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Leta® b = maxa, b) anda® b = a+ b for a, b € R. Extend this pair of operations to matrices and
vectors in the same way as in linear algebra. Being motivated by scheduling of multiprocessor interactive
systems, we introduce max-linear programs of the férhg x — min (or max) subjecttA ® X ® ¢ =

B ® x @ d and develop solution methods for both of them. We prove that these methods are pseudo-
polynomial if all entries are integers. This result is based on an existing pseudo-polynomial algorithm for
solving the systems of the fordi® X = B® y.

Keywords max-linear programming; optimal solution; pseudo-polynomial algorithm.

1. Problem formulation

Consider the following ‘multiprocessor interactive system’ (MPIS).

ProductsPy, ..., Py are prepared usingprocessors, every processor contributing to the completion
of each product by producing a partial product. It is assumed that every processor can work on all prod-
ucts simultaneously and that all these actions on a processor start as soon as the processor starts to work.
Let &; be the duration of the work of thgth processor needed to complete the partial producPfor
(i=1....,mj=1,...,n). Letusdenote by; the starting time of th¢th processo(j =1, ..., n).
Then, all partial products fd? (i = 1, ..., m) will be ready at time maf; +aj1, ..., Xn +ain). Now,
suppose that independenttyother processors prepare partial products for prod@ats .., Qm and
the duration and starting times arg andy;j, respectively. Then, the ‘synchronization problem’ is to
find starting times of alh + k processors so that each p@#, Qi) (i =1, ..., m)is completed at the
same time. This task is equivalent to solving the system of equations

max(X1 + &1, ..., Xn +&n) = Maxyr +bis,..., e+ bi) (=1....,m).

It may also be required thd is not completed before a particular tirgeand similarlyQ; not before
timed;. Then, the equations are

max(X1 + &1, - .., Xn + ain, Gi) = max(y1 + bi1, ..., Yk + bk, di) (i =1,...,m). 1)
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If we denotea ® b = max(a,b) anda® b = a + b for a,b € R, then this system gets the
form

® 7] .
> Tajexiec= > by ®d (=1..,m. )
j=1...n j=1,..k

Therefore, {) (and also 2)) is called a ‘two-sided system of max-linear equations’ (or briefly a ‘two-
sided max-linear system’ or just ‘max-linear system’).

LEMMA 1.1 (Cancellation law) Let, w, a,b € R, a > b. Then, for any reak, we have
vdaARX=wdb®X 3)

if and only if
vda®®X=uw. (4)

Proof. If x satisfies 8), then left-hand sidez a ® x > b ® x. Hence, right-hand side- w and @)
follows. If (4) holds, therw > a® X > b® x and thusw = w & b ® Xx. O

Lemmal.1shows that in a two-sided max-linear system, variables missing on one side of an equa-
tion may be artificially introduced using suitably taken small coefficients. We may therefore assume
without loss of generality tha] has the same variables on both sides, i.e. in the matrix—vector notation,
it has the form

ARX®Cc=BRxdd,

where the pair of operationsp, ®) is extended to matrices and vectors in the same way as in linear
algebra.

In applications, it may be required that the starting times are optimized with respect to a given
criterion. In this paper, we consider the case when the objective function is also ‘max-linear’, i.e.

fx)=fT@x=maxfi+Xi,..., fn+ Xn)

and it has to be either minimized or maximized. For instance, it may required that all processors in an
MPIS are in motion as soon/as late as possible, i.e. the latest starting time of a processor is as small/big
as possible. In this case, we would $&€k) = max(xy, ..., Xn), i.e. all fj = 0.

Thus, the problems we will study are

fT ® x — min or max

S.t.

ARXxX@®c=Bxdd.

Optimization problems of this type will be called ‘max-linear programming problems’ or, briefly, ‘max-
linear programs (MLPS)'.

