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Abstract

Let (B,≤) be a dense, linearly ordered set without maximum and minimum and (⊕,⊗) =
(max,min). An n× n matrix A = (aij) over B is called

(a) strongly regular if for some b the system A⊗ x = b is uniquely solvable;

(b) trapezoidal if the inequality

aii >
i∑

k=1

⊕ n∑
l=k+1

⊗
akl

holds for all i = 1, .., n.

We show that a square matrix is strongly regular if and only if it can be transformed to
a trapezoidal matrix using permutations of the rows and columns. Moreover, an O(n3.5)
method for checking the strong regularity is proved.
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1 INTRODUCTION

The quadruple B = (B,⊕,⊗,≤) is called a bottleneck algebra (in short BA) if (B,≤)
is a nonempty, linearly ordered set without maximum and minimum and ⊕,⊗ are binary
operations on B defined by the formulas

a⊕ b = max {a, b}
a⊗ b = min {a, b}

Among the most important interpretations of BA are those based on the following
linearly ordered sets (≤ is everywhere the natural order and −∞ ≤ l < u ≤ ∞ ):

((l, u),≤), (1)

((l, u) ∩Q,≤), (2)

(Z,≤), (3)

((l, u) ∩ P (α),≤) (4)

where Q is the set of rationals, Z is the set of integers and

P (α) ={
r∑

i=0
piα

i ; p0, ..., pr integers, r = 0, 1, 2, ...},

α being any fixed transcendental number (cf.[6]). We denote by B1,B2,B3,B4 the BA based
on (1) - (4) successively.

Some practical problems lead to computations in a bottleneck algebra. For example,
the permanent (known also as the bottleneck assignment problem) of an n × n matrix
A = (aij) in B1, i.e.

per(A) =
∑
π

⊕ ∏
i

⊗
ai,π(i)

corresponds to a weighted matching in a complete bipartite graph with the maximal possible
lowest score. This corresponds to those situations where the overall performance of a team
is measured by the worst performance of it’s individual member(s) - e.g. if each of n workers
performs one of n tasks on an assembly line then the speed of the line is equal to the speed
of the slowest worker (see [3]). An O(n2.5) method for solving this problem is known [1].

As an other example, consider the transportation capacity (transmittance) problem.
If the transportation route consists of two parts UV and V W (say V is a transship point)
then the total route capacity is the minimum of the capacities of UV and V W . Similarly,
in a transportation network with U1 . . . , Ul as dispatching points, V1, . . . , Vm as transship
points and W1, . . . ,Wn as destination points denoting the capacities of UiVj resp. VjWk

by aij and bjk, respectively (i = 1, . . . , l; j = 1, . . . ,m; k = 1, . . . , n) we have that the total
transportation capacity between Ui and Wk is equal to

cik = max min{aij , bjk}
j=1,...,m

for all i = 1, ..., l and k = 1, ..., n (see Figure 1). This expression becomes more formidable
using the usual extensions of ⊕ and ⊗ to matrices in B1 :

C = A⊗B
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Figure 1: l = 3,m = 2, n = 4

having denoted by A,B, C the matrices (aij), (bjk), (cik).

Several problems similar to those in linear algebra have been studied in BA or, in
closely related structures. To mention a few of them, recall [2], [4, 5, 6]. In the case when
⊗ is a group operation, the concept of strong regularity of matrices was introduced in [4]
and an efficient method for checking this property was derived in [2]. In this paper our aim
is to do the same as in the case of BA.

2 DEFINITIONS AND BASIC PROPERTIES

Clearly, a bottleneck algebra (B,⊕,⊗,≤) is a distributive (infinite) lattice. Among
many basic properties we have that a ≤ b and c ≤ d imply

a⊕ c ≤ b⊕ d
a⊗ c ≤ b⊗ d

for all a, b, c, d ∈ B.
The set of all m×n matrices over B will be denoted by B(m,n) and B(m, 1) by Bm.

