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Abstract We study the existence of integer solutions to max-linear optimization

problems. Specifically, we show that, in a generic case, the integer max-linear op-

timization problem can be solved in strongly polynomial time. This extends results

from our previous papers where polynomial methods for this generic case were given.
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1 Introduction

In the max-algebraic setting we take maximization as our addition operation, ad-

dition as our multiplication operation and work with the set of extended reals; the

real numbers extended by −∞. Max-algebra (also called tropical linear-algebra) is a

rapidly evolving area of idempotent mathematics, linear algebra and applied discrete

mathematics. Its creation was motivated by the need to solve a class of non-linear

problems in mathematics, operational research, science and engineering [1–4].

The question of finding integer solutions to max-linear systems of equations was

first addressed in [5]. Equations in max algebra are useful to model, for example,

Both authors supported by EPSRC grant EP/J00829X/1.

P. Butkovic (corresponding author)
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
E-mail: P.Butkovic@bham.ac.uk
M. MacCaig
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
E-mail: mxm779@bham.ac.uk



2 P. Butkovic, M. MacCaig

scheduling problems and therefore finding integer solutions is applicable to real world

examples.

The two-sided system (TSS) in max-algebra is a matrix equation whose solution

can be used to describe, for example, the starting times of a synchronized system of

machines. The study of its solutions is also of interest since it is known that two-

sided systems in max-algebra are equivalent to mean payoff games [6,7]. Mean payoff

games are a well known problem in NP ∩ co-NP and the existence of a polynomial

algorithm for finding a solution remains open. Combinatorial simplex algorithms for

solving mean payoff games were discussed in [8].

The problems of finding solutions to two-sided max-linear systems have been pre-

viously studied and one solution approach is to use the Alternating Method [9,10].

If A and B are integer matrices, then the solution found by this method is integer,

however, this cannot be guaranteed if A and B are real. The Alternating Method can,

however, be adapted [11] in order to find integer solutions to two-sided systems. These

methods find solutions in pseudopolynomial time if the input matrices are finite.

Note that various other methods for solving TSS are known [12–14], but none of

them has been proved polynomial and there is no obvious way of adapting them to

integrality constraints. In [11], a generic class of matrices was defined for which it

could be determined, in strongly polynomial time, whether an integer solution to a

two-sided system exists, and find one if it does. The current paper extends the use of

this generic case to max-linear optimization problems with constraints in the form of

a two-sided system.

The max-linear optimization problem (MLOP) is a problem seeking to maximize,

or minimize, the value of a max-linear function subject to a two-sided constraint.

Note that in other literature this is also known as a max-linear programming problem.

Without the integrality constraint, solution methods to solve the MLOP are known,

for example in [9,15], a bisection method is applied to obtain an algorithm that

finds an approximate solution to the MLOP. Solutions using simplex methods were

described in [8]. Also, a Newton type algorithm has been designed [16] to solve a more

general, max-linear fractional optimization problem by a reduction to a sequence of

mean payoff games. For integer solutions a pseudopolynomial algorithm was described

in [11]. In this paper we describe a strongly polynomial solution method in a generic
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case. It remains open to find a polynomial algorithm to solve a general max-linear

optimization problem with two-sided constraints.

2 Defining the Problem

In max-algebra, for a, b ∈ R = R∪{−∞}, we define a⊕b := max(a, b), a⊗b := a+b and

extend the pair (⊕,⊗) to matrices and vectors in the same way as in linear algebra,

that is (assuming compatibility of sizes),

(A⊕B)ij := aij ⊕ bij ,

(A⊗B)ij :=
⊕
k

aik ⊗ bkj and

(α⊗A)ij := α⊗ aij .

Except for computational complexity arguments, all multiplications in this paper are

in max-algebra and, where appropriate, we will omit the ⊗ symbol. Note that α−1

stands for −α.

We will use ε to denote −∞ as well as any vector or matrix whose every entry is

−∞. Note that ε is the max-algebraic additive identity, and 0 is the max-algebraic

multiplicative identity. A vector/matrix whose every entry belongs to R is called finite.

A vector whose jth component is zero and every other component is ε will be called

a max-algebraic unit vector, and denoted ej . We use 0 to denote the all zero vector of

appropriate size. An n× n matrix in the max algebra is called diagonal, and denoted

by diag(d1, ..., dn) = diag(d), if and only if its diagonal entries are d1, ..., dn ∈ R and off

diagonal entries are ε (that is −∞). The max-algebraic identity matrix of appropriate

size is I := diag(0, ..., 0).

For a ∈ R, the fractional part of a is fr(a) := a− bac, where b·c denotes the lower

integer part. We extend these definitions to include ε = −∞ by defining

bεc := ε, dεe := ε and fr(ε) := ε.

For a matrix A ∈ Rm×n
, we use bAc (dAe) to denote the matrix with (i, j) entry equal

to baijc (daije) and similarly for vectors.
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In this paper a vector x ∈ Rn
is understood to be a column vector. Its transpose

is denoted xT ∈ R1×n
. Similarly for a matrix A ∈ Rm×n

its transpose is AT ∈ Rn×m
.

A two-sided max-linear system is of the form

Ax⊕ c = Bx⊕ d

where A,B ∈ Rm×n
and c, d ∈ Rm

. If c = d = ε, then we say the system is homogeneous,

otherwise it is called nonhomogeneous. Nonhomogeneous systems can be transformed

to homogeneous systems [9]. If B ∈ Rm×k
, a system of the form

Ax = By

is called a system with separated variables.

If f ∈ Rn
, then the function f(x) = fT⊗x is called a max-linear function. Max-linear

optimization problems seek to minimize, or maximize, a max-linear function subject to

constraints given by max-linear equations described by TSS. Throughout this paper

the input of an MLOP will always be finite matrices and vectors.

The integer max-linear optimization problem (IMLOP) is given by

fT ⊗ x→ min or max

s.t. Ax⊕ c = Bx⊕ d, x ∈ Zn

where A,B ∈ Rm×n, c, d ∈ Rm, f ∈ Rn. We will use IMLOPmin to mean the problem

minimizing fT x and IMLOPmax to mean the problem maximizing fT x.

