
Comparison of methods for solving two-sided

systems in max-algebra

Abdulhadi Aminu ∗ P. Butkovič†

January 28, 2008

Abstract

We compare the computational performance of two methods for solv-
ing two-sided systems of the form A⊗ x = B ⊗ x in max-algebra.

1 Introduction

Given A = (aij), B = (bij) ∈ Rm×n, a system of the form

A⊗ x = B ⊗ x (1)

where x ∈ Rn, is called homogeneous max-linear system. Homogeneous max-
linear systems (1) have been investigated in several articles e.g [2], [4], [6], [8],
[3]. Several solution methods for system (1) have also been developed. The
aim of this paper is to compare the performance of two of these methods: The
Stepping Stone Method (SSM) [3] and the Alternating Method (AM) [4] .

2 The Stepping Stone Method

The Stepping Stone Method (SSM) for solving two-sided linear systems was
presented in [3]. The method finds a solution to system (1) or decides that
no solution exists. The algorithm is as follows: Assuming that m and n are
integers, define x = (x1, . . . , xn) ∈ Qn, M = {1, . . . ,m} and N = {1, . . . , n}. It
is also assumed that aij , bij (i ∈ M, j ∈ N) are given rational numbers. Denote
for all i ∈ M , ai(x) = maxj∈N (aij + xj), bi(x) = maxj∈N (bij + xj). Therefore,
the algorithm finds a solution to the system:

ai(x) = bi(x), i ∈ M (2)

or decides that no solution exists.
Denote by T the set of all rational solutions of (2). Furthermore define for any
x# ∈ Qn

T (x#) ≡ {x | x ∈ M & x ≤ x#}. (3)
∗Department of Mathematical Sciences, Kano University of Science and Technology, Wudil,

P.M.B 3244, Kano, Nigeria
†School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT,

United Kingdom, p.butkovic@bham.ac.uk

1

Lemma 2.1. [3]
Let x# ∈ Qn be given. Then T 6= ∅ if and only if T (x#) 6= ∅.

Let K ⊆ Qn, x̃ ∈ K. Then x̃ is called the maximum element of K if x ≤ x̃ for
every x ∈ K.
The algorithm starts with arbitrary chosen and fixed x# ∈ Rn and either finds
the maximum element of T (x#) for a given upper bound x# or find out that
T (x#) is empty. Thus it is assumed that x# 6∈ T (x#) else x# is the maximum
element of T (x#). It is assumed that:

ai(x#) ≥ bi(x#), i ∈ M (4)

otherwise swap the inequality sides appropriately.
Denote for any x ∈ Rn and for all i ∈ M :

Fi(x) = {j ∈ N | aij + xj = ai(x)}.
Gi(x) = {j ∈ N | bij + xj = bi(x)}.

Let H(x#) ≡ {j ∈ N | ai(x#) > bi(x#)}. To find an element of T (x#), the
algorithm decreases ai(x#) for all i ∈ H(x#). That is all variables x#

j , j ∈
A(x#) where:

A(x#) ≡
⋃

i∈H(x#)

Fi(x#). (5)

The following subroutine is designed to find the set P (x#) of indices of all
variables, which have to be decreased while the equalities ai(x#) = bi(x#) for
i ∈ M \H(x#) be preserved.

Subroutine 1.

1. P (x#) := A(x#)

2. E1 := {i ∈ M \H(x#) | Fi(x#) ⊆ P (x#) & Gi(x#) 6⊆ P (x#)},
E2 := {i ∈ M \H(x#) | Fi(x#) 6⊆ P (x#)&Gi(x#) ⊆ P (x#)}.

3. If E1∪E2 = ∅ then P (x#) is the set of indices of variables to be decreased,
STOP.

4. P (x#) := P (x#) ∪
⋃

i∈E1
(Gi(x#) \ P (x#)) ∪

⋃
i∈E2

(Fi(x#) \ P (x#)).