Elements of Bm will be called vectors. Extend ⊕,⊗ and ≤ to matrices over B in the same
way as in linear algebra, that is if A = (aij), B = (bij) are matrices of compatible sizes,
then

A⊕B = (aij ⊕ bij) and A⊗B = (
∑
k

⊕
aik ⊗ bkj)

Many properties of these operations can be found in [6]. Let us mention here the following
one:

if C ≤ D then A⊗ C ≤ A⊗D and C ⊗A ≤ D ⊗A

whenever the indicated products exist.
The set of all permutations of the set {1, 2, ..., n} is denoted by Pn; id means the

identity permutation. If A = (aij) ∈ B(m,n), σ ∈ Pm, π ∈ Pn then A(σ, π) denotes the
matrix C = (ci,j) such that

cij = aσ(i),π(j).

If σ ∈ Pn, A = (aij) ∈ B(n, n) then the weight of σ with respect to A, i.e.

a1,σ(1) ⊗ a2,σ(2) ⊗ . . .⊗ an,σ(n)



4 PETER BUTKOVIČ AND PETER SZABÓ

is denoted by w(A, σ). Thus

per(A) =
∑

σ∈Pn

⊕
w(A, σ)

and we put

max(A) ={σ ∈ Pn ; w(A, σ) = per(A)}

For any set H the symbol |H| will mean the number of its elements.
Systems of simultaneous linear equations (shortly linear systems) of the form

A⊗ x = b (5)

where A ∈ B(m,n), b ∈ Bm were studied in [5] and [6]. The solution set of (5) will be
denoted by S(A, b) and

T (A) = {|S(A, b)| ; b ∈ Bm}.

It is not difficult to verify that

{0, ∞}⊆ T (A) ⊆{0, 1, ∞}

for every A ∈ B(m, n). A square matrix A is called strongly regular if 1 ∈ T (A), i.e. if
there exists a vector b such that (5) is uniquely solvable. The purpose of this paper is

(i) to characterize matrices which are strongly regular (Theorems 1 and 2),

(ii) to develop an efficient algorithm for checking this property (Theorems 3 and 4).

The main results are proved under the assumption of density of ≤, i.e.

(∀x, y ∈ B)(∃z ∈ B)(x < y ⇒ x < z < y).

Thus B1,B2,B4 are dense while B3 is not.
In what follows we assume that A = (aij) ∈ B(m,n), b = (b1, ..., bm)T ∈ Bm; m,n ≥ 1

are integers. For convenience put

M = {1, 2, . . . ,m},
N = {1, 2, . . . , n},

Mj(A, b) = {i ∈ M ; aij > bi},
M̃j(A, b) = {i ∈ M ; aij ≥ bi}

for all j ∈ N . The symbol Ai for i ∈ M denotes the i-th row of A.

3 UNIQUELY SOLVABLE LINEAR SYSTEMS

Necessary and sufficient conditions for the solvability of linear systems were found in
[5] but this work does not provide any criterion for such a system to be uniquely solvable.
This problem will be solved in the present section.

Basic information is offered by the first lemma. In what follows we suppose that a (not
necessarily dense) bottleneck algebra is fixed.

Lemma 1 If |S(A, b)| = 1 then Mj(A, b) 6= ∅ for all j ∈ N .
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Proof. Suppose x = (x1, ..., xn)T ∈ S(A, b) and Mk(A, b) = ∅.
Take

x′ = (x1, ..., xk−1, α, xk+1, ..., xn)T

where α > xk. Then x′ ∈ S(A, b) because A⊗ x′ ≥ A⊗ x = b and Ai ⊗ x′ > bi would yield
aik ⊗ α > bi, which implies i ∈ Mk(A, b). Hence, x′ is another element of S(A, b), a contra-
diction.

If |S(A, b)| = 1 we denote for all j ∈ N

(i) min{bi ; i ∈ Mj(A, b)} by xj ;

(ii) {i ∈ Mj(A, b) ; bi = xj } by Ij(A, b);

(iii) {i ∈ M̃j(A, b) ; aij = bi = xj} by Kj(A, b);

(iv) Ij(A, b) ∪Kj(A, b) by Lj(A, b) or, shortly Lj .

