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Abstract

We show that using max-algebraic techniques it is possible to generate
the set of all solutions to a system of inequalities xi�xj � bij ; i; j = 1; :::; n
using n generators. This e¢ cient description enables us to develop a
pseudopolynomial algorithm which either �nds a bounded mixed-integer
solution, or decides that no such solution exists.
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1 Introduction

This papers deals with the systems of inequalities of the form

xi � xj � bij (i; j = 1; :::; n) (1)

where B = (bij) 2 Rn�n: In [19] the matrix of the left-hand side coe¢ cients
of this system is called the dual network matrix. It is the transpose of the
constraint matrix of a circulation problem in a network (such as the maximum
�ow or minimum-cost �ow problem) and inequalities of the form (1) therefore
appear as dual inequalities for this type of problems. These facts motivate us to
call (1) the system of dual network inequalities (SDNI). The aim of this paper is
to show that using standard max-algebraic techniques it is possible to generate
the set of all solutions to (1) (which is of size n2�n) using n generators (Theorem
2.3). This description enables us then to �nd a bounded mixed-integer solution
to the following system of dual network inequalities (BMISDNI), or to decide
that there is no such solution:

xi � xj � bij (i; j 2 N)
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uj � xj � lj (j 2 N)

xj integer (j 2 J)

where u = (u1; :::; un)T ; l = (l1; :::; ln)T 2 Rn and J � N = f1; :::; ng are given.
Note that without loss of generality uj and lj may be assumed to be integer for
j 2 J: This type of inequalities have been studied for instance in [19] where it has
been proved that a related mixed-integer feasibility question is NP -complete.
For similar problems see also [15].
We will show that in general, the application of max-algebra leads to a

pseudopolynomial algorithm for solving BMISDNI. However, an explicit solution
is proved in the case when B is integer (but still a mixed-integer solution is
wanted). This implies that BMISDNI can be solved using O(n3) operations.
Note that when J = ; then BMISDNI is polynomially solvable since it is a
set of constraints of a linear program. When J = N and B is integer then
BMISDNI is also polynomially solvable since the matrix of the system is totally
unimodular [16].

2 All solutions to SDNI

The system
xi � xj � bij (i; j 2 N)

is equivalent to
max
j2N

(bij + xj) � xi (i 2 N):

If we denote u � v = max(u; v) and u 
 v = u + v for u; v 2 R := R [ f�1g
then this reads

P�
j2N bij 
 xj � xi for i 2 N or (if we extend the operations �

and 
 to matrices and vectors), equivalently

B 
 x � x: (2)

Being motivated by this observation we �rst summarize some basic concepts
and results of max-algebra and then we present our main results.
By max-algebra we understand the analogue of linear algebra developed for

the pair of operations (�;
), extended to matrices and vectors. That is if
A = (aij); B = (bij) and C = (cij) are matrices of compatible sizes with entries
from R, we write C = A � B if cij = aij � bij for all i; j and C = A 
 B if
cij =

P�
k aik
bkj = maxk(aik+bkj) for all i; j. If � 2 R then �
A = (�
 aij).

If � 2 R then the symbol ��1 stands for ��:
The following isotonocity lemma is easily veri�ed:

Lemma 2.1 If A 2 Rn�n and x; y 2 Rn then x � y implies A
 x � A
 y:

The letter I will stand for any square matrix whose diagonal entries are 0
and o¤-diagonal entries are �1: If A is an n � n matrix and k is a positive
integer then the iterated product A
A
 :::
A in which the symbol A appears
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k-times will be denoted by Ak and A� = I �A�A2 � :::�An. Any set of the
form

fA
 z; z 2 Rng
is a �nitely generated max-algebraic linear subspace (sometimes also called a
maxcone) whose essentially unique basis can be found e¢ ciently [7].
Given A = (aij) 2 Rn�n the symbol DA denotes the associated digraph,

that is the arc-weighted digraph (N;E;w) where E = f(i; j) ; aij > �1g and
w (i; j) = aij for all (i; j) 2 E: If � = (i1; :::; ip) is a path in DA then we denote
w(�;A) = ai1i2 + ai2i3 + ::: + aip�1ip if p > 1 and �1 if p = 1. The number

p� 1 is called the length of � and w(�;A) the weight of �: It can be easily seen
that Ak is the matrix of greatest weights of paths of length k between all pairs
of nodes in DA: If i1 = ip but p > 1 then � is called a cycle; it is called positive
if w(�;A) > 0:
Max algebra has been studied by many authors and the reader is referred to

[14], [1] or [4] for more information about max-algebra, see also [9], [10], [11],
[18], [20], [8], [13], [12], [2], [3].
A basic problem in max-algebra, motivated for instance by the e¤orts to

solve synchronisation problems in some industrial processes [9], [1] is:
EIGENVECTOR [EV]: Given A 2 Rn�n �nd all x 2 Rn; x 6= (�1; :::;�1)T

such that A
 x = �
 x for some � 2 R:
EV has been studied since the 1960�s and can now be e¢ ciently solved [10]

