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In multiprocessor interactive systems, a number of products are prepared using simultaneously working
processors, each contributing to the completion of every product. The completion times of products can
be expressed in terms of the starting times of individual processors as max-linear functions. It is not
difficult to find the starting times once the completion times are given. However, if two such systems
work in parallel, it may be necessary to synchronize their work, i.e. to find starting times so that the
products are completed at the same time. This task leads to the problem of solving two-sided max-linear
systems, a problem of undecided computational complexity. If the solution set is non-trivial, then the
task of finding solutions optimal with respect to a certain criterion arises. In this paper, we propose and
examine a number of heuristics for solving non-linear programs with two-sided max-linear constraints
and compare their performance.

Keywords max-linear systems; max-linear programming; neighbourhood local search.

1. Introduction

Consider the following ‘multiprocessor interactive system’: prodwRis. . ., Py, are prepared using
n processors, every processor contributing to the completion of each product by producing a partialo
product. It is assumed that every processor can work on all products simultaneously and that all thesg
actions on a processor start as soon as the processor starts to wak. thesthe duration of the work

of the jth processor needed to complete the partial produd®fgr = 1,...,m; j =1,...,n). Letus
denote byx; thestarting time of thejth processotj = 1, ...,n). Then all partial products fof; (i =
1,..., m) will be ready at time ma@1 + a1, ..., Xn + &n). Now suppose that independentkypther
processors prepare partial products for prod@ts. . ., Qn andthe duration and starting times g
andyj, respectiely. Then the ‘synchronization problem’ is to find starting times ohall k processors

so that each pai(P,, Q;) (i = 1,...,m) is completed at the same time. This task is equivalent to
solving the system of equations

uo weybuiwg Jo Ausianiun ye Bi1o sjeuinolpiojxo uewew! Woly papeojumod
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maxXy + &1, ..., Xn +ain) =maxyr +bis, ..., %k +bix) (=1,...,m).

It may also be required tha® is not completed before a particular tingge and similarly Q; not
completedbefore timed;. Thenthe equations are

max(Xiy + a1, ..., Xn +ain, G) = max(y1 + bz, ..., yk + bk, di) (i =1,...,m). 1)
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If we denotea @ b = max@, b) anda® b =a+ bfora, b € R, then this system gets the form

® ® .
z 8 X dC = Z bijy; ®d (i =1,...,m). (2)
j=1,..n j=1,...k

Therefore, (1) (and als@j) is called a ‘two-sided system of max-linear equations’ (or briefly a ‘two-
sided max-linear system’ or just ‘max-linear system’). If the solution set to a two-sided max-linear

system is non-trivial, then the task of finding solutions optimal with respect to a certain criterion arises.

This motivates us to introduce the following notation.

Leta®b = max(@, b) anda®@b = a+bfora, b € R, and extend the pair of operations to matrices
and vectors in the same way as in linear algebra. That i&,4f (&), B = (bjj) andC = (cij) are
matricesof compatible sizes with entries frolf, we writeC = A@ Bif ¢ij = a; @ byj for all i, j and
C = A®Bifc; = 3, Pax®by = max(aix+byj) foralli, j. Also, ifa € R, thena® A = (¢ ®aij).
Max-algebrahas been studied by many authors and the reader is refer@shioghame-Gree(1979,
1995),Heidergottet al. (2005),Baccelliet al. (1992),Butkovit (2003),Hogbenet al. (2006).

The aim of this paper is for finding ane R that minimizes the non-linear functioh(x) subject to

AR@x®c=Boxa@d, 3)
whereA = (aj), B = (bjj) € R™", ¢ = (c1,...,Cm)",d = (di,...,dm)" aregiven matrices and

vectors. Optimization problems of this type will be called ‘non-linear programs with two-sided max-
linear constraints’ or just ‘non-linear programs with max-linear constraints (NLPMs)'.

Systems of max-linear equations were investigated already in the first publications dealing with
the algebraic structure called max-algebra (sometimes also extremal algebra, path algebra or tropical
algebra). In these publications, systems of equations with all variables on one side were considered

(Cuninghame-Greeni979;Butkovi¢, 2003;Vorobyoy, 1967;Zimmermannl1976;). Other systems with

a special structure were studied in the context of solving eigenvalue problems in the corresponding alge-

braic structures or synchronization in discrete-event syst&ascglliet al.,1992). Using the®, ®)-
notation, the studied systems had one of the following fortn@:x = b, AQ X = Xor AQ X =X @b,
where A is a given matrix and is a given vector. Infinite-dimensional generalizations can be found,
e.g. inAkian et al. (2005).