Lemma 2 If |S(A, b)| = {x}, x = (x1, ..., xn)T then

xj = xj for all j ∈ N

and the system {L1, ..., Ln} is a minimal covering of the set L =
⋃

j∈N

Lj, i.e. for every

N ′ ⊆ N , N ′ 6= N we have ⋃
j∈N ′

Lj 6= L.

Proof. Clearly
xj ≤ xj for all j ∈ N (6)

for otherwise the relations

xj > xj = bi and aij > bi

would hold for some j ∈ N and i ∈ Mj(A, b), implying Ai ⊗ x > bi. To prove equality in
(6), suppose xk < xk for some k ∈ N . We show then that

x′ = (x1, ..., xk−1, xk, xk+1, ..., xn)T

is also an element of S(A, b). Clearly,

A⊗ x′ ≥ A⊗ x ≥ b.

At the same time the inequality

Ai ⊗ x′ > bi

for some i ∈ M would imply
min{aik, xk} > bi (7)

because
∑

j∈N,j 6=k

⊕
aij ⊗ xj ≤ bi. But (7) can hold neither for i /∈ Mk(A, b) (by the definition

of Mk(A, b)) nor for i ∈ Mk(A, b) since otherwise
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xk > bi ≥ min{bi ; i ∈ Mk(A, b)} = xk.

In order to prove the second part of the lemma take N ′ ⊆ N , N ′ 6= N and suppose that⋃
j∈N ′

Lj = L.

Let k ∈ N \N ′. To get a contradiction it is sufficient to show that

x′ = (x1, ..., xk−1, α, xk+1, ..., xn)T

is in S(A, b) where α = maxH if

H = {bi; aik = bi < xk}

is nonempty and α < xk is arbitrary if H = ∅. Obviously, A⊗x′ ≤ b. To prove the equality
take i ∈ M and distinguish the following cases.

(a) If i ∈ L then i ∈ Lr for some r ∈ N \ {k}. Thus either air > bi = xr or air = bi = xr

and hence Ai ⊗ x′ = bi.

(b) If i ∈ M \ L and aik > bi then xk < bi ( for otherwise i ∈ L).
Thus

air ⊗ xr = bi (8)

is fulfilled by some r ∈ N \ {k}.

(c) If i ∈ M \ L and aik = bi then xk 6= bi ( for otherwise i ∈ L). The inequality xk > bi

yields α ≥ bi and thus aik ⊗ α = bi, while xk < bi implies that an r ∈ N \ {k}
satisfying (8) exists.

(d) If i ∈ M \ L and aik < bi then again an r ∈ N \ {k} satisfying (8) exists.

The following lemma provides easily proved basic combinatorial properties.

Lemma 3 Let H1, ...,Hk be arbitrary finite sets and

H =
k⋃

j=1
Hj , |H| = l.

(a) If {H1, ...,Hk} is a minimal covering of H then k ≤ l.

(b) If k = l then {H1, ...,Hk} is a minimal covering of H if and only if H1, ...,Hk are
one-element and pairwise disjoint sets.

Lemma 4 If m = n and |S(A, b)| = 1 Then

I1(A, b), I2(A, b), . . . , In(A, b)

are one-element disjoint sets.

Proof. It follows from Lemma 2 that {L1, ..., Ln} is a minimal covering of the set
L ⊆ M = N . Part (a) of Lemma 3 yields now that L = M and hence from (b)
we get that L1, . . . , Ln are one-element and pairwise disjoint. It remains to recall that
I1(A, b), I2(A, b), . . . , In(A, b) are nonempty (Lemma 1).
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Corollary 1 If m = n and S(A, b) = {x} then there exists a permutation π ∈ Pn satisfying

ai,π(i) > bi = xπ(i)

Proof. It is sufficient to set π(i) = j such that

Ij(A, b) = {i}.

Lemma 5 If A,C ∈ B(m,n) and A is obtained from C by permuting the columns, then

|S(A, b)| = |S(C, b)|
for every b ∈ Bm.

