
The alternating method for finding integer solutions

to two-sided max-linear systems

Peter Butkovič∗

p.butkovic@bham.ac.uk
Marie MacCaig

mxm779@bham.ac.uk

Abstract

For general matrices we show that we can adapt the Alternating Method
of [4] for finding real solutions to two-sided max-linear systems to obtain
algorithms for finding integer solutions.

1 Introduction

In max-algebra, for a, b ∈ R = R ∪ {−∞}, we define a⊕ b = max(a, b), a⊗ b =
a+ b and extend the pair (⊕,⊗) to matrices and vectors in the same way as in
linear algebra, that is (assuming compatibility of sizes)

(α⊗A)ij = α⊗ aij ,
(A⊕B)ij = aij ⊕ bij ,

(A⊗B)ij =
⊕
k

aik ⊗ bkj .

Except for complexity arguments all multiplications in this paper are in max-
algebra and where appropriate we will omit the ⊗ symbol. Note that α−1 stands
for −α, and for a vector γ we use γ−1 to mean the vector with entries γ−1

i . We
will use ε to denote −∞ as well as any vector or matrix whose every entry is
−∞. A vector/matrix whose every entry belongs to R is called finite as is any
scalar from R. An integer vector/matrix is a vector/matrix with all entries from
Z. If a matrix has no ε rows (columns) then it is called row (column) R-astic
and it is called doubly R-astic if it is both row and column R-astic [1, 3].

For a ∈ R the fractional part of a is fr(a) := a−bac. For a matrix A ∈ Rm×n

we use bAc (dAe) to denote the matrix with (i, j) entry equal to baijc (daije)
and similarly for vectors. We define bεc = ε = dεe.

A two-sided max-linear system (TSS) is of the form

Ax⊕ c = Bx⊕ d

where A,B ∈ Rm×n
and c, d ∈ Rm

. If c = d = ε then we say the system is
homogeneous, otherwise it is called nonhomogeneous. Nonhomogeneous systems

∗P. Butkovič supported by EPSRC grant RRAH15735

1

can be transformed to homogeneous systems [1]. If B ∈ Rm×k
a system of the

form
Ax = By

is called a system with separated variables.
The problem of finding solutions to

Ax = By (1)

and
Ax = Bx (2)

have been previously studied and one solution method is the Alternating Method
[1, 4]. We show that we can adapt the Alternating Method in order to obtain
algorithms which determine whether integer solutions to these problems exist,
and find one if it exists.

2 Preliminaries

We will use the following standard notation. For positive integers m,n we

denote M = {1, ...,m} and N = {1, ..., n}. If a, b ∈ R = R ∪ {+∞} then we
define a⊕′ b = min(a, b) and a⊗′ b = a+b if at least one of a, b is finite, (−∞)⊗
(+∞) = (+∞) ⊗ (−∞) = −∞ and (−∞) ⊗′ (+∞) = (+∞) ⊗′ (−∞) = +∞.
The pair of operations (⊕′,⊗′) is extended to matrices and vectors similarly as

(⊕,⊗). For A ∈ R
m×n

we define A# = −AT ∈ R
n×m

. It can be shown [1, 3]
that (A⊗B)# = B# ⊗′ A#.

Next we give an overview of some basic properties.

Lemma 2.1 Let A ∈ Rm×n
, x ∈ Rn.

(a) If A is row R-astic then A⊗ x is finite.
(b) If A is column R-astic then A# ⊗′ x is finite.

Proof. Straighforward from the definitions. �

Lemma 2.2 [1, 3] If A ∈ Rm×n
and x, y ∈ Rn

then

x ≤ y ⇒ A⊗ x ≤ A⊗ y and A⊗′ x ≤ A⊗′ y.

Corollary 2.3 [1, 3] If A,B ∈ Rm×n
and x ≤ y then

B# ⊗′ (A⊗ x) ≤ B# ⊗′ (A⊗ y).

Lemma 2.4 [1] Let A,B ∈ Rm×n
, c, d ∈ Rm

. Then there exists x ∈ Rn

satisfying Ax ⊕ c = Bx ⊕ d if and only if there exists z ∈ Rn+1 satisfying
(A|c)z = (B|d)z.

2

For any matrices of compatible sizes [1, 3],

X ⊗ (X# ⊗′ Y) ≤ Y, (3)

X ⊗ (X# ⊗′ (X ⊗ Z)) = X ⊗ Z, (4)

If A ∈ Rm×n
and b ∈ Rm then for all j ∈ N define

Mj(A, b) = {k ∈M : akj ⊗ b−1
k = max

i
aij ⊗ b−1

i }.

