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Let a� b = max(a; b) and a
 b = a+ b for a; b 2 R := R [ f�1g. By max-
algebra we understand the analogue of linear algebra developed for the pair of
operations (�;
), extended to matrices and vectors in the same way as in linear
algebra, that is if A = (aij); B = (bij) and C = (cij) are matrices with entries
from R of compatible sizes, we write C = A�B if cij = aij � bij for all i; j and
C = A 
 B if cij =

P�
k aik 
 bkj = maxk(aik + bkj) for all i; j. The iterated

product A
A
 :::
A in which the symbol A appears k-times will be denoted
by A(k).
Let A = (aij) 2 R

n�n
. We denoteN = f1; :::; ng: The complete arc-weighted

digraph associated with A is DA = (N;N � N; aij); the �niteness digraph is
FA = (N; f(i; j); aij > �1g); the zero digraph is ZA = (N; f(i; j); aij = 0g).
1. Links between max-algebraic problems and combinatorial or

combinatorial optimisation problems: The set covering - solvability of
max-algebraic linear systems, the minimal set covering - unique solvability of a
linear system, existence of a directed cycle - strong regularity of a matrix, sign-
nonsingularity or existence of an even directed cycle - regularity of a matrix,
maximum cycle mean - eigenvalue, longest-distances vectors - eigenvectors, best
principal submatrices - coe¢ cients of a characteristic polynomial, linear assign-
ment problem - permanent of a matrix.
2. Examples of combinatorial optimisation results obtained as a

consequence of the max-algebraic theory.

2.a) The (assignment problem) normal form of a matrix and the
longest-distances vectors. Let A = (aij) 2 Rn�n and denote by Pn the
set of all permutations of the set N . Then the (max-algebraic) permanent of
A is maper(A) =

P
�2Pn

�Q
i2N



ai;�(i): In the conventional notation this

reads maper(A) = max�2Pn
P

i2N ai;�(i) and thus maper(A) is the optimal
assignment problem value for A. For � 2 Pn we denote w(A; �)=

Q
i2N



ai;�(i)=P

i2N ai;�(i). The set of all optimal permutations will be denoted by ap(A), that
is ap(A) = f� 2 Pn;maper(A) = w(A; �)g:
A matrix A = (aij) 2 Rn�n is called normal [strictly normal ] if aij � aii = 0

for all i; j 2 N [if aij < aii = 0 for all i; j 2 N; i 6= j]. A normal matrix can
be obtained from any A 2 Rn�n by adding suitable constants to the rows and
columns and by permuting the columns (or rows), e.g. using the Hungarian
method for solving the assignment problem for A. We say that a matrix A
is equivalent to a matrix B if A can be obtained from B by adding constants
to the rows or columns and by permuting the rows or columns. Thus every
matrix is equivalent to a normal matrix. Not every matrix is equivalent to a
strictly normal matrix. Note that if A is normal then the set of all optimal
permutations of the assignment problem for A can conveniently be described:
ap(A) = f� 2 Pn; ai;�(i) = 0 for all i 2 Ng: We say that A is max-algebraically
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de�nite (or, shortly, de�nite) if aii = 0 for all i 2 N and DA contains no positive
cycles. Clearly id 2 ap(A) if A is de�nite.

Theorem 1 [2] Let A = (aij) 2 Rn�n be de�nite. If x = (x1; :::; xn)
T 2 Rn

is a vector of longest distances from all nodes to any �xed node in DA then the
matrix (aij + xj � xi) is normal.

Theorem 2 [2] A 2 Rn�n is equivalent to a strictly normal matrix if and only
if jap(A)j = 1:

By V we denote the max-hull of the vectors of longest distances from all
nodes to a �xed node in DA:

Theorem 3 [2] Let A = (aij) 2 Rn�n be de�nite. A is equivalent to a strictly
normal matrix if and only if int(V ) 6= ;: If x = (x1; :::; xn)T 2 int(V ) then the
matrix (aij + xj � xi) is strictly normal.

2.b) Another link between the assignment problem and the longest-
distances problem. It is easily seen that if id 2 ap(A) for some matrix
A = (aij) 2 Rn�n then B = (aij � aii) is de�nite. We will call B the def-
inite form of A: If A is a de�nite matrix then it can be considered as the
direct-distances matrix between all pairs of nodes in DA. Note that the longest-
distances matrix can max-algebraically be expressed as A(n�1).

Theorem 4 [6] Let A 2 Rn�n and B and C be the de�nite forms of any two
matrices B0 and C 0 arising from A by permuting the columns so that id 2
ap(B0) \ ap(C 0). Then the longest-distances matrices of B and C coincide.

2.c) The maximum cycle mean. LetA = (aij) 2 Rn�n: If � = (i1; :::; ik; i1)
is a cycle in DA then its mean is

�(�;A) =
ai1i2 + ai2i3 + :::+ aiki1

k
:

The value �(A) = max� �(�;A) is called the maximum cycle mean of A.
Next statement is an immediate corollary of the max-algebraic spectral theory.

Theorem 5 �(A(k)) = (�(A))(k), for all natural k and any A 2 Rn�n.

3. Some open problems.
3.a) Even [odd] parity assignment problem (EPAP [OPAP]): Let P+n

[P�n ] be the set of all even [odd] permutations of the set N: Given A 2 Rn�n;
�nd a permutation �� 2 P+n [�� 2 P�n ] such that w(A; ��) = max�2P+

n
w(A; �)h

= max�2P�
n
w(A; �)

i
. Obviously one of these two problems is always solved by

solving the assignment problem. No polynomial method is known in general for
solving both problems at the same time. The question whethermax�2P+

n
w(A; �)

= max�2P�
n
w(A; �) is equivalent to the even cycle problem [2] and if this equal-

ity holds then optimal solutions to both problems can be found in O(n3) time.
Some polynomially solvable special cases are studied in [3].
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3.b) Strong linear independence. This concept is equivalent to the
question: Given A 2 Rm�n; m > n; is there an n � n submatrix B of A
such that jap(B)j = 1? For m = n it reduces to checking jap(A)j = 1, which
can be done in O(n2) time after solving the assignment problem. Also, it is
polynomially solvable for m� n 0� 1 matrices.
3.c) (Max-algebraic) rank. This is a generalisation of the previous prob-

lem important for applications in algebraic geometry [7]: Given A 2 Rm�n; �nd
the biggest natural number k for which there is a k � k submatrix B of A such
that jap(B)j = 1.
3.d) Coe¢ cients of a (max-algebraic) characteristic polynomial.

Given A 2 Rn�n and k < n, �nd a k�k principal submatrix of A whose optimal
assignment problem value is maximal (notation �k). No polynomial algorithm
is known in general. A polynomial randomised algorithm exists [1]. Biggest
k for which �k is �nite can be found in O(n3) time [1]. An O(n(m + n log n))
algorithm for �nding all �k corresponding to so called essential terms exists [5]
(herem is the number of �nite entries of A). The problem arising after removing
"principal" is easily solvable in O(n3) time [1].
3.e) Special case of the previous problem for matrices over f0;�1g.

Given a digraph D with n nodes and k < n, are there pairwise node-disjoint
cycles in D with exactly k nodes in total? No polynomial algorithm is known
in general. Polynomially solvable for a number of special cases, including sym-
metric matrices and k even [4].
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