Theorem 2 Let m = n, |S(A, b)| = 1 if and only if the inequalities

ai,π(i) > bi >
∑

j∈N,j 6=i

⊕
ai,π(j) ⊗ bj , i = 1, . . . , n (9)

are satisfied by at least one π ∈ Pn.

Proof. For the ”only if” statement it remains to show that the permutation π in
Corollary 1 satisfies

ai,π(j) ⊗ bj 6= bi (10)

for all i, j ∈ N, i 6= j. But equality would imply

ai,π(j) ⊗ xπ(j) = bi

and then

x′ = (x1, ..., xπ(i)−1, α, xπ(i)+1, ..., xn)T

with α < xπ(i) is also in S(A, b) because

A⊗ x′ ≤ A⊗ x = b,
Ar ⊗ x′ = ar,π(r) ⊗ xπ(r) = br

for r 6= i and

Ai ⊗ x′ = ai,π(j) ⊗ xπ(j) = bi,

a contradiction.

To prove the converse implication let us assume without loss of generality (Lemma 5)
that π = id. Then we have for all i ∈ N

aii > bi >
∑

j∈N,j 6=i

⊕
aij ⊗ bj

and hence b ∈ S(A, b). Clearly, for every x = (x1, . . . , xn)T ∈ S(A, b) all inequalities

xi ≤ bi; i = 1, . . . , n

hold because otherwise

Ai ⊗ x > bi

for some i ∈ N . At the same time whenever one of these inequalities is strict (say k-th)
then

Ak ⊗ x ≤ akk ⊗ xk ⊕
∑

j∈N,j 6=k

⊕
akj ⊗ bj < bk,

a contradiction. Therefore S(A, b) = {b}.
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4 TRAPEZOIDAL MATRICES

Definition 1 A matrix A ∈ B(n, n) will be called trapezoidal (see Fig.2) if for all r ∈ N

arr >
r∑

i=1

⊕ n∑
j=i+1

⊕
aij (11)

Figure 2: a trapezoidal matrix scheme

Matrices A,C ∈ B(m,n) are said to be equivalent (A ∼ C) if one of them can be
obtained from the other using only permutations of the rows and columns. The relation ∼
is evidently an equivalence relation and the following assertion can easily be verified.

Lemma 6 If A ∼ C then A is strongly regular if and only if C is strongly regular.

Theorem 3 A necessary condition for A ∈ B(n, n) to be strongly regular is the existence
of a trapezoidal matrix equivalent to A. If, moreover, ≤ is dense, then this condition is also
sufficient.

Proof. Suppose that b = (b1, . . . , bn)T is a vector from Bn satisfying |S(A, b)| = 1.
Obviously, there exists a permutation σ ∈ Pn for which

bσ(1) ≤ bσ(2) ≤ . . . ≤ bσ(n) (12)

and obviously

|S(A(σ, id), d)| = 1

after having denoted (bσ(1), bσ(2) . . . , bσ(n))T by (d1, d2, . . . , dn)T . It follows from Theorem 1
that for C = (cij) = A(σ, π) the inequalities

crr > dr >
∑

j∈N,j 6=r

⊕
cij ⊗ dj (13)

hold for some π ∈ Pn and for all r ∈ N . We show that C is trapezoidal. For this purpose
it suffices (by (13)) to prove that

dr >

r∑
i=1

⊕ n∑
j=i+1

⊕
cij (14)

for all r ∈ N . We will verify this by induction. For r = 1 inequality (14) follows from (13)
since (12) means in fact that

d1 ≤ d2 ≤ . . . ≤ dn. (15)

Suppose now that



STRONG REGULARITY OF MATRICES IN BOTTLENECK ALGEBRAS 9

dr−1 >
r−1∑
i=1

⊕ n∑
j=i+1

⊕
cij .

Since dr ≥ dr−1 it is sufficient to verify the inequality dr > crj for all j ∈ {r + 1, . . . , n}.
But these inequalities follow immediately from (13) and (15).