One example of an application of the TSS and the IMLOP is the multiprocessor

interactive system (MPIS) [1,9], which can be described as follows.

Products P1, ..., Pm are made up of a number of components which are prepared

using n processors. Each processor contributes to the final product Pi by producing

one of its components. We assume processors work on a component for every product

simultaneously and that work begins on all products as soon as the processor is

switched on.

Let aij be the time taken for the jth processor to complete its component for

Pi (i = 1, ...,m; j = 1, ..., n). Denote the starting time of the jth processor by xj
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(j = 1, ..., n). Then, for each product Pi, all components will be completed at time

max(x1 + ai1, ..., xn + ain).

Further, k other processors prepare components for products Q1, ..., Qm with dura-

tion and starting times denoted by bij and yj respectively. The synchronization problem

is to find starting times of all n+k processors so that each pair (Pi, Qi) (i = 1, ...,m) is

completed at the same time. This task is equivalent to solving the system of equations

max(x1 + ai1, ..., xn + ain) = max(y1 + bi1, ..., yk + bik) (i = 1, ...,m).

Additionally, we can introduce deadlines ci and di, writing the equations as

max(x1 + ai1, ..., xn + ain, ci) = max(y1 + bi1, ..., yk + bik, di) (i = 1, ...,m),

or equivalently, Ax⊕ c = By ⊕ d. For ci = di, this indicates that the synchronization

of Pi and Qi is only required after the deadline di. The case ci < di [ci > di] is similar,

but additionally models the requirement that Pi [Qi] is not completed before time di

[ci].

When solving the MPIS it may be required that the starting times are restricted

to discrete values, in which case we would want to look for integer solutions to the

TSS.

In applications it may also be required that the starting times of the MPIS are

optimized with respect to a given criterion. As an example, suppose that all processors

in an MPIS should begin as soon [late] as possible, that is, the latest starting time of

a processor is as small [big] as possible. In this case we would set f = 0 and seek to

minimize [maximize] fT x = max(x1, ..., xn).

With this extra requirement we obtain the MLOP,

fT ⊗ x→ min or max

s.t. Ax⊕ c = Bx⊕ d.

It is important to note that throughout this paper an integer solution is a finite

solution, x ∈ Zn, and so does not contain ε components. For the problems described

above it would also be valid to ask when there is a solution with entries from Z∪{ε},

but we do not deal with this task here.
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3 Preliminary Results

We will use the following standard notation and terminology based on [1,9]. For

positive integers m,n, k, we denote M = {1, ...,m}, N = {1, ..., n} and K = {1, ..., k}.

If A = (aij) ∈ Rn×n
, then λ(A) denotes the maximum cycle mean, that is,

λ(A) := max

{
ai1i2 + ...+ aiti1

t
: i1, ..., it ∈ N, t = 1, ..., n

}
.

The maximum cycle mean can be calculated in O(n3) time [17], see also [9]. If λ(A) =

0, then we say that A is definite. For a definite matrix we define

A∗ := I ⊕A⊕A2 ⊕ ...⊕An−1,

where I is the max-algebraic identity matrix. Using the Floyd-Warshall algorithm;

see, e.g., [9], A∗ can be calculated in O(n3) time.

If a, b ∈ R = R∪{+∞}, then we define a⊕′ b := min(a, b). Moreover, a⊗′ b := a+ b

exactly when at least one of a, b is finite, otherwise

(−∞)⊗′ (+∞) := +∞ and (+∞)⊗′ (−∞) := +∞.

This differs from max-multiplication where

(−∞)⊗ (+∞) := −∞ and (+∞)⊗ (−∞) := −∞.

For A ∈ R
m×n

, we define Aj to be the jth column of A. Further

A# := −AT ∈ R
n×m

and A(−1) := −A ∈ R
m×n

.

Similarly for γ ∈ R
n

we denote γ(−1) = −γ ∈ R
n

. For a scalar α, there is no difference

between α−1 and α(−1).

Given a solution x to Ax = b, we say that a position (i, j) is active with respect

to x if and only if aij + xj = bi, it is called inactive otherwise. It will be useful in this

paper to talk about the entries of the matrix corresponding to active positions and

therefore we say that an element/entry aij of A is active if and only if the position

(i, j) is active. In the same way we call a column Aj active exactly when it contains an
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active entry. We also say that a component xj of x is active in the equation Ax = Bx

if and only if there exists i such that either aij + xj = (Bx)i or (Ax)i = bij + xj .

Lastly, xj is active in fT x if and only if fjxj = fT x.

Next we give an overview of some basic properties.

Proposition 3.1. [1,9] If A ∈ Rm×n
and x, y ∈ Rn

, then

x ≤ y ⇒ A⊗ x ≤ A⊗ y and A⊗′ x ≤ A⊗′ y.

Corollary 3.1. [9] If f ∈ Rn
and x, y ∈ Rn

, then

x ≤ y ⇒ fT x ≤ fT y.

Lemma 3.1. [9] Let A,B ∈ Rm×n
, c, d ∈ Rm

. Then there exists x ∈ Rn satisfying

Ax⊕ c = Bx⊕ d if and only if there exists z ∈ Rn+1 satisfying (A|c)z = (B|d)z.

Theorem 3.1. [11] In IMLOPmin, with finite input, fmin = −∞ if and only if c = d.

Theorem 3.2. [11] In IMLOPmax, with finite input, fmax = +∞ if and only if there

exists an integer solution to Ax = Bx.

If A ∈ Rm×n
and b ∈ Rm, then, for all j ∈ N , define

Mj(A, b) := {t ∈M : atjb
−1
t = max

i
aijb
−1
i }.

Proposition 3.2. [5] Let A ∈ Rm×n
, b ∈ Rm and

x̄ := A# ⊗′ b.

(a) An integer solution to Ax ≤ b always exists. All integer solutions can be

described as the integer vectors x satisfying x ≤ x̄.

(b) If, moreover, A is doubly R-astic, then an integer solution to Ax = b exists if

and only if ⋃
j:x̄j∈Z

Mj(A, b) = M.
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If an integer solution exists, then all integer solutions can be described as the integer

vectors x satisfying x ≤ x̄ with

⋃
j:xj=x̄j

Mj(A, b) = M.