General two-sided max-linear systems have also been stulietkoyic & Hegedis, 1984;
Cuninghame-Green & Butkoj 2003;Heidergottet al., 2005; Walkup & Boriello, 1988). A general
solution method was presentedWalkup & Boriello (1988), however, no complexity bound was given.
In Cuninghame-Green & Butko®{2003), a pseudopolynomial algorithm, called the alternating method,
has been developed. Butkovi¢ & Hegedis (1984), it was shown that the solution set is generated by

a finite number of vectors and an elimination method was suggested. A general iterative approach sug-

gested irCuninghame-Green & Zimmermaigf2001) assumes that finite upper and lower bounds for all
variables are given.

Solution methods for max-linear programs with two-sided constraints (MLPs) for both minimization
and maximization problems have been present@&likovic & Aminu (2009) also seAminu (2009). It

was proved that the methods are pseudopolynomial if all entries are integers. The methods are based on

the alternating method Cuninghame-Green & Butkdii991). Note that MLP is also NLPM with the
objective function max-linear. NLPM has a number of applications for more informatiom3g&evic

& Aminu (2009) and a comprehensive monographtkovi¢, 2010) with many other applications and
various different approaches.
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2. The one-sided case

One-sided systems of max-linear equations have been studied for many years and they are very well
understood, se€uninghame-Greef1979),Zimmermann(1976) andButkovic (2003). These problems
have the following form:

A® X =Dh, 4

whereA = (gj) e R™"andb = (b, ..., bm)" € R™.

A method for minimizing max-linear function(x) = fT ®x = max(fy+Xu, . .., fn+ Xn) subject
to (4) is presented iButkovic & Aminu (2009). Note that the problem of minimizing the non-linear
function f (x) = 2Xt 4 2%2 4 ... 4 2% js NP-completeButkovi¢ & Aminu (2009). Since a one-sided
system is a special case of a two-sided sys@mwherea;j > bjj andg < d; for everyi andj, NLPM
is alsoNP-complete.

3. Definitions and problem formulation

Since NLPM is NP-complete for a general non-linear function, an exact solution method is unlikely to
be efficient. Therefore, we will develop heuristic methods for solving this problem. That is we develop
heuristic methods for minimizing non-linear functidrix) subject to two-sided max-linear system

ARXx®c=Bexdd, (5)

where A = (gj), B = (bj) € R™" andc = (¢1,...,Cm)",d = (di,...,dm)" € R™ aregiven
matrices and vectors. A practical motivation for this research is that no polynomial method is known
for solving MLPs. We denote the set of solutions f6) by S. Note that we may consider any matrix

A € R™" to be made up ofi column vectors withm entries in each vector, i.e.

A= (A, Az, ..., An), A= (a1j,aj,...,am) .

A function f (x): R" — R is said to be ‘isotone’ if for everx, y € R", x < y, we havef (x) <
f (y). In what follows, we assume that the objective functidmx) is non-linear, isotone and computable
in polynomial time.

DEFINITION 3.1 LetXx = (X1,..., Xn) € Sandr bea positive integer, < n. Ther-neighbourhood
N (x) of x is the set of feasible solutions obtainable by changing at mostmponents ok (and fixing
the remaining variables).

DEFINITION 3.2 A solutionx e Sis called a ‘local optimum’, if there is n@ € N;(x) suchthat
f(2) < f(x).

TT0Z ‘6T Atenuer uo weybuiwig jo Alsianiun e 610°sfeuinolplojxo uewewl wolj papeojumod

Note thatr will be omitted if the value of is known and thus instead ofneighbourhood, we will
just say neighbourhood.

The aim here is to develop local search methods, baseebptimum neighbourhood far = 1 and
r = 2, to minimize non-linear isotone functiol(x) subject to

ARx®dc=Bexad,

where A = (gj), B = (bjj) € R™" andc = (¢1,...,Cm)",d = (dq,...,dm)" € R™ aregiven
matrices and vectors.
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4. Max-linear programs: some special cases

MLPs (minimization) are the following:
f(x)=fT ®x — min
subject to (6)
Ax@®c=Boxa@d,

wheref = (f,..., f))T e R", ¢ = (C1,...,Cn)",d = (dy,...,dn)" € R™ A = (&j) andB =
(bij) e R™". This problem is denoted by MI"®". Solution methods for) are developed iButkovic
& Aminu (2009). We denote the optimal solution set for Mt!Phy S™in,

4.1 Basicproperties

Before we develop methods for solving max-linear programs for special cases, we summarize some

basic properties. To do so we will denote,né f (x) by f™MandM> = {i € M;¢ > d;}. Also, if
a € R, then the symbak ! standsfor —a.

THEOREMA4.1 (Butkovi¢ & Aminu, 2009) f ™" = —oo if and only if c= d.