To prove the converse implication suppose that A ∼ C where C = cij is trapezoidal. It
is sufficient (Lemma 6) to prove that C is strongly regular. Denote the sum

r∑
i=1

⊕ n∑
j=i+1

⊕
cij

by Dr for all r ∈ N . Thus,
D1 ≤ D2 ≤ . . . ≤ Dr < crr (16)

for all r ∈ N . Let b = (b1, . . . , bn)T ∈ Bn be an arbitrary vector satisfying the inequalities

Dn < bn < cnn

and Di < bi < cii ⊗ bi+1 (17)

for i = n − 1, n − 2, . . . , 1 (whose existence follows from the assumption density of ≤ and
from (16)). Clearly b1 < b2 < . . . < bn implying the inequality

bi > cij ⊗ bj (18)

for j < i immediately. But (18) holds also for j > i because from (17) we have

bi > Di ≥ cij .

Hence

cii > bi ≥
∑

j∈N,j 6=i

⊕
cij ⊗ bj

holds for all i ∈ N and thus by Theorem 1 we conclude that |S(C, b)| = 1.

Remark 1 The second part of the just finished proof was constructive and the relations
(17) enable us to find a vector b satisfying |S(C, b)| = 1 using O(n2) operations.

Remark 2 One can easily see that a necessary and sufficient condition for a matrix
A = (aij) ∈ B(2, 2) to be equivalent to a trapezoidal matrix is

a11 ⊗ a22 6= a12 ⊗ a21

or, equivalently, |max(A)| = 1. This result corresponds to the one in the group case proved
in [2] but, unfortunately, it is not true in general in bottleneck algebras for matrices of
order n > 2. To see this, consider the matrix

A =

 3 2 2
6 4 3
6 6 4


in B1.
Here we have |max(A)| = 2 but A is trapezoidal (and hence strongly regular by Theorem 2).
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Nevertheless, it is possible to prove that |max(A)| = 1 implies the strong regularity of
A but the proof is beyond the scope of this paper.

Remark 3 The condition in Theorem 2 is in general not sufficient without the assump-
tion of density. This is demonstrated by the matrix

A =
(

1 0
0 1

)
in B3 which is trapezoidal but one can verify by an elementary use of Theorem 1 that A is
not strongly regular.
The following lemma shows that the permanent of a trapezoidal matrix can be computed
using only O(n) operations.

Lemma 7 If A = (aij) ∈ B(n, n) is trapezoidal then

per(A) =
∏

i∈N

⊗
aii

(and hence id ∈ max(A)).

Proof. Let arr =
∏

i∈N

⊗
aii and take an arbitrary π ∈ Pn. We show that

ai,π(i) ≤ arr (19)

for at least one i ∈ N . If π(i) > i for some i ∈ {1, . . . , r} then ai,π(i) < arr since A is
trapezoidal. If π(i) ≤ i for all i ∈ {1, . . . , r} then, of course, π(i) = i for all i ∈ {1, . . . , r}
yielding equality in (19) for i = r.

5 AN ALGORITHM FOR CHECKING STRONG REGULARITY

Theorem 2 provides a possibility to check the strong regularity by testing all (n!)2

pairs of rows and column permutations. But, this has, of course, no practical meaning
except for very small values of n. Therefore we now develop an efficient method for solving
this problem.

In what follows we denote for A = (aij) ∈ B(n, n) by p(A) the set

{i ∈ N ; (∃k ∈ N)(∀j ∈ N − {k}) aik ≥ per(A) > aij}

and Ai will be called a permanent row whenever i ∈ p(A). The element aik will be called
the leading entry of Ai. Similarly, the k − th column is said to be permanent if

aik ≥ per(A)

for some i ∈ p(A). Evidently, A ∼ C implies |p(A)| = |p(C)| because, by permuting the
rows, we only cause indices to change of permanent rows and a permutation of columns
does not lead to any change of p(A) at all.

Theorem 4 (a) If A ∈ B(n, n) is strongly regular then p(A) 6= ∅.

