ⊗ D. �

Theorem 2.1. Let A ∈ R
n×n

be irreducible and definite. If x = (x1, . . . , xn)
T ∈ V (A), D =

diag(x1, . . . , xn) and B = D−1 ⊗ A ⊗ D then B is non-positive, irreducible and definite. Hence
σ is a critical cycle for A if and only if σ is a zero cycle for B.
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Proof. We have

A ⊗ x = x
max

j=1,...,n
(aij + xj ) = xi (i = 1, . . . , n)

−xi + aij + xj � 0 (i, j = 1, . . . , n)

and so B is non-positive. Also, λ(B) = λ(A) = 0 and so critical cycles in B and in A are exactly
the zero cycles in B. �

Theorem 2.2 below applies to definite, non-positive matrices. Note that the statements proved
above in this section show how a general irreducible matrix can be transformed to a definite,
non-positive matrix.

A matrix A = (aij ) ∈ R
n×n

is called 0-irreducible if the digraph D0
A = (N, {(i, j); aij = 0})

is strongly connected. Since a strongly connected digraph with 2 or more nodes contains at least
one cycle, every 0-irreducible non-positive matrix of order 2 or more is definite.

Theorem 2.2 below is an application of [2, Theorem 3.4.5].

Theorem 2.2 (Brualdi–Ryser). Let A = (aij ) ∈ R
n×n

be a 0-irreducible and non-positive matrix
and g be the gcd of the lengths of zero cycles. Let k be a positive integer. Then there is a permutation
matrix P such that P −1 ⊗ A(k) ⊗ P has r 0-irreducible diagonal blocks where r = gcd(k, g) and
all elements outside these blocks are negative.

Corollary 2.2. Let A = (aij ) ∈ R
n×n

be a matrix with λ(A) > ε whose critical digraph C(A)

is strongly connected and g be the gcd of the lengths of all critical cycles. Let k be a positive
integer. Then C(A(k)) has r connected components where r = gcd(k, g).

Proof. Follows from Theorems 2.1, 2.2 and Lemma 2.2. �

The following is a classical result corresponding to the case k = 1 in [2, Theorem 3.4.5].

Corollary 2.3. Let A = (aij ) ∈ R
n×n

be irreducible. Then A is strongly irreducible if and only
if the lengths of all cycles in DA are co-prime.

Theorem 2.3. Let k, n be positive integers, A = (aij ) ∈ R
n×n

be strongly irreducible. Then

1. λ(A(k)) = (λ(A))(k) and V (A) ⊆ V (A(k)).

2. �((λ(A(k)))−1 ⊗ A(k)) � �((λ(A))−1 ⊗ A).

3. E(A) = E(A(k)) and the equivalence classes of E(A(k)) are either equal to the equivalence
classes of E(A) or are their refinements.

4. If vj , uj (j ∈ E(A)) are the fundamental eigenvectors (FEV) of A and A(k) respectively, then
vj � uj for all j ∈ E(A).

5. dim(A(k)) = ∑
i gcd(ri, k) where ri is the gcd of the lengths of all critical cycles of A in the

ith connected component of C(A).

Proof
1. If A ⊗ x = λ ⊗ x then A(k) ⊗ x = λ(k) ⊗ x. Since A(k) is irreducible, λ(A(k)) is its unique

eigenvalue and the statements follow.
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2. Denote λ(A)(−1) ⊗ A as B. Then LHS is �(B(k)) = B(k) ⊕ B(2k) ⊕ · · · ⊕ B(nk) � �(B) be-
cause (as is well known) B(r) � �(B) for every natural r > 0.