5. Go to 2.

After the collection of all indices of variables to be decreased, the process of
decreasing variables xj , j ∈ P (x#) is described as follows:
Define x(t) = (x1(t), . . . , xn(t)) for t ≥ 0 as follows:

xj(t) ≡

{
x#

j − t if j ∈ P (x#),
x#

j otherwise.
(6)

So that if the parameter t is increased the variable xj , j ∈ P (x#) will be
decreased. That is xj(0) = x#

j , xj(t) < x#
j for any t > 0 and j ∈ P (x#).

2

It can be assumed without loss of generality that P (x#) 6= N (it follows from
theorem (2.1) below that T (x#) = ∅, if H(x#) 6= ∅ and P (x#) = N).
Define the following:

L1 ≡ {i ∈ M | Fi(x#) ⊆ P (x#)},
L2 ≡ {i ∈ M | Gi(x#) ⊆ P (x#)},
L3 ≡ {i ∈ H(x#) | Gi(x#) 6⊆ P (x#)}.

The parameter t will be increased until at least one of the following occurs for
the first time:

(i)Fi(x(t)) 6= Fi(x#), i.e ai(x(t)) = αi(x#) ≡ max
j∈N\P (x#)

(aij + x#
j) for some i ∈ L1;

(ii)Gi(x(t)) 6= Gi(x#), i.e bi(x(t)) = βi(x#) ≡ max
j∈N\P (x#)

(bij + x#
j), for some i ∈ L2;

(iii)H(x(t)) 6= H(x#), i.e ai(x(t)) = βi(x#) for some i ∈ L3.

If P (x#) = N , set αi(x#) = βi(x#) = −∞ for all i ∈ M .
Also determine the values t1, t2, t3 at which the cases (i), (ii), (iii) occur.
The values αi(x#), βi(x#) are always finite if P (x#) 6= N .
The formulae for determining t1, t2 are determined from case (i) and (ii) as
follows:

t1 = min
i∈L1

(ai(x#)− αi(x#)). (7)

t2 = min
i∈L2

(bi(x#)− βi(x#)). (8)

In the case (iii) t3 was obtained as follows:

t3 = min
i∈L3

(ai(x̌)− βi(x#)). (9)

Set ti = ∞ if Li = ∅ (1 ≤ i ≤ 3). Also set τ = min(t1, t2, t3) and use on the
next iteration x(τ) as the new upper bound. The next iteration will begin with
the new upper bound if H(x(τ)) 6= ∅.
If P (x#) = N , set by definition ti = ∞ for i = 1, 2, 3 and thus τ = ∞.
The following algorithm summarizes all the previous considerations, calls Sub-
routine 1 in its step 3 and finds a solution to a given two-sided system if it exists
and returns with ’no solution’ otherwise.

Algorithm 1. (The Stepping Stone Method)
Input: A,B ∈ Qm×n, x#.
Output: ȳ, a solution to A⊗ x = B ⊗ x or ’no solution’.

1. ȳ := x#.

2. If H(ȳ) = ∅ then ȳ is the maximum element of T (x#), STOP.

3. Find A(ȳ) and P (ȳ) using the Subroutine 1 (replacing x# with ȳ). If
P (ȳ) = N then T (x#) = ∅, STOP (’no solution’).

4. Define x(t) using (6) and t1, t2, t3 using (7),(8),(9) (with x# replaced by
ȳ everywhere).

3

5. τ := min(t1, t2, t3),ȳ := x(τ).

6. Go to 2.

Theorem 2.1. [3]
If on some current iteration of Algorithm 1 ȳ 6∈ T (ȳ) and P (ȳ) = N , then
T (ȳ) = ∅.

3 The Alternating Method

The Alternating Method (AM) is an iterative procedure designed for solving
systems of the form A⊗x = B⊗y where A ∈ Rm×n, B ∈ Rm×k

, R = R∪{−∞}.
This method was presented in [4] and converges to a finite solution from any
finite starting point whenever a finite solution exists.
A matrix A is called doubly G-astic [7, 6], if it has at least one finite element on
each row and on each column.