(b) If ≤ is dense and p(A) = N then A is strongly regular.
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Proof. (a) Let C = (cij) be a trapezoidal matrix equivalent to A. It follows from Lemma 7
that for some r ∈ N

c11 ≥ per(C) = crr > c1j

for all j ∈ N \ {1}. Hence 1 ∈ p(C) and it remains to recall that |p(A)| = |p(C)|.

(b) If r, s ∈ p(A), r 6= s and k, l ∈ N satisfy the relations

ark ≥ per(A), asl ≥ per(A)

then k 6= l for, otherwise, ar,π(r) < per(A) or as,π(s) < per(A) for arbitrary π ∈ Pn,
yielding w(A, π) < per(A) for every π ∈ Pn, a contradiction. Therefore, we can permute
the columns of A in such a way that in the obtained matrix C = (cij) the inequality

cii ≥ per(C) > cij (20)

holds for all i, j ∈ N , i 6= j. According to Theorem 2 it now suffices to show that C is
equivalent to a trapezoidal matrix. But this follows from (20) since it is sufficient to simul-
taneously permute the rows and columns so that the diagonal entries form a non-decreasing
sequence.

In the following we denote for A = aij ∈ B(n, n) the set

{(i, j); aij < per(A)}

by P (A). If P (A) 6= ∅ then b(A) denotes
∑

(i,j)∈P (A)

⊕
aij and thus b(A) < per(A).

Lemma 8 If A ∼ C then

(a) |P (A)| = |P (C)| and

(b) if, moreover, P (A) 6= ∅ then b(A) = b(C).

Proof. Trivial.

Lemma 9 If n > 1 and A ∈ B(n, n) is strongly regular then P (A) 6= ∅. Moreover, if
≤ is dense then there exists a vector b = (b1, . . . , bn)T ∈ Bn such that |S(A, b)| = 1 and
bi > b(A) for all i ∈ N .

Proof. Let C = (cij) be a trapezoidal matrix equivalent to A. It follows from Lemma 7 and 8
that to prove P (A) 6= ∅ one only has to realize that

(1, j) ∈ P (C) for all j ∈ {2, 3, . . . , n} 6= ∅.

Take arbitrary d = (d1, . . . , dn)T ∈ Bn defined by the formulas

Dn ⊕ b(A) < dn < cnn

and

Di ⊕ b(A) < di < cii ⊗ di+1
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for all i = n − 1, n − 2, . . . , 1 where D1, . . . , Dn have the same meaning as in the proof of
Theorem 2. The existence of d1, . . . , dn follows from (16), from

cii ≥ per(A) > b(A)

(cf. Lemma 7) and from the assumption of density. The equality |S(C, d)| = 1 can now
be verified in the same way as at the end of the proof of Theorem 2. If A = C(σ, π) then
|S(A, b)| = 1 where b = (b1, . . . , bn)T = (dπ(1), . . . , dπ(n))T .

Theorem 5 Let ≤ be dense. Suppose that A = (aij) ∈ B(n, n) can be written blockwise in
the form

A =
(

A11 A12

A21 A22

)
where A11 ∈ B(r, r), 1 ≤ r < n and

per(A) >
r∑

i=1

⊕ n∑
j=i+1

⊕
aij . (21)

Then A is strongly regular if and only if A22 is strongly regular.

Proof. Let A be strongly regular. Then by Theorem 1 and Lemma 9 there is a vector
b = (b1, . . . , bn)T and π ∈ Pn satisfying the following conditions for all i ∈ N :

bi > b(A) (22)

ai,π(i) > bi >
∑

j∈N,j 6=i

⊕
ai,π(j) ⊗ bj . (23)

Assumption (21) yields that
r∑

i=1

⊕ n∑
j=i+1

⊕
aij ≤ b(A). (24)

From (22), (23), (24) we get π(i) ≤ i for all i ∈ R = {1, 2, . . . , r}. Thus π is the identity
on R and

π′ = π � (N \R)

is a permutation of the set N \R. But then (23) implies for all i ∈ N \R

ai,π′(i) = ai,π(i) > bi >
∑

j∈N,j 6=i

⊕
ai,π(j) ⊗ bj ≥∑

j∈N\R,j 6=i

⊕
ai,π(j) ⊗ bj =

∑
j∈N\R,j 6=i

⊕
ai,π′(j) ⊗ bj

Hence, by Theorem 1 A22 is strongly regular.