A vector x ∈ Rn
[x ∈ Zn] satisfying Ax ≤ λx, x 6= ε, is called an [integer] subeigen-

vector of A with respect to subeigenvalue λ. Since integer vectors are finite we deal

only with finite subeigenvectors here. The set of all finite [integer] subeigenvectors

with respect to subeigenvalue λ is denoted

V ∗(A, λ) := {x ∈ Rn : Ax ≤ λx}

[IV ∗(A, λ) := {x ∈ Zn : Ax ≤ λx}].

Existence of [integer] subeigenvectors can be determined, and the whole set can be

described, in polynomial time using the following result.

Theorem 3.3. [5,9] Let A ∈ Rn×n
, λ ∈ R.

(i) V ∗(A, λ) 6= ∅ if and only if

λ(λ−1A) ≤ 0.

(ii) If V ∗(A, λ) 6= ∅, then

V ∗(A, λ) = {(λ−1A)∗u : u ∈ Rn}.

(iii) IV ∗(A, λ) 6= ∅ if and only if

λ(dλ−1Ae) ≤ 0.

(iv) If IV ∗(A, λ) 6= ∅, then

IV ∗(A, λ) = {dλ−1Ae∗z : z ∈ Zn}.

We will need the following immediate corollary.
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Corollary 3.2. If A is integer and λ(A) ≤ 0, then

IV ∗(A, 0) = {A∗z : z ∈ Zn}.

For any TSS we can deduce a simple criterion for when no integer solution exists.

This idea is key in proving the main results of the paper.

Proposition 3.3. [11] Let A ∈ Rm×n
, B ∈ Rm×k

. If

(∃i ∈M)(∀j ∈ N, t ∈ K) fr(aij) 6= fr(bit) and aij , bit ∈ R,

then neither Ax = By nor (if n = k) Ax = Bx has an integer solution.

Observe that, if either matrix has an ε row, row i say, then the existence of an

integer solution would imply that the other matrix also has its ith row equal to ε. In

this case, the ith row of the equation Ax = Bx can be removed without affecting the

existence of integer solutions.

By Proposition 3.3 we can assume, without loss of generality, that in every row

there exists a pair of indices j, t for which the finite entries aij , bit satisfy

fr(aij) = fr(bit).

We will restrict our attention to matrices A and B that have exactly one pair of indices

j, t per row. (Note that, if we randomly generated real matrices A and B, it is likely

that (A,B) will have very few such pairs and so this assumption is not too restrictive,

provided that we are working with real valued, and not integer valued, matrices; of

course, for integer matrices, the existing methods [9] for finding real solutions to the

systems discussed will find integer solutions, and hence the interesting case to consider

is indeed when the input matrices are not integer). Given a pair of matrices with such

an assumption on the fractional parts of entries we define, for all rows i ∈M , the pair

(r(i), r′(i)) to be the indices such that

fr(ai,r(i)) = fr(bi,r′(i)).

Without loss of generality we may assume that the entries (ai,r(i), bi,r′(i)) are

integer and that no other entries in the equation for either matrix are integer (this is
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since we may subtract a constant from each row of the system without affecting the

answer to the question).

We summarize this in the following definition.

Definition 3.1 Let A ∈ Rm×n
, B ∈ Rm×k

. We say (A,B) satisfies Property OneFP if,

for each i ∈M , there is exactly one pair (r(i), r′(i)) such that

air(i), bir′(i) ∈ Z, and

for all i ∈M , if j 6= r(i) and t 6= r′(i), then

aij , bit > ε⇒ fr(aij) 6= fr(bit).

Remark 3.1. Note that this definition allows for multiple ε entries in each row, for

example, the pair (I, I) satisfies Property OneFP with r(i) = i = r′(i) for all i.

Throughout this paper we restrict our attention to pairs of matrices satisfying

Property OneFP.

Recall, from Proposition 3.3, that a necessary condition for an integer solution to

exist is that there is at least one pair of entries sharing the same fractional part in

each row. As mentioned above, if we randomly generated two real matrices A and

B, then we would expect there to be very few pairs of entries, (air(i), bir′(i)), which

share the same fractional part. So, when given a random two-sided solvable system,

the most likely outcome is that there is at most one such pair of entries in each row.

While this discussion is not mathematically rigorous, it does allow us to conclude

that (A,B) having exactly one such pair per row represents a generic case for solvable

systems.

Proposition 3.4. [11] Let A ∈ Rm×n
, B ∈ Rm×k

satisfy Property OneFP. Then, the

entries ai,r(i) [bi,r′(i)] are the only possible active entries in the matrix A [B] with

respect to any integer vector x [y] satisfying Ax = By.

Note that general systems can be converted into systems with separated variables

by Proposition 3.5 below and that this conversion will preserve Property OneFP. So

Proposition 3.4 holds accordingly for general systems.
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Proposition 3.5. [11] Let A,B ∈ Rm×n
. The problem of finding x ∈ Zn such that

Ax = Bx is equivalent to finding x ∈ Zn, y ∈ Zn such thatA
I

x =

B
I

 y.

Hence we restrict our attention to the case of separated variables.

All integer solutions to TSS satisfying Property OneFP can be described by the

following.

Theorem 3.4. [11] Let A ∈ Rm×n
, B ∈ Rm×k

satisfy Property OneFP. For all i, j ∈

M , let

lij := a−1
i,r(i)daj,r(i)e ⊕ b

−1
i,r′(i)dbj,r′(i)e

and L := (lij). Then, an integer solution to Ax = By exists if and only if λ(L) ≤ 0. If

this is the case, then Ax = By = γ(−1) where γ ∈ IV ∗(L, 0).

Corollary 3.3. [11] For A ∈ Rm×n
, B ∈ Rm×k

satisfying Property OneFP, it is pos-

sible to decide whether an integer solution to Ax = By exists in

O(m3 + n+ k)

time.

Remark 3.2. (i) The ith row of L, as defined in Theorem 3.4, is equal to H(i)T where

H(i) := (ai,r(i))
−1dAr(i)e ⊕ (bi,r′(i))

−1dBr′(i)e.

(ii) Knowing Ax = γ(−1) = By for any γ ∈ IV ∗(L, 0), we can easily find x and y

using Proposition 3.2.