[11], [8], [1], [14], [4]. It is known that an n � n matrix may have up to n
eigenvalues. The set of eigenvectors corresponding to a particular eigenvalue is
a �nitely generated max-algebraic linear subspace.
In this paper we only discuss �nite (real matrices) but most of the results

can be extended to matrices over R. If A = (aij) 2 Rn�n then A has a unique
(max-algebraic) eigenvalue equal to the maximum cycle mean (notation �(A))
of the associated digraph, that is

�(A) = max
ai1i2 + ai2i3 + :::+ aip�1ip

p

where the maximisation is taken over all p-tuples of indices from N; and p =
1; 2; :::; n: All eigenvectors are �nite and the set of eigenvectors can easily be
described. It follows from the de�nition of �(A) that �(A) � 0 means that
there are no positive cycles in DA: It is known [1], [14] that in this case A� is
the matrix of greatest weights of paths between all pairs of nodes in DA with
added zero entries on the diagonal. This matrix can be found using standard
O(n3) algorithms such as Floyd-Warshall�s [16].
For A 2 Rn�n and � 2 R we denote

Sol(A;�) = fx 2 Rn;A
 x � �
 xg:

Theorem 2.1 ([6], Cor.2.9) If A 2 Rn�n and � 2 R then

1. Sol(A;�) 6= ; if and only if �(A) � �:
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2. If Sol(A;�) 6= ; then

Sol(A;�) = f(��1 
A)� 
 z; z 2 Rng

Remark 2.1 It is known that Sol(A;�) is actually the set of (max-algebraic)
eigenvectors of the matrix

I � ��1 
A:

Max-algebra also works with dual operations: u�0v = min(u; v) and u
0v =
u
 v for u; v 2 R (the operators 
 and 
0 coincide for reals). The conjugate of
a square matrix A = (aij) is A] = (�aji):

Theorem 2.2 [9] If A 2 Rn�n; b 2 Rn and z 2 Rn then

A
 z � b if and only if z � A] 
0 b

Corollary 2.1 If A 2 Rn�n and v 2 Rn then A 

�
A] 
0 v

�
� v and (by

isotonicity) A
 z � A

�
A] 
0 v

�
for every z satisfying A
 z � v:

We can now use Theorems 2.1 and 2.2 to describe all solutions to SDNI. In
(2) we obviously have � = 0 and B plays the role of A: For simplicity we denote
Sol(B; 0) by Sol(B):We start with an immediate transcription of Theorem 2.1.

Theorem 2.3 If B 2 Rn�n then

1. Sol(B) 6= ; if and only if �(B) � 0:

2. If Sol(B) 6= ; then

Sol(B) = fB� 
 z; z 2 Rng:

Hence the set of all solutions to SDNI is a �nitely generated max-algebraic
linear subspace.

Corollary 2.2 The set of all solutions x to SDNI satisfying x � u isn
B� 
 z; z � (B�)] 
0 u

o
and if this set is non-empty then the vector B� 


�
(B�)

] 
0 u
�
is the greatest

element of this set. Hence the inequality

l � B� 

�
(B�)

] 
0 u
�

is necessary and su¢ cient for the existence of a solution to SDNI satisfying
l � x � u:

Proof. It follows from (2) and Theorem 2.3 part 2. that solutions to SDNI
are exactly the vectors of the form B�
 z; z 2 Rn: Therefore solutions to SDNI
satisfying x � u are exactly the vectors B� 
 z;B� 
 z � u: By Theorem 2.2
this means the same as B� 
 z; z � (B�)

] 
0 u and the �rst part follows. For
the second part realise that B� 


�
(B�)

] 
0 u
�
is by Corollary 2.1 the greatest

solution to SDNI satisfying x � u:
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3 Solving BMISDNI

We start by another corollary to Theorem 2.3.

Corollary 3.1 A necessary condition for BMISDNI to have a solution is that
�(B) � 0: If this condition is satis�ed then the BMISDNI is equivalent to �nding
a vector z 2 Rn such that

l � B� 
 z � u

and
(B� 
 z)j integer for j 2 J:

Remark 3.1 Recall that �(B) � 0 means there is no positive cycle in DB and
in what follows we will assume that this condition is satis�ed.