LEMMA 4.1 (Butkovic & Aminu, 2009) Letc > d. If x € Sand(A® x); > ¢; foralli € M, then
X =a ®X e Sand(A® x); = ¢ for somei € M, where

a = maxG ® (A® X)), 7

For j € N, we denote by

L mi ia—1 =1
h; = min(mina; ®cr,peuhgbrj ®dr), (8)

andh’ = (h,...,hp)T.

REMARK 4.1 Each componem'j for j € N canbe determined in @n) time. Hence, the vectdr is
O(mn).

PROPOSITION4.1 Letc > d andc # d. If S # @, then for everyx € S™" thereis ani € M~ and
j € N suchthat(B® x)i =¢ > (A® X)i andxj = ¢ ® bi_jl'

Proof. Supposee > d andc # d. Letx e S"" suchthatdi e M, j € N, X} < G ® bi_jl. Then we
have

(B®x)i <¢ <(A®X)i @,
which contradicts the assumption thate S. Hencexj > ¢ ® bi_jl, Vie M7 Ifxj=6G® bi_]-1 for

somei € M~ then the statement follows. Supposies M~, j € N, Xj > G ® bi‘jl. Sincex € S, we
have

(A®X)i®c =(B®x)i, ieM”, 9)
(ARX) ®@c =(BRX) ®C, r¢gM”. (10)
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Now, Xj > ¢ ® bi_jl,vi e M~ j e N andx e S, therefore from @), we have

(A®X)i = (B®X)i >¢, VieM”, 11)
andit follows from Lemmad.1thata ® X = X € S, where in this case as defined in7) is

a = max(g ® (A® X)) < 0.
ieM>
Clearly, f (x') < f(x), a contradiction with optimality of. O

4.2 Them-by-one case

Given f € R anda, b, c,d € R™*1, the problem of minimizing the functiori (x) = f ® x (of one
variable) subject to

ARXIXDCG =X, ieM”, 12)
aRxdc =bxdd, igM”

is denoted MLPY". We define byM= = {i € M;ci = di} andM~ = {i € M=; & # bj}. We denote
by Sn1 thesolution set of (12) an@];" the set of minimizers of12).

ProPOSITION4.2 Letc > d andc # d. Then
() If Ji e M~ suchthata; > b, thenSy = 0.
(ii) If 3i € M~ suchthata; < bj, thenSy; # @ implies thatSy; = {6 ® bi_l}.

Proof. (i) Suppose there is an equatioe M~ suchthata; > b;. Then it follows from (12) that
b x<a®Xx<aXPC.

Thus,Sn1 = 0.
(i) Suppose there is an equatioe M~ suchthata; < b;. Then from @2), we have

8 @XdC =h ®x
= G =b ®x
— x=g bt
Thereforejt follows that if Spy1 # 0 thenx = ¢ ® bi_1 € Sn1 andit is unique. O

Dueto Propositiord.2, we recognize that there is at most one feasible solution toﬂﬂ{?LiPHi €

M~ suchthatg; > bj org < bj. For that reason, we may assume that without loss of generality in

MLP™IN we haves; = b for alli € M>.

Let us define by
% = max(c ® b (13)
PrROPOSITION4.3 Letg; = b; foralli € M~ . If Sy1 # 0, thenX € Sqys.
Proof. Leta; = b; foralli € M~ . Supposélx € Sy. It follows from (12) that
b ®x=a ®x®c, ieM” (14)
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and
b @x@d =ax®dc, ieM™. (15)
From(14), we have
bh®x>c¢c, VieM”
— x>g®b™t, VieMm”
=>x>mx(c|®b )—x

Now, if X > X, thenbj ® x =g ® X,i € M~. It follows from Lemma4.1that we can scale dowxnto
the level, wherdyj ® X = ¢ for somei € M~ . Leta = X ® x~L. Then we haver ® x = X € Sn1.
Hencethe proof. O

ALGORITHM 4.1 ONEVARIABLE (Non-homogeneous max-linear systems with one variable)
Input: ¢ = (¢i),d = (di), A= (&), B = (b)) e R™1
Output: X € Sp1 or an indication thaGy; = @

1. If c = d then stop X = h’ whereh' is defined in (8)) anck € Sn1
2. foralli e M~ do
begin
if & > by thenstop (‘Sn1 = @)
if & < bj then
begin
X'=¢G® bi_1
if X € Sp1 thenstop K € Sn1)
elsestop ("Sn1 = 07)
end
end
3. x:=max{gi —bj;i e M~}
if X € Sp1 thenstop K € Sn1)
elsestop (‘Sn1 = 0)

THEOREM4.2 Algorithm ONEVARIABLE is correct and its computational complexit®{).

It follows from Propositiord.3 that the existence of an optimal solution for I\/miPis reduced to
the checking whethet € Sy1.