Proposition 2.5 [2] Let A ∈ Rm×n
, b ∈ Rm and x̄ = A# ⊗′ b.

(a) An integer solution to Ax ≤ b exists if and only if x̄ is finite. If an
integer solution exists then all integer solutions can be described as the integer
vectors x satisfying x ≤ x̄.

(b) An integer solution to Ax = b exists if and only if⋃
j:x̄j∈Z

Mj(A, b) = M.

If an integer solution exists then all integer solutions can be described as the
integer vectors x satisfying x ≤ x̄ with⋃

j:xj=x̄j

Mj(A, b) = M.

We define x̂ = bA# ⊗′ bc. Then from Proposition 2.5 and (4) we conclude:

Corollary 2.6 Let A ∈ Rm×n
, b ∈ Rm

, c ∈ Zn. Then the following hold:
(a) x̂ is the greatest integer solution to Ax ≤ b (provided x̂ is finite).
(b) Ax = b has an integer solution if and only if x̂ is an integer solution.
(c) A⊗ bA# ⊗′ (A⊗ c)c = A⊗ c.

Consider the matrix inequality AX ≤ B where A ∈ Rm×n
, B ∈ Rm×k

,

X ∈ Rn×k
and let X̂ = bA# ⊗′ Bc. This system can be written as a set of

inequalities of the form Ax ≤ b in the following way using the notation Xr, Br

to denote the rth column of X and B respectively:

AXr ≤ Br, r = 1, ..., k.

This allows us to state the following result.

Corollary 2.7 Let A ∈ Rm×n
, B ∈ Rm×k

, C ∈ Zn×k. Then the following hold:
(a) X̂ is the greatest integer solution to AX ≤ B (provided X̂ is finite), that

is A⊗ bA# ⊗′ Bc ≤ B.
(b) AX = B has an integer solution if and only if X̂ is an integer solution.
(c) A⊗ bA# ⊗′ (A⊗ C)c = A⊗ C.

3

3 Alternating Method for Integer Solutions

In this section we show that the Alternating Method [1, 4] can be easily adapted
to design algorithms that determine whether integer solutions to (1) or (2) exist,
and if so find one. For the rest of this section we follow similar arguments as
in [1] and [4].

If the ith row of either A or B is ε then we have (Ax)i = ε = (By)i which,
since x and y are finite, means that the ith row of the other matrix is also ε.
Thus we may remove the redundant ith equation from the equality. If instead
either of A or B has an ε column then this column may be removed without
affecting the solution. Hence we assume without loss of generality that A,B
are doubly R-astic.

3.1 Systems with separable variables

We propose the following algorithm to find integer solutions to the system with
separated variables (1):

Algorithm: SEP-INT-TSS

Input: A ∈ Rm×n
, B ∈ Rm×k

doubly R-astic, any starting vector x(0) ∈ Zn.
Output: An integer solution (x, y) to Ax = By or indication that no such

solution exists.
1. r := 0.
2. y(r) := bB# ⊗′ (A⊗ x(r))c.
3. x(r + 1) := bA# ⊗′ (B ⊗ y(r))c.
4. If xi(r + 1) < xi(0) for all i ∈ N then STOP (no solution).
5. If A⊗ x(r + 1) = B ⊗ y(r) then STOP (solution found).
6. Go to 2.

In order to prove the correctness of this algorithm we will first prove a number
of lemmas. Note that during the run of the algorithm x, y will always be finite
vectors by Lemma 2.1. Recall that, from Corollary 2.6, for matrices X,Y, Z of
compatible sizes, where Z is an integer matrix we have that:

X ⊗ bX# ⊗′ Y c ≤ Y, (5)

X ⊗ bX# ⊗′ (X ⊗ Z)c = X ⊗ Z, (6)

As in [4] we define operators π, ψ as follows:

π : y → bA# ⊗′ (B ⊗ y)c
ψ : x→ bB# ⊗′ (A⊗ x)c

so that
x(r + 1) = π(y(r)) (7)

and
y(r) = ψ(x(r)). (8)

Note that both π and ψ are monotone functions by Corollary 2.3.
For x ∈ Rn, y ∈ Rk we define a pair (x, y) to be stable if (x, y) = (π(y), ψ(x)).

4

Lemma 3.1 Every stable pair (x, y) is a solution

Proof. Let (x, y) be stable, clearly x, y are integer vectors. Using (5) twice
we get

A⊗ x = A⊗ π(y) = A⊗ bA# ⊗′ (B ⊗ y)c ≤ B ⊗ y = B ⊗ ψ(x) ≤ A⊗ x.