3. E(A) ⊇ E(A(k)) follows from Part 2 immediately since in a metric matrix all diagonal elements
are non-positive and the j th diagonal entry is zero if and only if j is a critical node.
Now let j ∈ E(A) and σ = (j = j0, j1, . . . , jr = j) be any critical cycle in A (and B)
containing j , thus w(σ, B) = 0. Let us denote

π = (j = j0, jk(mod r), j2k(mod r), . . . , jrk(mod r) = j)

and B(k) by C = (cij ). Then for all i = 0, 1, . . . , r − 1 we have (all indices are mod r and, for
convenience, we write here c(i, j) rather than cij , similarly b(i, j)):

c(jik, jik+k) � b(jik, jik+1) + b(jik+1, jik+2) + · · · + b(jik+k−1, jik+k)

since c(jik, jik+k) is the weight of a heaviest path of length k from jik to jik+k w.r.t. B and
the RHS is the weight of one such path. Therefore

w(π, (λ(A(k)))−1 ⊗ A(k)) = w(π, B(k)) � (w(σ, B))(k) = 0.

Hence, equality holds, as there are no positive cycles in (λ(A(k)))−1 ⊗ A(k). This implies that
π is a critical cycle w.r.t. A(k) and so j ∈ E(A(k)).
If w is the weight of an arc (u, v) on a critical cycle for A(k) then there is a path from u to v

having the total weight w w.r.t. A. Therefore all nodes on a critical cycle for A(k) belong to
one critical cycle for A. Hence the refinement statement.

4. Follows from Part 2 immediately.
5. It now follows from Theorems 2.1 and 2.2. �

Note that the first two statements of Theorem 2.3 also hold without the assumption of strong
irreducibility. However, for the key part 5. we need to assume that A is strongly irreducible.
Actually the proof of 2. presented above does not require A to be strongly irreducible and the
proof of the inclusion in 1. is straightforward from the definition for any matrix. The proof of the
identity in 1. for a general matrix (although not very difficult) is beyond the scope of the present
paper. It easily follows from the results of general spectral theory, see e.g. [3].

3. Robust matrices

Let A = (aij ) ∈ R
n×n

and x ∈ R
n
. The orbit of A with starting vector x is the sequence

O(A, x) = {A(r) ⊗ x; r = 0, 1, . . .}.
Let

T (A) = {x ∈ R
n; O(A, x) ∩ V (A) /= ∅}.

As mentioned at the beginning of this paper the set T (A) is of interest in questions of system
stability. Obviously,

V (A) ⊆ T (A) ⊆ R
n − {ε}

holds for every matrix A ∈ R
n×n

.

It may happen that T (A) = V (A), for instance when A is the irreducible matrix
(−1 0

0 −1

)
:

Here λ(A) = 0 and

V (A) = {α ⊗ (0, 0)T; α ∈ R}.
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Since

A ⊗
(

a

b

)
= (max(a − 1, b), max(a, b − 1))T,

we have that A ⊗
(

a

b

)
∈ V (A) if and only if a = b, that is A ⊗ x ∈ V (A) if and only if x ∈ V (A).

Hence T (A) = V (A). We generalize:

Theorem 3.1. Let A = (aij ) ∈ R
n×n

be irreducible. Then T (A) = V (A) if and only if for every
x ∈ R

n − {ε}:
A ⊗ x ∈ V (A) ⇐⇒ x ∈ V (A).

Proof. Recall that x ∈ V (A) ⇒ A ⊗ x ∈ V (A) holds for every irreducible matrix A by Lemma
1.1.

Suppose first that T (A) = V (A) and A ⊗ x ∈ V (A), x ∈ R
n − {ε}. Then x ∈ T (A) and hence

also x ∈ V (A).
Suppose now that

A ⊗ x ∈ V (A) �⇒ x ∈ V (A)

holds for every x ∈ R
n − {ε} and let x ∈ T (A). Then A(k) ⊗ x ∈ R

n − {ε} by Lemma 1.1 for
all k and A(k) ⊗ x ∈ V (A) for some k, thus A(k−1) ⊗ x ∈ V (A), A(k−2) ⊗ x ∈ V (A), . . . , x ∈
V (A). �

Note that T (A) may be different from both V (A) and R
n − {ε}: Consider the irreducible matrix

A =
⎛
⎝−1 0 −1

0 −1 −1
−1 −1 0

⎞
⎠ .

Here λ(A) = 0 and x = (−2, −2, 0)T /∈ V (A), but A ⊗ x = (−1, −1, 0)T ∈ V (A), showing that
T (A) /= V (A). At the same time if y = (0, −1, 0)T then A(k) ⊗ y is y for k even and (−1, 0, 0)T

for k odd, showing that y /∈ T (A).