PrROPOSITION4.4 If gy = bj foralli e M~ andSy1 # @ thenk e 5?1“1”

Proof. Suppose; = b foralli € M~ andx € Syp1 suchthatx < X = maxe<m> (G ®bi‘1). Therefore,
we have

X < ok ® b for somek € M~
= by ® X < ¢k,

which contradicts the assumption that Sni. Thereforex e Sy O
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Based on Proposition4.2, 4.3 and 4.4, we will formulate the following algorithm for finding a
solution to MLP}" or to indicate thatSy1 = #. We denote infes,, f (x) by f™".

The following algorithm solves the ML:ET in polynomial time or finds out tha®,; = ¢ or the
objective function is unbounded.

ALGORITHM 4.2 MAXLINMINmM1 (Max-linear minimization form x 1 matrices withc > d)
Input: f e R,c=(ci),d = (di), A= (a), B = (b)) e R™™.
Output: x € §7}", an indication thaGy; = @ or f™" = —oo.

1. If c = d then stop (f ™" = —c0")

2. Use the Algorithm ONEVARIABLE to find ar € Sm
if it exists therx € ST
elseSy1 =40

THEOREM4.3 AlgorithmMAXLINMINmL1 is correct and its computational complexityién).

4.3 The m-by-two case

In this section, we will study and develop polynomial solution methods for max-linear programs with

two-sided constraints (MLP) wittn x 2 entry matrices for minimization problems. That is,

fT®x —s>min

subject to (16)
ARXPc=Bexad,

whereA = (&j), B = (bjj) e R™2, f = (f1, f)T e R%,c=(c1,...,Cm)'andd = (d, ..., dm)" €
R™M.

An optimization problem of this type will be denoted by M{ﬂ? The set of feasible solutions for
MLP! will be denoted bysn, the set of optimal solutions bg75".

PROPOSITION4.5 Solving MLPT canbe converted to a repeated solving of problem NP

Proof. It follows from Propositior4.1that at least one of the decision variables of l\m‘?%anbe fixed

toxj =6 ® bi_-1 for somei € M~ andj e {1, 2}. If this value is substituted on to ML{P‘, then this
problem will have one variable to be determined and the statemenwfollo

Again, it follows from Propositiort.1 that finding a feasible solution to Mlm-*z" is equivalent to
checking whether a feasible solution can be found by fixing one of the two decision varialles-to
G ® bi‘jl, forsomei € M~ andj € {1, 2}. Due to Propositiod.5, we can determine the optimal value
of the free variable by solving the corresponding l\mii’l? Therefore, we may assume that a feasible
solution exists. The use of Algorithm MAXLINMINmM1 is applied to the corresponding Mipﬁor
finding the free variable in order to minimiz&(x). The algorithm will first fixx; ata number of rows
and determinex; usingAlgorithm MAXLINMINm1, then fix x, anddeterminex; andstop (when all
these are done) with an output of eithee 77", an indication thaSn, = @ or f™" = —oo, where
fmin — infyes,, T (X). We assume that without loss of generatity d otherwise we swap the sides of
equations appropriately.
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ALGORITHM 4.3  MAXLINMINmM2 (Max-linear minimization form x 2 matrices withc > d)
Input: f = (f1, f2)T € R%,¢c = (c1,...,Cm)",d = (d1,...,dm)" € R™ A = (&), B = (bj)
]RmeI

Output: x € STN, an indication thaGy, = ¢ or f ™" = —co.

1. If c = d then stop (f ™" = —c0")
2. Setx? := (400, +00)T, x := x°
3.forj=1,2do
begin
foralli e M~ do
begin
yj =G ®b*
k:=3—]
forallr e M do
begin
A = an
B/r = brk
G = maxer,aj +Yj)
d; := max@, brj + yj)
if c. < d; thenswap the sides in theth equation
Mz, = {r € M;c > d}
end
if Mz, = 0 thenyy := h, whereh, is defined in 8)
else findyx by applying Algorithm MAXLINMINmM1 to
A, B, c andd
fARYydc=Byddandf(y) < f(x)thenx:=y
end
end
If x = x° thenstop Gz = 9)
else stopx e Smin

THEOREM4.4 AlgorithmMAXLINMINmM2 is correct and its computational complexityién).

Proof. The correctness of MAXLINMINmM2 follows from Propositiodsl and4.5. In Step 3, there are
three loops. The first loop runs twice, the second (mPtime and the third in @n) time. The non-fixed

variable can be determined in @Y and checking whethey € Sy or not can be done in @n) time.
Thus, the computational complexity of Algorithm MAXLINMINM2 is@?) + O(m) = O(m?). [

5. The local search methods

In this section, we proposeoptimum local search methods for non-linear programs with two-sided
max-linear constraints (NLPMs) far = 1 andr = 2. The methods will repeatedly use Algorithm
MAXLINMINmM1 if r = 1 and Algorithm MAXLINMINmMZ2 if r = 2. More on heuristic methods can
be found inMichalewicz & Fogel(2004).
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The steepest descent method with improvement (SDMI) is a method that will consider all candidates in

the neighbourhood of a current feasible solutidnand one that gives the best objective function value

is chosen to compete with the current feasible solution. This chosen solution is denwidd B&<°) is

worse thanf (x), thenx becomes the current feasible solution. Otherwise the method will produce

asthe output.