(iii) It follows from the definition that dεeε−1 = (−∞)(+∞) = ε.

4 Strongly Polynomial Method to Solve IMLOP for Systems with Property

OneFP

In [11], a polynomial algorithm for finding integer solutions to an IMLOP satisfying

Property OneFP was described. The aim of this paper is to develop strongly poly-

nomial methods for solving IMLOPmin and IMLOPmax under the assumption that
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Property OneFP holds. Recall that IMLOP has the form,

fT ⊗ x→ min or max

s.t. Ax⊕ c = Bx⊕ d, x ∈ Zn (4.1)

where A,B ∈ Rm×n, c, d ∈ Rm, f ∈ Rn. We can write the constraints of the IMLOP as

(
A|c
)x

0

 =

(
B|d
)x

0

 , x ∈ Zn. (4.2)

4.1 Consequences of Property OneFP

Let z = (xT , 0)T ∈ Zn+1. By Proposition 3.5, the constraint (4.2) is equivalent to

the condition that there exists y ∈ Zn+1 such that (z, y) is an integer solution to

A′z = B′y where

A′ :=

A|c
I

 ∈ R(m+n+1)×(n+1)
, B′ :=

B|d
I

 ∈ R(m+n+1)×(n+1)
.

This is since, if (z, y) is an integer solution to A′z = B′y, then so is (z−1
n+1z, z

−1
n+1y)

where z−1
n+1z = (xT , 0)T and z−1

n+1y = y−1
n+1y = (xT , 0)T .

Proposition 4.1. Let A,B ∈ Rm×n, c, d ∈ Rm. If there exists a row in which the

matrices (A|c) and (B|d) do not have entries with the same fractional part, then the

feasible set of IMLOPmin is empty.

Proof. It follows from Proposition 3.3.

For the rest of the paper we will assume that the pair ((A|c), (B|d)) satisfies Prop-

erty OneFP, and hence so does (A′, B′). Note that an example is provided at the end

of this paper to clarify many of the concepts that will be introduced in what follows.

Corollary 4.1. Let A′, B′ be as defined above. Let

L := (lij) ∈ Z(m+n+1)×(m+n+1)
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where, for all i, j ∈ {1, ...,m+ n+ 1},

lij := (a′i,r(i))
−1da′j,r(i)e ⊕ (b′i,r′(i))

−1db′j,r′(i)e.

Then, a feasible solution to IMLOP exists if and only if λ(L) ≤ 0. If this is the case,

then

A′z = B′z

where zj = γ−1
m+j for any γ ∈ IV ∗(L, 0) and j ∈ {1, ..., n+ 1}.

Proof. Existence follows from Theorem 3.4.

Assume that λ(L) ≤ 0, hence for all γ ∈ IV ∗(L, 0),

A|c
I

 z = γ(−1) =

B|d
I

 y.

Let µ ∈ Zn+1 be defined by µj = γm+j , j = 1, ..., n+ 1, and note that since γ is finite

so is µ. Then,

Iz = µ(−1) = Iy.

Remark 4.1. (i) For A′, B′ as defined above, L can be calculated in O((m+n)2) time,

λ(L) in O((m+ n)3) time and L∗ in O((m+ n)3) time.

(ii) Clearly, lii = 0 for all i ∈ {1, ...,m+n+ 1}, and so λ(L) ≥ 0. Hence, an integer

solution to the TSS exists if and only if λ(L) = 0.

This matrix L, constructed from A′ and B′, will play a key role in the solution of

the IMLOP. To construct the ith row of L we only consider columns A′r(i) and B′r′(i).

From Remark 3.2, the ith row is equal to H(i)T for

H(i) = (a′i,r(i))
−1

dA′′r(i)e

Ir(i)

⊕ (b′i,r′(i))
−1

dB′′r′(i)e
Ir′(i)

 , (4.3)

where A′′ := (A|c) and B′′ := (B|d). Observe that,

H(i)t > ε for all i ∈ {1, ...,m+ n+ 1}, t ∈ {1, ...,m}
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since A and B are finite. Further, when i ∈ {m+ 1, ...,m+ n+ 1}, i = m+ j say, then

r(i) = j = r′(i) and Ii,r(i) = 0 = Ii,r′(i). Hence,

H(i) =

dA′′j e
Ij

⊕
dB′′j e

Ij

 =

dA′′j e ⊕ dB′′j e
Ij

 .

Therefore the matrix L ∈ Zm+n+1
has the formP Q

R I


where P ∈ Zm×m, Q ∈ Zm×(n+1)

, R ∈ Z(n+1)×m, I ∈ Z(n+1)×(n+1)
.

Moreover, each row ofQ has either one or two finite entries: for a fixed i ∈ {1, ...,m},

the entries lij , j ∈ {m+ 1, ...,m+ n+ 1} are obtained by calculating

max(da′j,r(i)e − a
′
i,r(i), db

′
j,r′(i)e − b

′
i,r′(i)),

where

a′j,r(i), j ∈ {m+ 1, ...,m+ n+ 1}

form a max-algebraic unit vector, as do

b′j,r′(i), j ∈ {m+ 1, ...,m+ n+ 1}.

Thus at least one will be finite and, if r(i) 6= r′(i), there will be exactly two.

From Corollary 4.1, we have, x
0

 = z = µ(−1)

where µ is the vector of the last n+ 1 entries of some γ ∈ IV ∗(L, 0). By Corollary 3.2,

γ = L∗w for some integer vector w. Let V = (vij) be the matrix formed of the last

n+ 1 rows of L∗, so that µ = V ⊗ w for w ∈ Zm+n+1, equivalentlyx
0

 = z = V (−1) ⊗′ w(−1). (4.4)



A strongly polynomially solvable generic case of the IMLP 15

Now, (4.4) can be split into two equations, one for the vector x and one for the

scalar 0. Further, we would like the second equation to be of the form mink wk = 0

for ease of calculations later. This leads to the following definition.

Definition 4.1 Let V (0) be the matrix formed from V (−1) by max-multiplying each

finite column j by vm+n+1,j , and then removing the final row (at least one finite col-

umn exists by Property OneFP). Let U ∈ R1×(m+n+1)
be the row that was removed.