Theorem 3.1 Let A 2 Rn�n; b 2 Rn and J � N: Let ~b be de�ned by

~bj = bbjc for j 2 J;
~bj = bj for j =2 J:

Then the following are equivalent:

1. There exists a z 2 Rn such that l � A
 z � b and

(A
 z)j integer for j 2 J:

2. There exists a z 2 Rn such that l � A
 z � ~b and

(A
 z)j integer for j 2 J:

3. There exists a z 2 Rn such that l � A
 z � A

�
A] 
0 ~b

�
and

(A
 z)j integer for j 2 J:

Proof. 1: =) 2:: If (A
 z)j � bj and (A
 z)j is integer then (A
 z)j �
bbjc = ~bj by the de�nition of the integer part.
2: =) 1:: ~bj = bbjc � bj for j 2 J by de�nition and the statement follows.
2: =) 3:: If A 
 z � ~b then by Theorem 2.2 z � A] 
0 ~b and by isotonicity

(Lemma 2.1) A
 z � A

�
A] 
0 ~b

�
:

3: =) 2:: By Corollary 2.1 A

�
A] 
0 ~b

�
� ~b and so if A
z � A


�
A] 
0 ~b

�
then also A


�
A] 
0 ~b

�
� ~b:

Theorem 3.1 enables us to compile the following algorithm.

Algorithm 3.1 BMISDNI
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Input: B 2 Rn�n; u; l 2 Rn and J � N
Output: x satisfying the BMISDNI conditions or an indication that no such

vector exists.

[1] A := B�; x := u

[2] xj := bxjc for j 2 J

[3] z := A] 
0 x; x := A
 z

[4] If l � x then stop (no solution)

[5] If l � x and xj integer for j 2 J then stop else go to [2]

Theorem 3.2 Algorithm BMISDNI is correct and requires O(n3 + n2L) oper-
ations of addition, maximum, minimum, comparison and integer part, where

L =
X

j2J
(uj � lj) :

Proof. If the algorithm terminates at step [4] then there is no solution by the
repeated use of Theorem 3.1.
The sequence of vectors x constructed by this algorithm is non-increasing by

Corollary 2.1 and hence x = A
z � u if it terminates at step [5]. The remaining
requirements of the BMISDNI are satis�ed explicitly due to the conditions in
step [5].
Computational complexity: The calculation of B� is O(n3) [16]. Each run of

the loop [2]-[5] is O(n2): In every iteration at least one component of xj ; j 2 J
decreases by one and the statement now follows from the fact that all xj range
between lj and uj :

Example 3.1 Let

B =

0@ �2 2:7 �2:1
�3:8 �1 �5:2
1:6 3:5 �3

1A
u = (5:2; 0:8; 7:4)T ; J = f1; 3g (l is not speci�ed). The algorithm BMISDNI will
�nd:

A = B� =

0@ 0 2:7 �2:1
�3:6 0 �5:2
1:6 4:3 0

1A
x = (5; 0:8; 7)T ;

z = A] 
0 x =

0@ 0 3:6 �1:6
�2:7 0 �4:3
2:1 5:2 0

1A
0 x =
0@ 4:4
0:8
6

1A
x = A
 z = (4:4; 0:8; 6)T :
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Now x1 =2 Z so the algorithm continues by another iteration: x = (4; 0:8; 6)T ;

z = A] 
0 x = (4; 0:8; 6)T

and
x = A
 z = (4; 0:8; 6)T ;

which is a solution to the BMISDNI (provided that l � x) since x1; x3 2 Z
(otherwise there is no solution).

4 Solving BMISDNI for integer matrices

In this section we prove that a solution to the BMISDNI can be found explicitly
if B is integer.
The following will be useful:

Theorem 4.1 Let A 2 Zn�n; b 2 Rn and A 
 x = b for some x 2 Rn: Let
J � N and ~b be de�ned by

~bj = bbjc for j 2 J
~bj = bj for j =2 J:

Then there exists an ~x 2 Rn such that

A
 ~x � ~b

and
(A
 ~x)j = ~bj for j 2 J:

Proof. Let k 2 J be such that bk =2 Z: Since bk = maxj2N (akj + xj) ; the set

Sk = fs; aks + xs > bbkcg

is non-empty and xs =2 Z for every s 2 Sk since A is integer. Let x(1) be the
vector de�ned by x(1)j = bxjc for j 2 Sk and x

(1)
j = xj otherwise. Clearly

x(1) � x and so A 
 x(1) � A 
 x by Lemma 2.1. Let r 2 N be such that
maxj2N (arj + xj) 2 Z (if any). Then ars + xs < maxj2N (arj + xj) for all

s 2 Sk since xs =2 Z: Therefore maxj2N
�
arj + x

(1)
j

�
= maxj2N (arj + xj) :

At the same time maxj2N
�
akj + x

(1)
j

�
= bbkc yielding that the number of

indices r such that maxj2N
�
arj + x

(1)
j

�
= bbrc has increased by at least one

compared to x. If there is still an index k 2 J such that Sk 6= ; then we repeat
this construction and obtain x(2); x(3); ::: . Since the number of indices r for
which maxj2N (arj + xj) 2 Z increases at every step, this process stops after a
�nite number of steps with a vector ~x satisfying the conditions in the theorem
statement.
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Corollary 4.1 Under the assumptions of Theorem 4.1 and using the same no-
tation, if �x = A] 
0 ~b then