Thus A⊗ x = B ⊗ y. �

A stable integer solution is a stable pair of integer vectors (x, y) satisfying
(1).

Lemma 3.2 If (x, y) is an integer solution then (π(y), ψ(x)) is a stable integer
solution.

Proof. Assume (x, y) is an integer solution. By Lemma 3.1 we need only
to show that (π(y), ψ(x)) is stable. Using (6) together with the fact that x is
integer we get that

ψ(π(y)) = ψ(bA# ⊗′ (B ⊗ y)c) = bB# ⊗′ (A⊗ bA# ⊗′ (B ⊗ y)c)c
= bB# ⊗′ (A⊗ bA# ⊗′ (A⊗ x)c)c
= bB# ⊗′ (A⊗ x)c = ψ(x).

We can also apply a similar argument to show that π(ψ(x)) = π(y) and thus
(π(y), ψ(x)) is stable as required. �

Lemma 3.3 The sequence {A(x(r))}r=0,1,... produced by Algorithm SEP-INT-
TSS is nonincreasing.

Proof. Using (5) we obtain

A⊗ x(r + 1) = A⊗ bA# ⊗′ (B ⊗ y(r))c ≤ B ⊗ y(r)

= B ⊗ bB# ⊗′ (A⊗ x(r))c ≤ A⊗ x(r).

�

Lemma 3.4 The sequence {x(r)}r=0,1,...produced by Algorithm SEP-INT-TSS
is nonincreasing.

Proof. x(r + 1) = π(bB# ⊗′ (A⊗ x(r))c). Now A⊗ x(r) is nonincreasing by
Lemma 3.3 and so B# ⊗′ (A ⊗ x(r)) is nonincreasing. Since π is monotone it
holds that x(r + 1) ≤ x(r). �

5

Lemma 3.5 If a solution exists then the sequence {x(r)}r=0,1,... is lower bounded
for any x(0).

Proof. Firstly let (x, y) be a stable integer solution (exists by Lemma 3.2)
and let α ∈ Z. We claim that α ⊗ (x, y) is also a stable integer solution. Note
that

α⊗ x = α⊗ π(y) = α⊗ bA# ⊗′ (B ⊗ y)c
= bα⊗ (A# ⊗′ (B ⊗ y))c
= bA# ⊗′ (B ⊗ (α⊗ y))c = π(α⊗ y).

Similarly α⊗ y = ψ(α⊗ x) and hence the claim holds by Lemma 3.1.
We prove the lemma by induction on r.
Note we may choose α as above small enough so that α ⊗ x ≤ x(0) and so

if r = 0 then the statement holds. So now assume that a solution, and thus
a stable solution, exists and that x(r) ≥ u for some stable solution (u, v) with
u ≤ x(0). Then

x(r + 1) = π(ψ(x(r)) = π(bB# ⊗′ (A⊗ x(r))c)
≥ π(bB# ⊗′ (A⊗ u)c)
= π(ψ(u)) = π(v) = u.

Thus by induction the statement holds. �

Theorem 3.6 If all components of x(r) or y(r) have properly decreased after
a number of steps of Algorithm SEP-INT-TSS then (1) has no solution.

Proof. In the proof of Lemma 3.5 we saw that if a solution exists {x(r)}r=0,1,...

can be bounded below by αx where αx ≤ x(0). Choose α so that αx ≤ x(0)
and there is equality in at least one component. Then since {x(r)}r=0,1,... is
nonincreasing this component will not change during the run of the algorithm
if a solution can be found.

The sequence {y(r)}r=0,1,... satisfies the same properties as {x(r)}r=0,1,...

and so an identical argument can be applied. �

We can now prove that Algorithm SEP-INT-TSS is correct.

Theorem 3.7 The integer sequence {(x(r), y(r))}r=0,1,... generated by Algo-
rithm SEP-INT-TSS finitely converges if and only if an integer solution exists.
Convergence is monotonic, to a stable solution, for any choice of x(0) ∈ Zn.

Proof.
If a solution exists then monotonic convergence of {x(r)}r=0,1,... follows from

Lemmas 3.4 and 3.5. The convergence is finite since we are dealing with integer
vectors, and at least one component decreases by at least 1 each time until the
limit is reached. Similar arguments can be applied to {y(r)}r=0,1,....

If (x(r), y(r)) → (z1, z2) and the convergence is finite then there exists
s ∈ N such that for all r ≥ s we have x(r) = x(r + 1) = x(r + 2) = ... = z1 and

6

y(r) = y(r + 1) = y(r + 2) = ... = z2. We show that (z1, z2) is stable and thus
an integer solution. By (7) and (8),

π(z2) = π(y(s)) = x(s+ 1) = z1 and ψ(z1) = ψ(x(s)) = y(s) = z2.