Note that U contains only 0 or +∞ entries.

Proposition 4.2. Let A,B, c, d, V (0) and U be as defined in (4.1) and Definition 4.1.

Then, x ∈ Zn is a feasible solution to IMLOP if and only if it satisfies

x = V (0) ⊗′ ν

where 0 = U ⊗′ ν for some ν ∈ Zm+n+1.

Proof. By Corollary 4.1, x is feasible if and only if (xT , 0)T = µ(−1) where µ is the

vector containing the last n + 1 components of some γ ∈ IV ∗(L, 0). By the above

discussion this means that,x
0

 = V (−1) ⊗′ w(−1) =

V (0)

U

⊗′ ν.

We will first consider, in Subsection 4.2, solutions to IMLOP when L∗, and hence

also V (0) and U , are finite. In Subsections 4.4.1 and 4.4.2 we deal with the case when

L∗ is not finite.

Before this we summarize key definitions and assumptions that will be used

throughout the remainder or the paper, for easy reference later.

Assumption 4.1. We assume the following are satisfied.

(i) A,B ∈ Rm×n, c, d ∈ Rm.

(ii) A′′ := (A|c), B′′ := (B|d) and

A′ :=

A|c
I

 , B′ :=

B|d
I

 .
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(iii) The pair (A′′, B′′) satisfies Property OneFP (and therefore also (A′, B′)).

(iv) L is constructed from A′, B′ according to Corollary 4.1.

(v) Without loss of generality, λ(L) = 0.

(vi) V is the matrix containing the last n+ 1 rows of L.

4.2 Finding the Optimal Solution to IMLOP When L∗ is Finite

Theorem 4.1. Let A,B, c, d satisfy Assumption 4.1 and V (0) be as in Definition 4.1.

If L∗ is finite, then the optimal objective value fmin is attained for

xopt = V (0) ⊗′ 0.

Proof. By Proposition 4.2, we know that any feasible x satisfies x = V (0) ⊗′ ν where,

by the finiteness of L∗ (and also V (0)), we have U = 0 and hence

ν1 ⊕′ ...⊕′ νm+n+1 = 0.

Therefore, x ≥ V (0) ⊗′ 0 for any feasible x and further V (0) ⊗′ 0 is feasible. The

statement now follows from the isotonicity of fT x, see Corollary 3.1.

Theorem 4.2. Let A,B, c, d satisfy Assumption 4.1 and V (0) be as in Definition 4.1.

If L∗ is finite, then the optimal objective value fmax is equal to

fT ⊗ V (0) ⊗ 0.

Further, let y := V (0) ⊗ 0 and j be an index such that fmax = fjyj . If i is such that

yj = V
(0)
ji , then an optimal solution is xopt = V

(0)
i .

Proof. By Proposition 4.2, we know that any feasible x satisfies x = V (0) ⊗′ ν where,

by the finiteness of L∗ (and also V (0)), we have U = 0 and hence

ν1 ⊕′ ...⊕′ νm+n+1 = 0.

If νj = 0, then x ≤ V
(0)
j and therefore all feasible x satisfy x ≤ y = V (0) ⊗ 0. Note

that y may not be feasible.
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By isotonicity, fT y ≥ fT x for any feasible x. We claim that there exists a feasible

solution x for which they are equal. Suppose that fT y = fjyj . Let i be an index such

that v
(0)
ji = yj . By setting νi = 0 and all other components to large enough integers

we get a feasible solution x̄ such that x̄j = yj . In fact, x̄ = V
(0)
i . Hence,

fj x̄j = fjyj = fT y ≥ fT x̄ ≥ fj x̄j ,

which implies fT y = fT x̄ as required.

It follows from Theorems 4.1 and 4.2 that, if λ(L) ≤ 0 and L∗ is finite, then an

optimal solution to IMLOPmin and IMLOPmax always exists.

4.3 Criterion for Finiteness of L∗

Theorems 4.1 and 4.2 provide explicit solutions to IMLOP, which can be found in

O((m + n)3) time by Remark 4.1, in the case when L∗ is finite. We now consider

criteria for L∗ to be non-finite, and show how we can adapt the problem in this case

so that IMLOP can be solved using the above methods in general.

Proposition 4.3. Let A,B, c, d satisfy Assumption 4.1.

Let ej ∈ Rm+n+1
be the jth max-algebraic unit vector. The following are equiva-

lent:

(i) L∗ contains an ε entry.

(ii) There exists j ∈ {1, ..., n+ 1} such that L∗m+j = em+j .

(iii) There exists j ∈ {1, ..., n+ 1} such that Lm+j = em+j .

(iv) There exists j ∈ {1, ..., n+ 1} such that neither A′′j nor B′′j contain an integer

entry.

Further, the index j satisfies the condition in (ii) if and only if j satisfies the

condition in (iii) if and only if j satisfies the condition in (iv).

Proof. Recall that L has the form P Q

R I


where P ∈ Zm×m, Q ∈ Zm×(n+1)

, R ∈ Z(n+1)×m, I ∈ Z(n+1)×(n+1)
.

(ii)⇒(i): Obvious.
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¬(iii)⇒ ¬(i): Assume that, for all j, Lj 6= ej . We know that the first m columns

of L are finite and, by assumption, every column of Q contains a finite entry. This

means that L2 will be finite and thus so will L∗.

(ii)⇔(iii): We show Lm+j = em+j if and only if L2
m+j = em+j . Fix j such that

Lm+j = em+j . Then clearly, L2
m+j = em+j and hence (iii)⇒(ii). Although (ii)⇒

(iii) follows from above we need to also prove that the same index j satisfies both

statements. To do this we suppose that L2
m+j = em+j . Then, for all i ∈ {1, ...,m} with

i 6= j, we have

(
li,1 . . . li,m

)
⊗


l1,m+j

...

lm,m+j

⊕
(
li,m+1 . . . li,m+n+1

)
⊗ Ij = ε

where li,1, ..., li,m ∈ R. Thus,

l1,m+j = ... = lm,m+j = ε

and hence Lm+j = em+j .

(iii)⇔ (iv): By the structure of L, (iii) holds if and only if Q contains an ε column.