5.1.1 1-optimum local search. The SDMI will start with an initial feasible solutior. This solu-

tion can be found in pseudopolynomial time using (say) the alternating method Cuninghame-Green &
Butkovi¢ (1991) and is called current feasible solution. Then fix all but one compongeot the so-

lution x. These values for the fixed variables are then substituted in the problem which would yield
a one variable problem with column matricés = A, andB = B, r e N andcolumn vectors

¢ = maxj (G, aj + Xj) andd, = maxj (di, bij +Xj),i € M. Algorithm MAXLINMINmZ is then

applied on toA", B', ¢ andd' to find the best value fox, in O(m) time (Theoreny.3). After finding

the best value fox;, the feasible solutiox is denoted byy andy e Nj(x). This process will be re-
peated for every. Choose among the feasible solutions in the neighbouriha@d) onewith smallest
objective function value and compare it with the current feasible solution. If the current feasible solution &
returns worse objective function value, then this chosen solution becomes current feasible solution ané
the process will be repeated again. Otherwise, the procedure stops and produces the current feaS|
solution as the output. The following algorithm sums up this method.

ALGORITHM 5.1 ONEOPT-SDMI (One-optimum steepest descent method with improvement for the

NLPM)

Input: A = (&), B = (bjj) € R™", ¢ = (cy,...

isotone functionf and a maximum number of iteratiobks

Output: An x € S.

1. Findx% e S (for example, using the Alternating Method)
2. Setx :=x0 T = (400, ...,

3. Repeat until flag= false or iteration= U

begin
forr =1tondo
begin
forj =1tondo
begin
yj i=xjif j#r
end
A=A
B =B
foralli e M do
begln

»Cm)T,d = (dla"'a

+00)T, flag := true and iteration= 0

Q—m%#maﬁﬂﬂ
di = maxjxr (di, bij + ;)
if ¢ < d; thenswap the sides of thigh equation
Mz =i e M;q > d}

dm)T € R™, a non-linear

0JX0Uewew! Woij papeojumod
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end
Apply Algorithm MAXLINMINm1to A, B',c¢ andd’ tofind y;
if f(y) < f(T)thenT =y
end
if f(T) < f(X)thenx:=T
if x = x0 thenflag = false  is the best feasible solution found)
elsex? := x
iteration:= iteration+ 1
end

5.1.2 2-optimum local search. The 2-optimum SDMI starts with an initial feasible solutionvhich

can again be found in pseudopolynomial time using say alternating method Cuninghame-Green &
Butkovi¢ (1991). This solution is called a current feasible solution. Repeat the following process for
allr,s=1,...,n,r # s. Fix all but two components, andxs of the current feasible solution The

values for the fixed variables are then substituted in the problem. This would produce a two variables
problem whose matrices and vectors &re= (A, As) € R™2 andB’ = (B, Bs) € R™2 and

¢ =maxc,aj +X), ieM
j#r
j#s
and
¢=n§mxuj+mx ieM,
j#r
j#s

wherei € M andj e N. Algorithm MAXLINMINm2 is then applied on toA’, B', ¢ andd’ to find the

best value of the free variableg, andxs in O(m?) time (Theoremé.4). After finding the best value for

Xy andxs, the feasible solutiom is denoted by andy € N»(x). Select in the neighbourhodd (x), a

solution with the smallest objective function value and compare it with the current feasible solution. If
the current feasible solution returns worse objective function value, then the chosen solution becomes
the current feasible solution and the process will be repeated again. Otherwise stop and declare current
feasible solution the best feasible solution found. This procedure can be formulated in the following
algorithm.

ALGORITHM5.2 TWOOPT-SDMI (Two-optimum steepest descent method with improvement for the
NLPM)

Input: A = (aj), B = (bij) € R™", ¢ = (c1,...,Cm)",d = (di,...,dm)" € R™, a non-linear
isotone functionf and a maximum number of iteratiohk

Output: An x € S.