�

We now calculate the complexity of Algorithm SEP-INT-TSS.

Theorem 3.8 If A ∈ Rm×n, B ∈ Rm×k
and Algorithm SEP-INT-TSS starts

with x(0) ∈ Zn then it will terminate after at most

(n− 1)(1 + γ# ⊗A# ⊗A⊗ γ)

iterations where γ = x(0).

Proof. Suppose that a solution exists. From Theorem 3.6 we know that there
exists an index, k say, such that xk(r) = xk(0) = γk for all r. The algorithm
halts when Ax does not change, which occurs at the latest when all xj with
j 6= k have decreased enough so that they are no longer active in any row. This
happens when

(∀i ∈M)(∀j ∈ N) aij + xj ≤ aik + γk.

Equivalently

(∀j ∈ N) xj ≤ min
i

(aik + γk − aij) = (A# ⊗′ A)jk + γk := ujk.

Since the value of k is unknown we can guarantee that xj no longer influences
the product Ax if it satisfies

xj ≤ min
k
ujk = min

k
((A# ⊗′ A)jk + γk) = (A# ⊗′ A⊗′ γ)j := µj .

Note that we require A to be finite here so that the value of µj is finite.
Finally we know that there are at most n− 1 components of x(0) that will

decrease during the run of the algorithm, and in each iteration where a solution
is not found at least one component will decrease by a value of at least 1.
Therefore the total number of iterations possible is

(n− 1) max
j
γj − µj + 1 = (n− 1)(1 + µ# ⊗ γ)

= (n− 1)(1 + γ# ⊗A# ⊗A⊗ γ) := D.

If instead no solution exists then after D iterations the value of Ax is still
changing and the components of x have all decreased below the corresponding
values of x(0). Thus the algorithm halts within D iterations with the conclusion
that no solution exists. �

7

To calculate a formula for the complexity we first consider when

γ# ⊗A# ⊗A⊗ γ

is minimised. Let C = A# ⊗A. From [1] we have that, for any finite subeigen-
vector z of C corresponding to λ(C),

min
x∈Rn

x# ⊗ C ⊗ x = z# ⊗ C ⊗ z = λ(C).

Let z ∈ V ∗(C, λ(C)). Then since we know that, for x, y ∈ R,

bxc − byc ≤ x− y + 1,

we have

min
i,j

(−bzic+ cij + bzjc) ≤ min
i,j

(−zi + cij + zj + 1) ≤ λ(C) + 1,

which implies that
bzc# ⊗ C ⊗ bzc ≤ λ(C) + 1.

For any matrix Y ∈ Rm×n define

K(Y) =

⌈
max{|yij | : i ∈M, j ∈ N}

⌉
. (9)

Observe that if Y is square then |λ(Y)| ≤ K(Y) and hence λ(C) ≤ K(C) ≤
2K(A).

The number of operations required for one iteration (steps 2-5 in the algo-
rithm) is

O((mn+mk + k) + (mn+mk + n) + n+ (mn+mk +m)).

Therefore using the above results we get that the number of iterations is
bounded by

(n− 1)(1 + λ(A# ⊗A) + 1) ≤ (n− 1)(2 + 2K(A)).

Thus the complexity of the Algorithm SEP-INT-TSS is

2(1 +K(A))(n− 1)O(mn+mk +m+ n+ k) = O(mn(n+ k)K(A)).

3.2 General two sided systems

Lemma 2.4 allows us to write any general two-sided system as a homogeneous
system, (2), so it is sufficient to develop a method to find integer solutions to
homogeneous systems. The following statement is obvious.

Proposition 3.9 Let A,B ∈ Rm×n
. The problem of finding x ∈ Zn satisfying

Ax = Bx is equivalent to finding x ∈ Zn, y ∈ Rm such that(
A
B

)
x =

(
I
I

)
y

where I ∈ Rm×m
.

8

We propose the following algorithm to find integer solutions to (2).

Algorithm: GEN-INT-TSS
Input: A′, B′ ∈ Rm×n

doubly R-astic, I ∈ Rm×m
, any starting vector x(0) ∈

Zn.
Output: A solution x ∈ Zn to A′x = B′x or indication that no such vectors

exist.

1. r := 0, A :=

(
A′

B′

)
, B :=

(
I
I

)
.

2. y(r) := B# ⊗′ (A⊗ x(r)).
3. x(r + 1) := bA# ⊗′ (B ⊗ y(r))c.
4. If xi(r + 1) < xi(0) for all i ∈ N then STOP (no solution).
5. If A⊗ x(r + 1) = B ⊗ y(r) then STOP (solution found).
6: Go to (2).