Fix j ∈ {1, ..., n+ 1}. Now, for any i ∈M ,

qij = ε

⇔ li,m+j = ε

⇔ a′m+j,r(i) = ε = b′m+j,r′(i)

⇔ r(i) 6= j and r′(i) 6= j

⇔ a′′ij , b
′′
ij /∈ Z.

Therefore Q contains an ε column if and only if neither A′′ = (A|c) nor B′′ = (B|d)

contain an integer entry.

Observe that, for each j ∈ {1, ..., n + 1}, either L∗m+j = em+j or L∗m+j is finite.

Further L∗t is finite for all t ∈M since P and R are finite.

Corollary 4.2. Let A,B, c, d satisfy Assumption 4.1. L∗ is finite if and only if, for all

j ∈ {1, ..., n+ 1}, either (A|c)j or (B|d)j contains an integer entry.
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4.4 IMLOP When L∗ is Non-Finite

Theorems 4.1 and 4.2 solve IMLOP when L∗ is finite. In this case U = 0 and we

took advantage of the fact that νi ≥ 0 held for every component of ν. However,

if L∗m+j = em+j for some j ∈ N , then Uj = +∞ and so νj will be unbounded.

This suggests that feasible solutions x = V (0) ⊗′ ν are not bounded from below and

introduces the question of whether fmin = ε in these cases. We define the set J to be

J := {j ∈ N : Neither Aj nor Bj contain an integer entry}.

Clearly this definition of J is independent of whether or not c and d contain integer

entries, this is necessary because, by the discussion above, only values νj with j ∈ N

may be unbounded (note that Um+n+1 = 0 regardless of whether or not L∗ is finite).

In the following sections we will use it to identify ’bad’ or inactive columns of A and

B, which can be removed from the system. First, we consider the case J = ∅, under

which all νi are bounded even though L∗ may not be finite.

Observe that J = ∅ if and only if U = 0. Further, it can be verified that, the results

in Theorems 4.1 and 4.2 hold when the assumption that L∗ is finite is replaced by an

assumption that U = 0, in fact, the same proofs apply without any alterations. The

case J = ∅ is therefore solved as follows.

Proposition 4.4. Let A,B, c, d satisfy Assumption 4.1 and V (0) be as defined in

Definition 4.1. Suppose J = ∅.

(1) For IMLOPmin, the optimal objective value fmin is attained for

xopt = V (0) ⊗′ 0.

(2) For IMLOPmax, the optimal objective value fmax is equal to

fT ⊗ V (0) ⊗ 0.

Further, let y := V (0) ⊗ 0 and j be an index such that fmax = fjyj . If i is such that

yj = V
(0)
ji , then an optimal solution is xopt = V

(0)
i .
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It remains to show how to find solutions to IMLOPmin and IMLOPmax in the

case when U 6= 0, i.e. when L∗ is not finite and J 6= ∅. We do this in the following

subsections.

4.4.1 IMLOPmin When L∗ is Non-Finite

If J 6= ∅, then we aim to remove the ’bad’ columns Aj , Bj , j ∈ J from our problem

and use Theorem 4.1 to solve it. The next result allows us to do this when J ⊂ N .

It will turn out that, in this case, under Assumption 4.1, an optimal solution always

exists; this will be shown in the proof of Proposition 4.7 below. The case J = N will

be dealt with in Proposition 4.8.

Proposition 4.5. Let A,B, c, d satisfy Assumption 4.1 and f ∈ Rn.

Suppose ∅ 6= J ⊂ N . If an optimal solution x exists, then fmin = fjxj for some

j ∈ N − J .

Proof. Suppose x is a feasible solution of IMLOPmin such that fT x = fmin, but

fmin 6= flxl for any l ∈ N − J . Let

J̄ := {t ∈ J : fmin = ftxt}.

Observe that, for all t ∈ J̄ , neither At nor Bt contain an integer entry and so, by

Proposition 3.4, xt is not active in the equation Ax⊕ c = Bx⊕ d. Thus, the vector x′

with components

x′j =


xj if j /∈ J̄

xjα
−1 otherwise

for some integer α > 0 is also feasible but fT x′ < fT x, a contradiction.

Hence, we can simply remove all columns j ∈ J from our system and solve this

reduced system using previous methods. Formally, let g be obtained from f by re-

moving entries with indices in J . Let A−, B− be obtained from A and B by removing

columns with indices in J , so A−, B− ∈ Rm×n′

where n′ = n − |J |. By IMLOP1 and

IMLOP2 we mean the integer max-linear optimization problems:
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(IMLOP1) min fT ⊗ x = f(x)

s.t. Ax⊕ c = Bx⊕ d, x ∈ Zn (4.5)

and

(IMLOP2) min gT ⊗ y = g(y)

s.t. A−y ⊕ c = B−y ⊕ d, y ∈ Zn′
(4.6)

where, by assumption, the pair ((A|c), (B|d)) satisfies Property OneFP, and therefore

so does ((A−|c), (B−|d)).

To differentiate between solutions to IMLOP1 and IMLOP2, the matrices L, L∗,

V (0), U will refer to those obtained from A,B, c, d . When they are calculated using

A−, B−, c, d we will call them L̂, L̂∗, ˆV (0), Û .

In order to prove that an optimal solution always exists, we recall the following

results which tell us that, for any IMLOP, the problem is either unbounded, infeasible

or has an optimal solution. Let

IS = {x ∈ Zn : Ax⊕ c = Bx⊕ d},

Smin = {x ∈ IS : f(x) ≤ f(z) ∀z ∈ IS} and

Smax = {x ∈ IS : f(x) ≥ f(z) ∀z ∈ IS}.

From Theorems 3.1 and 3.2,

fmin = −∞⇔ c = d and fmax = +∞⇔ (∃x ∈ Zn)Ax = Bx.

Proposition 4.6. [11] Let A,B, c, d, f be as defined in (4.1). If IS 6= ∅, then fmin >

−∞⇒ Smin 6= ∅ and fmax < +∞⇒ Smax 6= ∅.