1. Findx% e S (for example using the Alternating Method)
2. Setx :=x° T = (400, ..., +00)T, flag = true and iteration= 0
3. Repeat until flag= false or iteration= U
begin
forr =1tondo
begin
fors=r +1tondo
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begin
forj =1tondo
begin
yj =Xjif j#randj #s

epd
A/ = (Ar, As)
B = (B, Bs)
foralli € M do
begin

G i=maxG.aj +Yj), ] A, ] #S
d = max@i, bij +yj), j #r, | #S
if ¢ < d thenswap the sides of thigh equation
Mz == {r e M;¢ > d}
end
Apply Algorithm MAXLINMINm2to A, B, ¢ andd’
tofind y; andys
if f(y) < f(T)thenT =y
end
end
if f(T) < f(x)thenx:=T
if x = x0 thenflag := false  is best feasible solution found)
elsex? := x
iteration:= iteration+ 1
end

5.2 Steepest descent method without improvement

g Jo Ansianiun re B1o°sjeuinolpiojxo uewew! Woij papeojumod

In the SDMI, we have seen that a best solution in the neighbourhood of a current feasible solstion
chosen to compete with the current feasible solution. If this solution has a better objective function value3
than the current feasible solution, then it will become current, and the process will start again. Otherwise,ng
the current feasible solution is the best feasible solution found and the process stops. However, thig
method may not provide us with the best solution. As a consequence, we may get stuck in a localg
optimum. To overcome this, we made some modifications to the SDMI so that we allow moves to a best§
solutionz in the neighbourhood of the current solution regardless of the fact that its objective function <
value may be worse than that of the current feasible solutidrnis method is called SDMI, for brevity ©
steepest descent method without improvement (SDMW). This is motivated by the fact that it may be§
possible to find a solution in the neighbourhoodzafhich provides a better objective function value =
than that off (z) and indeed even than in the current solution.

5.2.1 One-optimum local search.This second version of the steepest descent method will consider
all candidates in the neighbourhodd (x) of a current feasible solutior and chooses the one with

the best objective function value among these solutions. The method is formulated in the following
algorithm.

ALGORITHM 5.3 ONEOPT-SDMW (One-optimum steepest descent method without improvement
for the NLPM)
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Input: A = (aj), B = (bij) € R™", ¢ = (c1,...,Cm)",d = (d1,...,dm)" € R™, a non-linear
isotone functionf and a maximum number of iteratiobs
Output: An x € S.

1. Findx? e S (for example using the Alternating Method)
2. Setx :=x%, T = (400, ..., +00)" andlteration = 0
3. Repeat until Iteratioa= U

begin
forr =1tondo
begin
for j =1tondo
begin
yj =xjifj#r
end
A=A
B =B
foralli e M do
be/gin

C = maX (G, aj + Yj)
d = maxj (i, bij + )
if ¢ < d; thenswap the sides of thieh equation
Mz =i € M;c > d)
end
Apply Algorithm MAXLINMINm1 onto A', B', ¢ andd’ tofind y;
if f(y) < f(T)thenT =y
end
Xx=T
x9:=x
Iteration:= Iteration+ 1
end

5.2.2 Two-optimum local search. Similarly as for 1-optimum SDMW, the 2-optimum SDMW will

begin by finding an initial feasible (current) solutimrand chooses in the neighbourhoNg(x) afea-

sible solution with the smallest objective function value regardless of the fact that its objective function
value may be worse than the current feasible solutiomhe chosen solution is now current feasible
solution and the process starts again. The method stops if the maximum number of iterations (or time)
is reached.

ALGORITHM 5.4 TWOOPT-SDMW (Two-optimum steepest descent method without improvement
for the NLPM)

Input: A = (aij), B = (bij) € R™", ¢ = (c1,...,cm)",d = (d1,...,dm)T € R™, a non-linear
isotone functionf and a maximum number of iteratiduh.

Output: An x € S,

1. Findx® e S(for example using the Alternating Method)
2. Setx := x0T := (400, ..., +00)T, iteration = 0
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3. Repeat until iteratios= U

begin
forr =1tondo
begin
fors=r +1tondo
begin
forj =1tondo
begin
yj =xjif j #randj #s
end g
A/ = (Ar, As) 3
B := (B, Bs) g
foralli € M do a
begin g
q/:=max(q,aij+yj),j¢r,j¢s 5
d; :=max@,bij +vyj), | #r,] #s 3
if ¢ < d thenswap the sides of thé" equation 5
Mz == {r e M;¢ > d} N
end 'S
Apply Algorithm MAXLINMINm2to A, B, ¢ andd’ 3
tofind y; andys 3
if f(y) < f(T)thenT =y ﬁ
end c
end ;’D
x:=T @
X0 = x 2
iteration= iteration+ 1 o
end 3
a
3
5.3 Hill-descendingnethod g
In both methods described previously, we do not have the guarantee of escaping from local optima. Ir§
an attempt to overcoming this problem, we consider modifying those methods so that an immediates

solution in the neighbourhood of the current solution with a better objective function value is chosen.
This method is called ‘hill descending method’ (HDM).