Define by a⊕′
b = min(a, b) and a⊗′

b = a + b for a, b ∈ R and extend this
pair operations to matrices and vectors in the same way as in linear algebra.

Let x, y be vectors such that x = (x1, . . . , xn) and y = (y1, . . . , yn). x < y if
and only if for all i, xi < yi. Systems of one-sided linear inequalities A⊗ x ≤ b
always possesses a solution [5] and the greatest is :

x̄ = A∗ ⊗
′
b (10)

where A∗ = −AT (that is negation and transposition of matrix A). Also A∗ is
finite for A doubly G-astic and b finite. The system of equation A⊗ x = b has
solution if and ony if x̄ is a solution [5, 1]. Based on these the following method
for solving two-sided linear systems A⊗ x = B ⊗ y was developed:

Algorithm 2. (The Alternating Method)
Input: A ∈ Rm×n, B ∈ Rm×k

, x ∈ Rn.
Output: x, y. A solution to A ⊗ x = B ⊗ y or an indication that there is no
solution.

1. r = 0, x(0) = x.

2. y = B∗ ⊗′
(A⊗ x), y(r) = y.

3. If r ≥ 1, y(r) < y(r − 1), STOP (’no solution’).

4. x = A∗ ⊗′
(B ⊗ y), x(r + 1) = x.

5. If x(r + 1) < x(r), STOP (’no solution’).

6. r = r + 1.

7. If A⊗ x = B ⊗ y, STOP.

8. Go to 2.

Theorem 3.1. [4]
Let A = (aij) ∈ Zm×n, B = (bij) ∈ Zm×k

, ρ = max{|aij |; i ∈ M, j ∈ N}. If
B is doubly-G-astic then the Alternating Method terminates in O(mn(m + k)ρ)
steps and thus is pseudopolynomial.

4

4 Conversion of A⊗ x = B ⊗ x to A⊗ x = B ⊗ y

Given A,B ∈ Rm×n finding a solution to the problem:

A⊗ x = B ⊗ x (11)

is equivalent to finding a vector y = (y1, . . . , ym)T , such that:

A⊗ x = y

B ⊗ x = y
(12)

Max-algebraic identity matrix is a matrix with all diagonal entries zero and −∞
else where. We denote by I an identity matrix. Therefore (12) can be written
as: (

A
B

)
⊗ x =

(
I
I

)
⊗ y, (13)

where I is the m×m identity matrix.
System (13) is equivalent to:

C ⊗ x = D ⊗ y, (14)

where,

C =
(

A
B

)
∈ R2m×n, D =

(
I
I

)
∈ R2m×m

.

Since A,B are finite and I is doubly G-astic then C is finite and D doubly
G-astic.
Therefore, finding solution to (11) is equivalent to solving (14). Hence if (11)
has a solution then (12) has a solution and conversely. Thus, we have obtained:

Theorem 4.1.
x ∈ Rn is a solution to (11) if and only if (x, y) is also a solution to (13) for
some y ∈ Rm.

Proof. Straightforward.

Due to Theorem 4.1 Alternating Method (AM) can therefore be used to find a
solution to (1) or decide that it does not exist.

5 Performance of the two methods

Performance of the two methods for solving A⊗x = B⊗x is presented in this sec-
tion, we also compare performance of these methods on the same problem. Mat-
lab programming language was used for designing programs for this task. Speci-
fication of the computer used is 1.66.Hz of CPU and 0.99 GB of RAM. These pro-
grams can be downloaded from http://web.mat.bham.ac.uk/P.Butkovic/software/.
In what follows range k means inputs entries for matrices are generated from
the interval [−k, k]. Dimension n means a square matrix of order n.

5

5.1 The Stepping Stone Method

Performace of the Stepping Stone Method (SSM) was measured within five
minutes on matrices of 6 different dimensions. The following table gives the
summary of the results.