Proposition 4.7. Let A,B, c, d satisfy Assumption 4.1 and f ∈ Rn. Let A−, B−, g

be as defined in (4.6). Suppose ∅ 6= J ⊂ N . Then fmin = gmin, xopt can be obtained

from its subvector yopt by inserting suitable ’small enough’ integer components and

IMLOP2 can be solved by Theorem 4.1.
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Proof. First, observe that an optimal solution to IMLOP2 always exists since Û = 0,

so all components of ν are bounded below. This implies that feasible solutions to

IMLOP2, and therefore also IMLOP1, exist. So, by Proposition 4.6, IMLOP1 either

has an optimal solution or fmin = ε. If fmin = ε, then, by Theorem 3.1, c = d which,

under Property OneFP, means that c, d ∈ Zm and there are no integer entries in A or

B. This is impossible since J 6= N .

Suppose xopt is an optimal solution to IMLOP1 and let y′ be obtained from xopt

by removing elements with indices in J . Using Property OneFP, we know that com-

ponents xoptj , j ∈ J are inactive in Ax ⊕ c = Bx ⊕ d. Further, from Proposition 4.5,

we can assume also that xoptj , j ∈ J are inactive in fmin (can decrease their value if

necessary without changing the solution). Hence,

fmin = fT xopt = gT y′

and

A−y′ ⊕ c = Axopt ⊕ c = Bxopt ⊕ d = B−y′ ⊕ d.

So y′ is feasible for IMLOP2. If y′ is not optimal, then gmin = gT y′′ < fmin for some

feasible (in IMLOP2) y′′ . But letting x′ = (x′j) where, for j ∈ J , x′j corresponds

to y′′j and x′j , j /∈ J , are set to small enough integers, we obtain a feasible solution

to IMLOP1 satisfying fT x′ = gmin < fmin, a contradiction. Therefore y′ = yopt. A

similar argument holds for the other direction.

We now show how to solve IMLOP2. By Proposition 4.2, feasible solutions to

IMLOP2 satisfy

y = V̂ (0) ⊗′ ν,

0 = Û ⊗′ ν, ν ∈ Zm+n′+1.

Case 1: There exists an integer entry in either c or d.

Observe that IMLOP2 can be solved immediately by Theorem 4.1 since L̂∗ is

finite.

Case 2: Neither c nor d contain an integer entry.
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Now L̂∗ is not finite. However Û , is finite and

V̂
(0)
m+n′+1 =


+∞

...

+∞

 .

All other columns of V̂ (0) are finite. The single +∞ column contains no finite entries

and will never be active in determining the value of a feasible solution. Hence, any

feasible solution y still satisfies y ≥ V̂ (0) ⊗′ 0 and yopt = V̂ (0) ⊗′ 0 as in the proof of

Theorem 4.1.

Corollary 4.3. Let A,B, c, d satisfy Assumption 4.1 and f ∈ Rn. Let A−, B−, g and

V̂ (0) be as defined in (4.6). If ∅ 6= J 6= N , the optimal objective value fmin of IMLOP1

is equal to gT yopt for

yopt = V̂ (0) ⊗′ 0.

The final case for IMLOPmin is when J = N .

Proposition 4.8. Let A,B, c, d satisfy Assumption 4.1 and f ∈ Rn. Suppose J = N .

If c = d, then fmin = −∞. If, instead, c 6= d, then IMLOPmin is infeasible.

Proof. Follows from Theorem 3.1 and the fact that entries in columns with indices in

J are never active.

4.4.2 IMLOPmax When L∗ is Non-Finite

We will now discuss IMLOPmax when J 6= ∅. The case when neither c nor d con-

tains an integer is trivial and will be described in Proposition 4.10. We first assume

that either c or d contain an integer entry. Here, we cannot make the same assump-

tions about active entries in the objective function as in the minimization case, as

demonstrated by the following example.

Example 4.1 Suppose we want to maximize (0, 1)T x subject to

 0 −1.5

−0.5 −1.5

x⊕

−0.5

0

 =

 0 −1.6

−0.6 −1.6

x⊕

−0.6

0

 .
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Note that J = {2}. It can be seen that the largest integer vector x which satisfies this

equality is (0, 1).

Therefore fmax = 2, the only active entry with respect to fT x is x2 and 2 ∈ J .

Instead, we give an upper bound y on x, for which fmax = fT y and we can find a

feasible x′ where fT x′ attains this maximum value. For all j ∈ J , we have Uj = +∞

and also V
(0)
j non-finite since L∗m+j = em+j . We will therefore adapt the matrix V (0)

to reflect this.

Definition 4.2 Let V̄ be obtained from V (0) by removing all columns j ∈ J .

Proposition 4.9. Let A,B, c, d satisfy Assumption 4.1 and f ∈ Rn. Let V̄ be as defined

in Definition 4.2. Suppose either c or d contains an integer and ∅ 6= J ⊆ N . Then, the

optimal objective value fmax is equal to fT y for

y = V̄ ⊗ 0.

Further, let j be an index such that fmax = fjyj and i satisfy yj = V̄ji. Then, an

optimal solution is xopt = V̄i.

Proof. From Proposition 4.2, any feasible x satisfies

x = V (0) ⊗′ ν

0 = min
i∈T

νi, ν ∈ Zm+n+1

where

T = {1, ...,m+ n+ 1} − {m+ j : j ∈ J}.

Note that T is the set of indices t for which Ut = 0 and |T | = m+ n+ 1− |J |.

Consider an arbitrary feasible solution x′ = V (0) ⊗′ ν′. Let µ′ be the subvector of

ν′ with indices from T . Then,

x′ = V (0) ⊗′ ν′ ≤ V̄ ⊗′ µ′ ≤ V̄ ⊗ 0 = y

since mini µ
′
i = 0. Therefore, fT x′ ≤ fT y.

We claim that there exists a feasible x such that fT x = fT y and hence it is

an optimal solution with fmax = fT y. Indeed, let j ∈ N be any index such that
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fT y = fjyj . Let i ∈ T be an index such v
(0)
ji = yj . Then, by setting νi = 0 and

νj , j 6= i to large enough integers, we obtain a feasible solution x̄ = V
(0)
i which satisfies

fT x̄ = fT y.