TTOZ ‘6T Al

5.3.1 One-optimum local search.The method will start with a feasible solutiot then chooses an
immediate solution in the neighbourhodd (x), of x with better objective function value than the cur-

rent solution and repeats the process until no further improvement is possible or the maximum number
of time/iterations are reached. The method is formulated in the following algorithm.

ALGORITHM 5.5 ONEOPT-HDM (One-optimum hill-descending method for the NLPM)

Input: A = (&), B = (bjj) € R™", ¢ = (c1,...,Cm)",d = (di,...,dm)" € RM, a non-linear
isotone functionf and a maximum number of iteratiobks

Output: An x € S.
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1. Findx° e S (for example using the Alternating Method)
2. Setx := x% andflag = true, iteration= 0
3. Repeat until flag= false or iteration= U

begin
forr =1tondo
begin
for j =1tondo
begin
yj i=Xxjifr#j
end
A=A
B :=B
foralli e M do
begin

¢ = max@,aj +Yj), | #r
di/ ‘= max@d, bij +yj), j #r
if ¢ < d thenswap sides of thith equation
Mz =i € M;c > d}
end
Apply Algorithm MAXLINMINm1to A, B', ¢ andd’
tofind y;
if f(y) < f(x)then
begin
Xi=y
break
end
end
if x = x9 thenflag = false  is the best solution found)
else
begin
x0:=x
iteration:= iteration+ 1
end
end

5.3.2 Two-optimum local search.The HDM will consider the neighbourhood,(x) of a current
solution x. Then chooses immediately the first feasible solution in the neighbourhood with smaller
objective function value than the current feasible solution. The chosen solution will become the current
feasible and the procedure starts again. If there is no solution in the neighbourhood with better objective
function than the current feasible solution the method stops.

ALGORITHM 5.6 TWOOPT-HDM (Two-optimum hill-descending method for the NLPM)

Input: A = (&), B = (bjj) € R™", ¢ = (c1,...,Cm)",d = (d,...,dm)" € R™, a non-linear
isotone functionf and a maximum number of iteratiohk

Output: An x € S,
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1. Findx° e S (for example using the Alternating Method)
2. Setx := X0, flag == true, T := 0, iteration = 0
3. Repeat until flag= false or iteration= U
begin
forr =1tondo
begin
fors=r +1tondo
begin
forj =1tondo
begin
yj =xjif j #randj #s
end
A= (A A
B := (B, Bs)
foralli € M do
begin
G =max@i,aj +Yj), ] #r, ] #s
d = max@i, bij +yj), j #r,j #s
if ¢ < d thenswap the sides
Mz == {r e M;c > d)
end
Apply Algorithm MAXLINMINm2to A, B', ¢ andd’
tofind y, andys
if f(y) < f(x)then
begin
X:i=Yy
T.=1
break
end
end
if T = 1thenT := 0 and break
end
if x = x0 thenflag = false  is the best solution found)
else
begin
X0 :=x
iteration:= iteration+ 1
end
end
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5.4 The multi-start heuristic

The multi-start heuristic method will consider all the one-optimum and two-optimum local search meth-
ods proposed in the previous sections and repeat each method for a certain number of times.

Since the method (alternating method) we are using to find the initial feasible solution depends on
the starting vector, we consider a positive integer Ray 1 and repeat the one-optimum local search
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methodsR times.For each run, we generate a new starting vector which may in return give a different
feasible solution to the problem and then apply the one-optimum or two-optimum local search methods.
After repeating the metho® times, we find among th& solutions the best solution to our problem.
This method is summed up in the following algorithms.

ALGORITHM 5.7 MULTI-START (Multi-start heuristic for the NLPM)

Input: A = (aj), B = (bij) € R™", ¢ = (c1,...,Cm)",d = (di,...,dm)" € R™, a non-linear
isotone functionf and a maximum number of iteratiofs

Output: A solution xPeSte S,

1. Set run = 0 andxPest:= (+o0, ..., +00)T

2. Randomly find a starting vectan(run)

3. Usex(run) and apply the Alternating Method to find a solutixhto
Axodc=Bexaod

4. Apply a 1—optimum (or 2-optimum) local search method starting frefnto find a solution
x(run)

5. if f(x(run)) < f(xPesY thenxPest:= x(run)

6. if run = R then stop xP®Stis the best feasible solution found)
elserun=run+ 1 and goto 3.

6. Computational results

In this section, we will compare the 1-optimum and 2-optimum local search methods, developed in
the previous sections. We divide this section into two subsections: in the first subsection, we consider
the objective function to be max-linear and present results obtained when comparing exact method for
solving NLPM andr-optimum local search methods where= 1,2. In the second subsection, the
objective function isf (x) = 2*1 422 . ., + 2% andwe compare the 1-optimum and 2-optimum local
search methods.