Now let us suppose that A22 is strongly regular. Since permuting the last n − r rows
and columns of A does not change the validity of the assumptions of Theorem 4, without
loss of generality, we may assume that A22 is trapezoidal (Theorem 2), i.e.

akk >

k∑
i=r+1

⊕ n∑
j=i+1

⊕
aij (25)

for all k ∈ N \ R. It now suffices to show that A is trapezoidal. If π ∈ max(A) then it
follows from (21) that π is identity on R. Thus, if id /∈ max(A), i.e.
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w(A, id) < w(A, σ)

for some σ ∈ max(A) then σ � R is the identity and σ � N \R is a permutation σ′ satisfying

w(A22, id) < w(A22, σ
′)

which contradicts Lemma 7. Hence

akk ≥ per(A) >
r∑

i=1

⊕ n∑
j=i+1

⊕
aij

for all k ∈ N . By this (and (25)) the proof is completed.

Consequently, we are ready to formulate the algorithm for checking the strong reg-
ularity (SR) of a given matrix in the bottleneck algebra (B,⊕,⊗,≤) assuming that ≤ is
dense. Note that every matrix in B(1, 1) is strongly regular.

Algorithm

Input: C ∈ B(n, n);
Output: D ∈ B(n, n), D ∼ C, D trapezoidal, or an indication that C is not strongly
regular(SR).

(10) A := C; D := C.

(20) If n = 1 then C is SR, stop.

(30) Compute per(A) and p(A); r:= |p(A)|.

(40) If r = 0 then C is not SR, stop.

(50) Permute the rows and columns of A in such a way that the permanent rows and
columns will become the first r rows and columns and the leading entries of the per-
manent rows are on the diagonal.

(60) Perform also the corresponding permutation of the rows and columns of D and denote
the obtained matrix again by D = (dij).
If r = n then stop (D is trapezoidal and C is SR).

(70)

A :=

 dr+1,r+1 · · · dr+1,n
...

. . .
...

dn,r+1 · · · dn,n

 ; n := n− r; goto (20)

To illustrate the Algorithm consider the matrix C in B1.

C =



2 5 2 6 4 3
3 2 1 3 8 4
8 3 5 7 8 2
7 6 4 5 6 5
0 3 3 7 8 2
1 2 0 3 2 0


Using the Algorithm we will get successively
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A = C, per(A) = 3, p(A) = {6};

A =


2 5 2 4 3
3 2 1 8 4
8 3 5 8 2
7 6 4 6 5
0 3 3 8 2

 ; per(A) = 4, p(A) = {5} ;

A =


2 5 2 3
3 2 1 4
8 3 5 2
7 6 4 5

 ; per(A) = 4, p(A) = {1, 2} ;

A =
(

8 5
7 4

)
; per(A) = 5, p(A) = {2} ;

A = (5).
Hence C is SR and the trapezoidal matrix equivalent to C is

D =



3 2 2 0 1 0
7 8 3 2 0 3
6 4 5 3 2 2
3 8 2 4 3 1
5 6 6 5 7 4
7 8 3 2 8 5


Notice that after replacing, for instance c56 = 2 by 4 we get a matrix which is not SR

and the Algorithm would detect this in the second loop by finding p(A) = ∅.

6 CONCLUSION

We conclude with some remarks on the computional complexity. The value per(A) can
be determined using O(n2.5) operations [1], the set p(A) obviously by O(n2). The total
number of operations in all other steps does not exceed O(n2). Hence, in a single loop
((20) - (70)) not more than O(n2.5) operations are needed. Since in each loop we reduce
the order of the considered matrix by at least 1 we get that the algorithm will terminate
in the worst case after O(n3.5) operations.
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