Proposition 4.10. Let A,B, c, d satisfy Assumption 4.1 and f ∈ Rn. Suppose neither

c nor d contain an integer entry. If there exists x ∈ Zn such that Ax = Bx, then

fmax = +∞. If no such x exists, then IMLOPmax is infeasible.

Proof. Follows from Theorem 3.2 and the fact that c 6= d since they do not have any

entries with the same fractional part.

We conclude by noting that all methods for solving the IMLOP under Property

OneFP described in this paper are strongly polynomial.

Corollary 4.4. Given input A,B, c, d satisfying Assumption 4.1 and f ∈ Rn, both

IMLOPmin and IMLOPmax can be solved in O((m+ n)3) time.

Proof. From A,B, c, d we can calculate V (0), V̄ and U in O((m + n + 1)3) time by

Remark 4.1. Then V (0) ⊗′ 0, V (0) ⊗ 0 or V̄ ⊗ 0 can be calculated in O(n(m+ n+ 1))

time. From this we can calculate fmin or fmax in O(n) time. Finally, for IMLOPmax,

we can find an optimal solution in O(m+ n+ 1) time.

In the cases described in Proposition 4.10, we can perform the necessary checks

in O((m+ n)3) time.

4.5 An Example

Suppose we want to find fmin and fmax subject to the constraints x ∈ Z4 and 3 0.5 −1.7 −2.5

−3.7 −1.9 −2.1 −3.7

x⊕

−0.3

−1

 =

1.4 1.1 1 −1.3

0.8 1 −1.3 −2.2

x⊕

−0.2

−2.4

 .

Note that J = {4} and

A− =

 3 0.5 −1.7

−3.7 −1.9 −2.1

 and B− =

1.4 1.1 1

0.8 1 −1.3

 .
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We first construct A′ and B′, these are



3 0.5 −1.7 −2.5 −0.3

−3.7 −1.9 −2.1 −3.7 −1

0 ε ε ε ε

ε 0 ε ε ε

ε ε 0 ε ε

ε ε ε 0 ε

ε ε ε ε 0



and



1.4 1.1 1 −1.3 −0.2

0.8 1 −1.3 −2.2 −2.4

0 ε ε ε ε

ε 0 ε ε ε

ε ε 0 ε ε

ε ε ε 0 ε

ε ε ε ε 0



.

Then,

L =



0 −2 −3 ε −1 ε ε

1 0 ε −1 ε ε 1

3 1 0 ε ε ε ε

2 1 ε 0 ε ε ε

1 −1 ε ε 0 ε ε

−1 −2 ε ε ε 0 ε

0 −1 ε ε ε ε 0



and L∗ =



0 −2 −3 −3 −1 ε −1

1 0 −2 −1 0 ε 1

3 1 0 0 2 ε 2

2 1 −1 0 1 ε 2

1 −1 −2 −2 0 ε 0

−1 −2 −4 −3 −2 0 −1

0 −1 −3 −2 −1 ε 0



.

Note that λ(L) = 0 and hence feasible solutions exist, further L∗2+4 = e2+4 as

expected from Proposition 4.3. Now, using Definitions 4.1 and 4.2,

V̄ =



−3 −2 −3 −2 −3 −2

−2 −2 −2 −2 −2 −2

−1 0 −1 0 −1 0

1 1 1 1 1 1


and V̂ (0) =


−3 −2 −3 −2 −3 −2

−2 −2 −2 −2 −2 −2

−1 0 −1 0 −1 0



(recall that V̂ (0) is calculated from A−, B− as defined in (4.6)).

Suppose fT = (0,−1, 1, 0). We first look for fmin.

By Corollary 4.3, we have that

gmin = (0,−1, 1)⊗ (V̂ (0) ⊗′ 0) = (0,−1, 1)⊗ (−3,−2,−1) = 0.

Hence, fmin = 0 and xopt = (−3,−2,−1, x4)T for any small enough x4.

Now we look for fmax.
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By Proposition 4.9, we have that

fmax = fT ⊗ y = (0,−1, 1, 0)⊗ (−2,−2, 0, 1)T = 1.

Following the proof of this proposition, we see that the optimum is attained either

for i = 3 or i = 4. For i = 3, this relates to columns 2, 4 or 6 of V̄ and hence

the optimal solution can be obtained by setting either ν2, ν4 or ν6 to 0. This yields

xopt = (−2,−2, 0, x4)T for any small enough x4. If we instead choose i = 4, then we

conclude that any column of V̄ admits an optimal solution.

Finally, observe that V̂ (0) can be obtained from V̄ by removing rows with indices

in J . This is since A− and B− differ from A and B only in columns with indices from

J , meaning that L̂ = L[N − J ] and L̂∗ = L[N − J ]∗.

5 Conclusions

In this paper we presented a strongly polynomial method to determine whether an

integer optimal solution exists to a max-linear optimization problem when the input

matrices satisfy Property OneFP. We gave a necessary condition for existence of an

integer feasible solution and, further, showed that, under this condition, an integer op-

timal solution always exists. We described how to find an optimal solution in strongly

polynomial time. Our solution methods can be used to describe many possible in-

teger optimal solutions to the system. It remains open to determine necessary and

sufficient conditions for the existence of an integer solution to a TSS/IMLOP when

Property OneFP does not hold. This is one direction for possible future work, as is

the construction of a polynomial time algorithm to find integer solutions to the TSS,

or prove that no such algorithm exists.

We restricted our attention to finding integer solutions without −∞, the zero entry

in the max-algebraic semiring, as this is more applicable to a real world example.

However, it would be interesting to study the set of integer solutions that do allow

−∞ entries, it is expected that the generic case described in this paper will also allow

for integer solutions with −∞ to be found in strongly polynomial time.

At the time of writing, for two-sided systems which do not satisfy the generic

property, it is unknown whether an integer solution can be found in polynomial time.
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If we remove the integrality requirement, then it is known that finding a solution to

a max-algebraic two-sided system is equivalent to finding a solution to a mean payoff

game [6]. Mean payoff games are a well known class of problems in NP ∩ co-NP, it is

expected that a polynomial solution method will be found in the future.
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11. Butkovič, P., MacCaig, M.: On the integer max-linear programming problem. Discrete Applied

Mathematics 162, 128-141 (2014)
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