All the algorithms developed for both heuristics and exact methods were implemented in Matlab
7.2. Matrices and vectors are generated randomly. The experiments were carried out on a PC with Intel
Centrino Duo, 1.66.GHz of CPU and 0.99 GB of RAM.

6.1 Instances when the objective function is max-linear

In this section, we consider NLPM when the objective function is max-linear. First, we show the per-
formance of multi-start heuristics, then compare the exact method-aptimum local search methods
wherer = 1,2. We begin by finding a feasible solution to the given problem (using the alternating
method). Then each of the methods will use this feasible solution in order to find an optimal or a
best feasible to the given problem. For each method, we report the computing time spent up to the
point where its optimal solution or best feasible solution is found for the first time. In the 1-optimum
and 2-optimum local search methods, we impose a maximum number of iterations as five (5) for
the SDMW.

Recall thatf ™" = infy.sf(x) denotesthe optimal value of the objective function. The size of

matrices and range of entries for the problems are given at the end of the tables. Entries in each table

have the following meaning:

FV: Feasible objective function value;

OFV: Optimal objective function value;

Sol: The best feasible objective function value found;
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# times best: How many times the method produces the best solution among the heuristics;

# times fast: How many times the method produces solution faster than all other methods in the table;
# times exact: How many times the heuristic method finds an exact solution;

RE: The relative error determined as follows

17

I— OFV
RE:‘H’

OFV

Notethat RE is used only for instances whose optimal objective function value is positive.

Tablesl1 and2 show that the multi-start heuristic is not improving the result obtained by the local
search methods.

Table3 reports the result on comparison of exact, 1-optimum and 2-optimum local search methods.
The objective function is max-linear and the input matrices have 10 rows and 20 columns. All the
methods were able to produce an exact solution for six (6) instances except HDM for 2-optimum local
search which produces four (4). Each of the five methods has average ®R&4 and HDM for 2-
optimum has average RE 0.34. The fastest among all the methods is the HDM for 1-optimum local
search with average computing time of 0.04 s. The exact method is slow with the average computin
time of 216.3 s.

Table4 gives the result on the comparison of exact, 1-optimum and 2-optimum local search methods
The matrices have 10 rows and fifty columns. SDMI, HDM for 1-optimum and SDMI for 2-optimum
local were able to find exact solution in three instances. Each of these methods have averaQ& &E
SDMW for 1-optimum has average RE 2.90. SDMW and HDM for 2-optimum has average RE
1.57 and RE= 2.56, respectively. The fastest method is SDMW for 1-optimum with average computing
time of 0.1 s. The exact method is once more very slow with average computing time of 218.3 s.

Table 5 reports the output on the comparison of exact, 1-optimum and 2-optimum local search
methods. The matrices have 10 rows and 100 columns. In the 1-optimum local search SDMI and HDM
were able to find exact solution twice. While in the 2-optimum only SDMI is able to find exact solution
in two instances. The average RE for SDMI, HDM in 1-optimum and SDMI in 2-optimum is 0.7. The
fastest method is the 1-optimum SDMW with average computing time of 1.3 s. The exact method is
slow with average computing time of 131.7 s.

Table6 gives the output on the comparison of exact, 1-optimum and 2-optimum local search meth-
ods. The matrices have 40 rows and 100 columns. All the methods produced the same solution withe
average RE= 1.16. 1-optimum SDMI is the fastest method with average computing time of 0.5 s. The
exact method is slow with average computing time of 6958.7 s.

We conclude that the 1-optimum SDMI, HDM and 2-optimum SDMI are the best solution meth-
ods that can produce a solution with minimum objective function value. The method that can produce;
solution with minimum computing time is 1-optimum SDMI.
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6.2 Instances when the objective function is not max-linear

In this section, we will consider the objective functionfigx) = 2X1 + 2*2 4 .. 4+ 2% We compare
performance of all the local search methods presented in Séctior each problem, we find a feasible
solution using the alternating method. Each of the heuristic methods will use this feasible solution to
find a best feasible solution. We report computing time each method used to find a best feasible solution
for the first time. As with the other experiments, the maximum number of iterations for SDMW for both
1-optimum and two-optimum local search methods is fixed as five (5).
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It can easily be verified from Tablésand8 that 2-optimum SDMI is the best method that can
produce a solution with a minimal objective function value. 1-optimum SDMW is the fastest method
that can produce solution in a very short period of time.

Finally, we concluded that when the objective function is max-linear 1-optimum local search meth-
ods are more efficient. When the objective function is not max-linear (tHaip= 2X1+2%2 4. . .4-2%n)
2-optimumlocal search methods are more appropriate.
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