S/NO DIMENSION RANGE TIME NO. OF ITERATIONS
1 200 200 1min 40sec 7

,, ,, 1min 38sec 7
,, ,, 1min 23sec 6
,, ,, 1min 25sec 6
,, ,, 1min 23sec 6

2 200 300 2min 8
,, ,, 3min 4sec 12
,, ,, 1 min 42sec 7
,, ,, 1min 42sec 7
,, ,, 2min 15sec 9

3 200 1000 6min 41sec 25
,, ,, 6min 24sec 24
,, ,, 5 min 32sec 21
,, ,, 3min 11sec 22
,, ,, 3min 21

4 200 2000 10min 20sec 38
,, ,, 10min 31sec 38
,, ,, 9 min 37sec 35

5 300 300 3min 18sec 6
,, ,, 4min 30sec 8
,, ,, 3min 15sec 6

6 400 400 4min 28sec 8
,, ,, 3min 11sec 6

Table 1 : Test results for the Stepping Stone Method.

5.2 The Alternating Method

Performance of the Alternating Method for solving A⊗ x = B ⊗ x is tested on
six different problems. The table below gives the summary of the results.

S/NO DIMENSION RANGE TIME NO. OF ITERATIONS
1 200× 200 200 3sec 25
2 ,, 10 000 3sec 28
3 ,, 500 000 2sec 13
4 500× 500 3 000 000 4sec 14
5 1000× 1000 10 000 000 17sec 29
6 2000 × 2000 40 000 000 5min 41sec 202

Table 2: Test results for the Alternating Method.

6

5.3 Stepping Stone and Alternating Methods on the same
problem

Performance of the Stepping Stone and the Alternating Methods are compared
using six different examples. Below is the summary of the results.

S/NO DIMENSION METHOD RANGE ITERATIONS TIME
1 50 SSM 3000 37 00:22

,, AM 3000 4 00:00:6
2 50 SSM 7000 28 00:16

,, AM ,, 3 00:00:5
3 200 SSM 5000 68 09:38 :3

,, AM ,, 3 00:00:7
4 200 SSM 10000 80 10:06 :02

,, AM ,, 3 00:01:2
5 300 SSM 9000 94 30:55 :5

,, AM ,, 5 00:01:6
6 300 SSM 3000 43 14:00:9

,, AM ,, 4 00:01:4

Table 3 : Stepping Stone and Alternating Methods on the same problem.

Conclusions: From the results obtained in tables 1, 2 and 3, we can conclude
that the Alternating Method (AM) is much faster compared to the Stepping
Stone Method (SSM).

References

[1] P. Butkovič, Max-algebra: the linear algebra of combinatorics?, Linear
Algebra & Appl., 367 (2003) 313-335.

[2] P. Butkovič, G. Hegedüs, An elemination method for finding all solutions
of the system of linear equations over an extremal algebra, Ekonom. mat.
Obzor 20 (1984) 2003-215.

[3] P. Butkovič, K. Zimmermann, A strongly polynomial algorithm for solv-
ing two-sided linear systems in max-algebra, Theoret.Comput. Sci., 154
(2006) 437-446.

[4] R. A. Cuninghame-Green, P. Butkovič, The equation A ⊗ x = B ⊗ y
over (max,+), Theoret. Comput. Sci., 293 (1991) 3-12.

[5] R. A. Cuninghame-Green, Minimax Algebra, Lecture Notes in Eco-
nomics and Mathematical Systems, vol.166, Springer, Berlin, (1979).

[6] R. A. Cuninghame-Green, K. Zimmermann, Equation with residual
functions, Comment. Math. Uni. Carolina. 42(2001) 729-740.

[7] P. D. Moral, G. Salut, Random particle methods in (max,+) optimisa-
tion problems in: Gunawardena (Ed.), Idempotency, Cambridge, (1988)
383-391.

[8] E. A. Walkup, G. Boriello, A general linear max-plus solution technique,
in: Gunawardena(Ed.), Idempotency, Cambridge, (1988) 406-415.

7