A
 �x � ~b
and

(A
 �x)j = ~bj for j 2 J:

Proof. The inequality follows from Corollary 2.1. Let ~x be the vector described
in Theorem 4.1. By Theorem 2.2 we have ~x � �x implying that

~bj = (A
 ~x)j � (A
 �x)j � ~bj for j 2 J

which concludes the proof.
Our main result is:

Theorem 4.2 Let B 2 Zn�n; �(B) � 0; A = B�; b = A 

�
A] 
0 u

�
and ~b be

de�ned by
~bj = bbjc for j 2 J

and
~bj = bj for j =2 J:

Then the BMISDNI has a solution if and only if

l � A

�
A] 
0 ~b

�
;

and x̂ = A 

�
A] 
0 ~b

�
is then the greatest solution (that is y � x̂ for any

solution y).

Proof. Note �rst that A is an integer matrix and we therefore may apply
Corollary 4.1 to A:
"If": By Corollary 2.1 x̂ � ~b � b � u: Let us take in Corollary 4.1 (and

Theorem 4.1) x = A] 
0 u: Then x̂ = A
 �x and so x̂j 2 Z for j 2 J:
"Only if": Let y be a solution. Then y = A
 w � u for some w 2 Rn; thus

by Theorem 2.2
w � A] 
0 u

and so
y = A
 w � A


�
A] 
0 u

�
= b:

Since yj 2 Z for j 2 J we also have

A
 w = y � ~b:

Hence by Theorem 2.2
w � A] 
0 ~b

and by Lemma 2.1 then

l � y = A
 w � A

�
A] 
0 ~b

�
= x̂:

We also have x̂ � ~b � b � u by Corollary 2.1 and x̂j 2 Z for j 2 J by Corollary
4.1 as above, hence x̂ is the greatest solution.
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Example 4.1 Let

B =

0@ �2 2 �2
�3 �1 �4
1 3 �3

1A
u = (3:5; 0:8; 5:7)T ; J = f1; 3g (l is not speci�ed). Theorem 4.2 provides:

A = B� =

0@ 0 2 �2
�3 0 �4
1 3 0

1A

A] 
0 u =

0@ 0 3 �1
�2 0 �3
2 4 0

1A
0 u =
0@ 3:5
0:8
4:8

1A
b = A


�
A] 
0 u

�
=

0@ 3:5
0:8
4:8

1A
~b =

0@ 3
0:8
4

1A
x̂ = A


�
A] 
0 ~b

�
= (3; 0:8; 4)T

By Theorem 4.2 x̂ is the greatest solution to the BMISDNI provided that l � x̂
(otherwise there is no solution).

5 A note on an application

As a by-product, this paper provides a solution technique for solving a scheduling-
type of problems.
Consider a multiprocessor interactive system (of production, transportation,

information technology, etc.) in which the individual processors work in stages
and a processor, say P cannot start its work in a new stage until all or some of
the processors have �nished their activities necessary for P [10], [11], [14]. It is
assumed that each of the processors P1; :::; Pn can work for all other processors
simultaneously and that a processor starts all these activities as soon as it starts
to work.
Let xi(r) denote the starting time of the rthstage on processor i (i = 1; :::; n)

and let aij denote the duration of the operation at which the jth processor
prepares the component necessary for the ith processor in the (r + 1)st stage
(i; j = 1; :::; n). Then

xi(r + 1) = max(x1(r) + ai1; :::; xn(r) + ain)(i = 1; :::; n; r = 0; 1; :::)

or, in max-algebraic notation

x(r + 1) = A
 x(r)(r = 0; 1; :::)
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where A = (aij) is a production matrix. We say that the system is in a steady
state [9] if it moves forward in regular steps, that is if for some � we have
x(r + 1) = � 
 x(r) for all r. This implies A 
 x(r) = � 
 x(r) for all r.
Therefore the system is in a steady state in all stages if and only if for some �;
the starting times vector x(0) is a solution to

A
 x = �
 x:

For practical reasons it may be necessary to �nd the starting times for the
individual processors within given bounds, for instance uj � xj � lj for all j: If
an eigenvector within these bounds does not exist then it may be interesting to
�nd a subeigenvector, that is an x satisfying

A
 x � �
 x (3)

and uj � xj � lj for all j (in this case a new stage at any processor starts within
a given time limit � after the beginning of the previous stage). Solvability of
(3) is answered by Theorem 2.1 and once this is a¢ rmative it remains to solve

B 
 x � x

l � x � u
where B = ��1 
A: The answer to this question is given in Corollary 2.2.
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