Definition 3.1. If T (A) = R
n − {ε} then A is called robust.

Now we present a characterisation of irreducible robust matrices which enables us to check
this property easily. Then we show special criteria for strongly irreducible matrices. We say that
A = (aij ) ∈ R

n×n
is ultimately periodic if there is a natural number p such that the following

holds for some λ ∈ R and k0 natural:

A(k+p) = λ ⊗ A(k) for all k � k0.

If p is the smallest natural number with this property then we call p the period of A and denote it
per(A). If A is not ultimately periodic then we set per(A) = +∞. It is easily seen that λ = λ(A)(p)

if A is an irreducible matrix and p = per(A) < +∞.

Theorem 3.2. Let A ∈ R
n×n

be irreducible. Then A is robust if and only if per(A) = 1.

Proof. Let per(A) = 1, x ∈ R
n − {ε} and k � k0. Then A(k) ⊗ x ∈ R

n − {ε} by Lemma 1.1,
A(k+1) ⊗ x = λ(A) ⊗ A(k) ⊗ x and so A(k) ⊗ x ∈ V (A). Hence A is robust.
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Now let A be robust and x = aj (j th column of A). Then x ∈ R
n − {ε} and there is an integer

kj such that A(k+1) ⊗ aj = λ(A) ⊗ A(k) ⊗ aj for all k � kj . So, if k0 = max(k1, . . . , kn) then
A(k+2) = λ(A) ⊗ A(k+1) for all k � k0, and thus per(A) = 1. �

A by-product of this investigations is

Corollary 3.1. Let A ∈ R
n×n

be irreducible. If per(A) = 1, x ∈ R
n − {ε} then there is a positive

integer k0 such that A(k) ⊗ x is finite for all k � k0.

Proof. A(k) ⊗ x ∈ V (A) for some k but V (A) only contains finite eigenvectors since A is irre-
ducible. If x is finite then A ⊗ x is finite too. �

Matrix period has been studied in several papers. We recall the following.

Theorem 3.3 [9]. Let A = (aij ) ∈ R
n×n

be an irreducible matrix and gs be the gcd of the lengths
of critical cycles in the sth strongly connected component of C(A). Then

per(A) = lcm(g1, g2, . . .).

Note that an O(n3) algorithm for finding per(A) is presented in [9].
As a corollary of Theorems 3.2 and 3.3 we have:

Theorem 3.4. An irreducible matrix A ∈ R
n×n

is robust if and only if in every strongly connected
component of C(A) the lengths of all critical cycles are co-prime.

We can use this result to derive a simple method for checking that a given strongly irreducible
matrix A ∈ R

n×n
is robust. We can assume without loss of generality that C(A) is strongly

connected (as we can investigate each component separately) and so the check reduces to finding
out whether the lengths of all zero cycles are co-prime. Since no cycle of length greater than
n needs to be considered, Theorem 2.2 offers a quick tool for this check. Let us calculate the
powers A, A(2), A(3), . . . , A(n) and then find the dimensions d1, d2, . . . , dn of the eigenspaces
of these matrices. Since dk = gcd(k, g), k = 1, . . . , n, where g is the gcd of the lengths of
all critical cycles, it is now clear that g = 1 if and only if d1 = d2 = · · · = dn = 1. We can
summarize:

Theorem 3.5. A strongly irreducible matrix A ∈ R
n×n

is robust if and only if the eigenspaces of
A, A(2), A(3), . . . , A(n) have the same dimension.

Since all fundamental eigenvectors of A are also eigenvectors of any power of A (see Theorem
2.3), any maximal set of non-equivalent fundamental eigenvectors also generates the eigenspace
of any power of A (see (3)). Hence we arrive at an even stronger version of Theorem 3.5.

Theorem 3.6. A strongly irreducible matrix A ∈ R
n×n

is robust if and only if the eigenspaces of
A, A(2), A(3), . . . , A(n) coincide.

Obviously, if g = 1 then dk = 1 for all positive integers k. Hence:
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Corollary 3.2. A strongly irreducible matrix A ∈ R
n×n

is robust if and only if the eigenspaces of
all powers of A coincide.

