Max-algebra and combinatorial optimisation: connections and open problems

Peter Butkovič

Let $a \oplus b = \max(a, b)$ and $a \otimes b = a + b$ for $a, b \in \overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty\}$. By maxalgebra we understand the analogue of linear algebra developed for the pair of operations (\oplus, \otimes) , extended to matrices and vectors in the same way as in linear algebra, that is if $A = (a_{ij})$, $B = (b_{ij})$ and $C = (c_{ij})$ are matrices with entries from $\overline{\mathbb{R}}$ of compatible sizes, we write $C = A \oplus B$ if $c_{ij} = a_{ij} \oplus b_{ij}$ for all i, j and $C = A \otimes B$ if $c_{ij} = \sum_{k}^{\oplus} a_{ik} \otimes b_{kj} = \max_{k} (a_{ik} + b_{kj})$ for all i, j. The iterated product $A \otimes A \otimes ... \otimes A$ in which the symbol A appears k-times will be denoted by $A^{(k)}$.

Let $A = (a_{ij}) \in \overline{\mathbb{R}}^{n \times n}$. We denote $N = \{1, ..., n\}$. The complete arc-weighted digraph associated with A is $D_A = (N, N \times N, a_{ij})$, the finiteness digraph is $F_A = (N, \{(i, j); a_{ij} > -\infty\})$, the zero digraph is $Z_A = (N, \{(i, j); a_{ij} = 0\})$.

1. Links between max-algebraic problems and combinatorial or combinatorial optimisation problems: The set covering - solvability of max-algebraic linear systems, the minimal set covering - unique solvability of a linear system, existence of a directed cycle - strong regularity of a matrix, signnonsingularity or existence of an even directed cycle - regularity of a matrix, maximum cycle mean - eigenvalue, longest-distances vectors - eigenvectors, best principal submatrices - coefficients of a characteristic polynomial, linear assignment problem - permanent of a matrix.

2. Examples of combinatorial optimisation results obtained as a consequence of the max-algebraic theory.

2.a) The (assignment problem) normal form of a matrix and the longest-distances vectors. Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ and denote by P_n the set of all permutations of the set N. Then the (max-algebraic) permanent of A is maper(A) = $\sum_{\pi \in P_n} \bigoplus_{i \in N} \bigotimes_{a_i,\pi(i)}^{\otimes} a_{i,\pi(i)}$. In the conventional notation this reads maper(A) = $\max_{\pi \in P_n} \sum_{i \in N} a_{i,\pi(i)}$ and thus maper(A) is the optimal assignment problem value for A. For $\pi \in P_n$ we denote $w(A, \pi) = \prod_{i \in N} \bigotimes_{a_i,\pi(i)}^{\otimes} a_{i,\pi(i)} = \sum_{i \in N} a_{i,\pi(i)}$. The set of all optimal permutations will be denoted by ap(A), that is $ap(A) = \{\pi \in P_n; maper(A) = w(A, \pi)\}$.

A matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ is called *normal* [strictly normal] if $a_{ij} \leq a_{ii} = 0$ for all $i, j \in N$ [if $a_{ij} < a_{ii} = 0$ for all $i, j \in N, i \neq j$]. A normal matrix can be obtained from any $A \in \mathbb{R}^{n \times n}$ by adding suitable constants to the rows and columns and by permuting the columns (or rows), e.g. using the Hungarian method for solving the assignment problem for A. We say that a matrix Ais equivalent to a matrix B if A can be obtained from B by adding constants to the rows or columns and by permuting the rows or columns. Thus every matrix is equivalent to a normal matrix. Not every matrix is equivalent to a strictly normal matrix. Note that if A is normal then the set of all optimal permutations of the assignment problem for A can conveniently be described: $ap(A) = \{\pi \in P_n; a_{i,\pi(i)} = 0 \text{ for all } i \in N\}$. We say that A is max-algebraically definite (or, shortly, definite) if $a_{ii} = 0$ for all $i \in N$ and D_A contains no positive cycles. Clearly $id \in ap(A)$ if A is definite.

Theorem 1 [2] Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be definite. If $x = (x_1, ..., x_n)^T \in \mathbb{R}^n$ is a vector of longest distances from all nodes to any fixed node in D_A then the matrix $(a_{ij} + x_j - x_i)$ is normal.

Theorem 2 [2] $A \in \mathbb{R}^{n \times n}$ is equivalent to a strictly normal matrix if and only if |ap(A)| = 1.

By V we denote the max-hull of the vectors of longest distances from all nodes to a fixed node in D_A .

Theorem 3 [2] Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be definite. A is equivalent to a strictly normal matrix if and only if $int(V) \neq \emptyset$. If $x = (x_1, ..., x_n)^T \in int(V)$ then the matrix $(a_{ij} + x_j - x_i)$ is strictly normal.