Note that A ∈ R2m×n
, B ∈ R2m×m

and during the run of the algorithm x, y
will always be finite vectors since we begin with an integer vector, and always
multiply by doubly R-astic matrices.

Similarly as before we define monotone functions

π : y → bA# ⊗′ (B ⊗ y)c
ψ : x→ B# ⊗′ (A⊗ x)

so that (7) and (8) still hold.
For x ∈ Rn, y ∈ Rm we define a pair (x, y) to be stable if (x, y) = (π(y), ψ(x)),

and hence x ∈ Zn. A stable solution is a stable pair of vectors (x, y) that are a
solution to Ax = By (hence x is an integer solution to A′x = B′x).

Lemmas 3.10-3.14 and Theorem 3.15 below hold by almost identical ar-
guments to their counterparts in Subsection 3.1, sometimes using (3) and (4)
instead of (5) and (6).

Lemma 3.10 Every stable pair (x, y) is a solution to Ax = By

Lemma 3.11 If (x, y) is a solution then (π(y), ψ(x)) is a stable solution.

Lemma 3.12 The sequence {A(x(r))}r=0,1,... produced by Algorithm GEN-INT-
TSS is non increasing.

Lemma 3.13 The sequence {x(r)}r=0,1,... produced by Algorithm GEN-INT-
TSS is non increasing.

Lemma 3.14 If a solution exists then the sequence {x(r)}r=0,1,... is lower bounded
for any x(0).

Theorem 3.15 If all components of x(r) have properly decreased after a num-
ber of steps of Algorithm GEN-INT-TSS then neither Ax = By, nor A′x = B′x,
has a solution when x is integer.

We can now prove the correctness of Algorithm GEN-INT-TSS.

9

Theorem 3.16 The integer sequence {(x(r)}r=0,1,... generated by Algorithm
GEN-INT-TSS finitely converges if and only if an integer solution to A′x = B′x
exists. Convergence is monotonic, to a stable solution (x, y) of Ax = By, for
any choice of x(0) ∈ Zn.

Proof.
If an integer solution to A′x = B′x exists then a solution to Ax = By

exists where x ∈ Zn, y ∈ Rm and hence monotonic convergence of {x(r)}r=0,1,...

follows from Lemmas 3.13 and 3.14. The convergence is finite since we are
dealing with integer vectors, meaning that at least one component decreases by
at least one each time until the limit is reached.

For the other direction suppose x(r) → z1 and the convergence is finite.
Then there exists s ∈ N such that

(∀r ≥ s) x(r) = x(r + 1) = x(r + 2) = ... = z1.

Further, for all r ≥ s we have y(r) = ψ(x(r)) = ψ(x(r + 1)) = y(r + 1) and
hence the sequence y(r)r=0,1,... finitely converges, y(r)→ z2 say.

We show that (z1, z2) is stable and thus a solution to Ax = By. This is true
since, by (7) and (8),

π(z2) = π(y(s)) = x(s+ 1) = z1 and ψ(z1) = ψ(x(s)) = y(s) = z2.

Therefore Az1 = Bz2 which implies A′z1 = B′z1 as required. �

Theorem 3.17 If A′, B′ ∈ Rm×n and Algorithm GEN-INT-TSS starts with
x(0) ∈ Zn then it will terminate after at most

(n− 1)(1 + γ# ⊗A# ⊗A⊗ γ)

iterations where

A =

(
A′

B′

)
, γ = x(0).

Proof. Follows the lines of that of Theorem 3.8. �

We can also argue as before that if A is finite (if A′ and B′ are finite)
and we start Algorithm GEN-INT-TSS with a vector bzc where z is a finite
subeigenvector of C = A# ⊗A then the complexity is

O(m′n′(n′ + k′)K(A))

where m′ = 2m,n′ = n, k′ = m.

Corollary 3.18 Algorithm GEN-INT-TSS terminates after

O(K(A′|B′)(mn(m+ n)))

operations, if applied to instances where both of the matrices A′, B′ are finite.

10

Bibliography

[1] P. Butkovič, Max-linear Systems: Theory and Algorithms, Springer-Verlag,
London, 2010.

[2] P. Butkovič, M. MacCaig On integer eigenvectors and subeigenvectors in
the max-plus algebra

[3] R. A. Cuninghame-Green, Minimax algebra, Lecture notes in economics and
math systems, Vol. 166, Springer, Berlin, 1979.

[4] R. A. Cuninghame-Green, P. Butkovič, The equation Ax = By over
(max,+), Theoretical Computer Science, 293, 3-12.

11