The following, slightly extended, sufficient condition for A to be robust has already been known
for some time [6] and now follows as a direct corollary of Theorems 3.2 and 3.3.

Corollary 3.3. Let A = (aij ) ∈ R
n×n

be irreducible. Then A is robust if aii = λ(A) for every
i ∈ E(A).

Proof. aii = λ(A) for every i ∈ E(A) implies that in every component of the critical digraph
there is a critical cycle of length 1, hence gi = 1 for all i and per(A) = 1. �

4. Robust matrices and discrete-event dynamic systems

The reader is referred to [1] or [8] for basic information on the theory of max-algebraic
discrete-event dynamic system. IfA ∈ R

m×n
,b ∈ R

n
, c ∈ R

m
then a real sequence {gk}∞k=0, where

gk = cT ⊗ A(k) ⊗ b

for all k, is called the sequence of Markov parameters of the discrete-event dynamic system
(A, b, c). The triple (A, b, c) is called a realisation of the sequence of Markov parameters. We
also say that (A, b, c) realises {gk}∞k=0.

A key question is the realisation problem: Given a sequence of Markov parameters, find a
realisation (A, b, c).

Let ei stand for the vector from R
n

whose ith component is 0 and all other are ε. We denote
by a

[k]
ij the (i, j) entry of A(k) (in contrast to a

(k)
ij which stands for the kth max-algebraic power

of aij ).
A scalar sequence {gk ∈ R; k = 0, . . . ,∞} is called ultimately linear if the following holds

for some λ ∈ R and k0 natural:

gk+1 = λ ⊗ gk for all k � k0.

Theorem 4.1. Let A = (aij ) ∈ R
n×n

be irreducible. Then A is robust if and only if for every
b, c ∈ R

n
the sequence of Markov parameters of the discrete-event dynamic system (A, b, c) is

ultimately linear.

Proof. Let A ∈ R
n×n

be irreducible and robust and b, c ∈ R
n
. Then by Theorem 3.2

gk+1 = cT ⊗ A(k+1) ⊗ b = λ ⊗ cT ⊗ A(k) ⊗ b = λ ⊗ gk (4)

for k � k0 and λ = λ(A).
Conversely, if (4) holds for every b, c ∈ R

n
then in particular it holds for b = er , c = es (r, s =

1, . . . , n) and all k starting from some value, say k(r, s). However, eT
s ⊗ A(k+1) ⊗ er = a

[k+1]
sr =

λ ⊗ a
[k]
sr . Hence A(k+1) = λ ⊗ A(k) for all k � maxr,s=1,...,n k(r, s). The result now follows by

Theorem 3.2. �

Note that it follows from this proof that λ = λ(A) for any choice of b and c if A is irreducible.
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Theorem 4.2. A real sequence {gk}∞k=0 is ultimately linear if and only if there is an integer m

and a discrete-event dynamic system (A, b, c) with A ∈ Rm×m robust, whose sequence of Markov
parameters is {gk}∞k=0.

Proof. The “if” statement follows from Theorem 4.1.
Let {gk}∞k=1 be a sequence satisfying

gk+1 = λ ⊗ gk for all k � m

for some m natural. Set

c = (0, ε, . . . , ε)T ∈ R
m
,

A =

⎛
⎜⎜⎜⎜⎜⎝

ε 0 ε . . . ε

ε ε 0 . . . ε

ε ε ε . . . ε
...

...
...

. . .
...

ε ε ε . . . λ

⎞
⎟⎟⎟⎟⎟⎠

∈ R
m×m

,

b =

⎛
⎜⎜⎜⎝

g1
g2
...

gm

⎞
⎟⎟⎟⎠ ∈ Rm.

It is easily verified that

cT ⊗ A(k) ⊗ b = gk (5)

for every k and that ε can be replaced by sufficiently small real values so that (5) is still true. Let
this new (irreducible) matrix be denoted by B. Then it is easily seen that λ(B) = λ and C(B)

contains only one cycle and its length is 1. Hence per(A) = 1 and A is robust. �
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