2.b) Another link between the assignment problem and the longestdistances problem. It is easily seen that if $id \in ap(A)$ for some matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ then $B = (a_{ij} - a_{ii})$ is definite. We will call B the *definite form* of A. If A is a definite matrix then it can be considered as the direct-distances matrix between all pairs of nodes in D_A . Note that the longestdistances matrix can max-algebraically be expressed as $A^{(n-1)}$.

Theorem 4 [6] Let $A \in \mathbb{R}^{n \times n}$ and B and C be the definite forms of any two matrices B' and C' arising from A by permuting the columns so that $id \in$ $ap(B') \cap ap(C')$. Then the longest-distances matrices of B and C coincide.

2.c) The maximum cycle mean. Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$. If $\sigma = (i_1, ..., i_k, i_1)$ is a cycle in D_A then its mean is

$$\mu(\sigma, A) = \frac{a_{i_1 i_2} + a_{i_2 i_3} + \dots + a_{i_k i_1}}{k}$$

The value $\lambda(A) = \max_{\sigma} \mu(\sigma, A)$ is called the *maximum cycle mean* of A. Next statement is an immediate corollary of the max-algebraic spectral theory.

Theorem 5 $\lambda(A^{(k)}) = (\lambda(A))^{(k)}$, for all natural k and any $A \in \overline{\mathbb{R}}^{n \times n}$.

3. Some open problems.

3.a) Even [odd] parity assignment problem (EPAP [OPAP]): Let P_n^+ $[P_n^-]$ be the set of all even [odd] permutations of the set N. Given $A \in \mathbb{R}^{n \times n}$, find a permutation $\pi^* \in P_n^+$ [$\pi^* \in P_n^-$] such that $w(A, \pi^*) = \max_{\pi \in P_n^+} w(A, \pi)$ $\left[= \max_{\pi \in P_n^-} w(A, \pi) \right]$. Obviously one of these two problems is always solved by solving both problems at the same time. The question whether $\max_{\pi \in P_n^+} w(A, \pi) = \max_{\pi \in P_n^-} w(A, \pi)$ is equivalent to the even cycle problem [2] and if this equality holds then optimal solutions to both problems can be found in $O(n^3)$ time. Some polynomially solvable special cases are studied in [3]. **3.b) Strong linear independence.** This concept is equivalent to the question: Given $A \in \mathbb{R}^{m \times n}$, m > n, is there an $n \times n$ submatrix B of A such that |ap(B)| = 1? For m = n it reduces to checking |ap(A)| = 1, which can be done in $O(n^2)$ time after solving the assignment problem. Also, it is polynomially solvable for $m \times n$ 0-1 matrices.

3.c) (Max-algebraic) rank. This is a generalisation of the previous problem important for applications in algebraic geometry [7]: Given $A \in \mathbb{R}^{m \times n}$, find the biggest natural number k for which there is a $k \times k$ submatrix B of A such that |ap(B)| = 1.

3.d) Coefficients of a (max-algebraic) characteristic polynomial. Given $A \in \mathbb{R}^{n \times n}$ and k < n, find a $k \times k$ principal submatrix of A whose optimal assignment problem value is maximal (notation δ_k). No polynomial algorithm is known in general. A polynomial randomised algorithm exists [1]. Biggest k for which δ_k is finite can be found in $O(n^3)$ time [1]. An $O(n(m + n \log n))$ algorithm for finding all δ_k corresponding to so called essential terms exists [5] (here m is the number of finite entries of A). The problem arising after removing "principal" is easily solvable in $O(n^3)$ time [1].

3.e) Special case of the previous problem for matrices over $\{0, -\infty\}$. Given a digraph D with n nodes and k < n, are there pairwise node-disjoint cycles in D with exactly k nodes in total? No polynomial algorithm is known in general. Polynomially solvable for a number of special cases, including symmetric matrices and k even [4].

References

- Burkard, R.E. and P. Butkovič, Finding all essential terms of a characteristic maxpolynomial, *Discrete Applied Mathematics* 130 (2003)367-380.
- [2] Butkovič, P., Max-algebra: the linear algebra of combinatorics?, *Linear Al-gebra and Applications* 367 (2003) 313-335.
- [3] Butkovič, P., A note on the parity assignment problem. Submitted to Optimization. Preprint 2004/10, University of Birmingham.
- [4] Butkovič, P. and S. Lewis, On the job rotation problem. Submitted to Discrete Optimization. Preprint 2005/17, University of Birmingham.
- [5] Gassner, E., Variants of the Assignment and of the Transportation Problem, PhD thesis, Graz University of Technology, 2004.
- [6] Sergeev, S., Max-plus definite closures and their eigenspaces, preprint.
- [7] Sturmfels, B., On the tropical rank of a matrix, (with F. Santos and M. Develin), to appear in Discrete and Computational Geometry, (eds. J.E. Goodman and J. Pach), Mathematical Sciences Research Institute Publications, Cambridge University Press, 2005.