Systems of max-linear equations were investigated already in the first publications dealing with
the algebraic structure called max-algebra (sometimes also extremal algebra, path algebra or tropi-
cal algebra). In these publications, systems of equations with all variables on one side were consid-
ered Cuninghame-Greerl979 Vorobyoy, 1967 Zimmermann1976 Butkovic, 2003. Other systems
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with a special structure were studied in the context of solving the eigenvalue problems in the corre-
sponding algebraic structures or synchronization in discrete event sy®ante(liet al, 1992). Using
the (&, ®)-notation, the studied systems had one of the following forfg® X = b, A® X = x or
A® X = x @ b, whereA is a given matrix andb is a given vector. Infinite-dimensional generalizations
can be found, e.g. iAkian et al. (2005.

General two-sided max-linear systems have also been studietkoyic & Hegedus 1984
Cuninghame-Green & Butkovj@003 Cuninghame-Green & Zimmermay2001;, Walkup & Boriello,
1988. A general solution method was presentedNalkup & Boriello (1989, however, no complex-
ity bound was given. l€uninghame-Green & Butkovi2003), a pseudo-polynomial algorithm, called
the alternating method, has been developedBuitkovic & Hegedus(1984), it was shown that the
solution set is generated by a finite number of vectors and an elimination method was suggested. A
general iterative approach suggestedCimninghame-Green & Zimmermar{@001) assumes that fi-
nite upper and lower bounds for all variables are given. We make a substantial use of the alternating
method for solving the two-sided max-linear systems in this paper and derive a bisection method
for the MLP that repeatedly checks solvability of systems of the fé&xr® x = B ® x. To our
knowledge, this problem has not been studied before. We prove that the number of calls of a sub-
routine for checking the feasibility is polynomial when applied to MLPs with integer entries, yielding
a pseudo-polynomial computational complexity overall. Note that the problem of minimizing the func-
tion 24 4 2% + ... + 2% subject to one-sided max-linear constraint®dlR-complete. This result is
motivated by a similar result presentedG@echlarovg2004) and details are presented at the end of the
paper.

2. Max-algebraic prerequisites

Leta® b = max@a b)yanda®b =a+bfora, b e R.If a e R, then the symbch~! stands in this
paper for—a.

By ‘max-algebra’, we understand the analogue of linear algebra developed for the pair of operations
(@, ®), extended to matrices and vectors in the same way as in linear algebra. Thatis(dj), B =
(bij) andC = (gjj) are matrices of compatible sizes with entries friimwe writeC = A @ B if
Cj = aj ®bjj foralli, jandC = A® Bif g; = Zﬁaajk ® bxj = max(aik + bgj) for all'i, j. If
a € R, thena ® A= A® a = (a ® &j). The main advantage of using max-algebra is the possibility
of dealing with a class of non-linear problems in a linear-like way. This is due to the fact that basic rules
(commutative, associative and distributive laws) hold in max-algebra to the same extent as in linear
algebra.

Max-algebra has been studied by many authors and the reader is refe@editmhame-Green
(1979 1995, Heidergottet al. (2005, Baccelliet al. (1992 or Butkovic (2003 for more information,
see alsaCuninghame-Gree(l1962, Vorobyov (1967 andZimmermann(1976. A chapter inHogben
et al. (2006 provides an excellent state of the art overview of the field.

We will now summarize some standard properties that will be used later on. The following holds for
a,b,ceR:

adb>a,
a>b=adc>bade,

a>bosae>bc
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For matrices (including vectord), B andC of compatible sizes ovék anda € R, we have
A® B> A
A>B=AeC>Ba¢C,
A>2B=A®C>B®C,
A>B=CRA>CQ®B,
A>B=Cc®A>Cc®B,
Cc®AR®B=AR (c® B).
The next statement readily follows from the above-mentioned relations.

LEMMA 2.1 Supposd € R"and letf (x) = fT ® x be defined oR". Then,

(@) f(x)is max-linear,ief(ldxdu®y) =1 f(X)® u ® f(y) for everyx,y € R" and
A,u eR.
(b) f(x)isisotone,i.ef(x) < f(y)foreveryx,y e R", x <.

3. Max-linear programming problem and its basic properties

The aim of this paper is to develop methods for findingxame R" that minimizes [maximizes] the
function f (x) = fT ® x subject to

ARXdc=Boxad, %)

where f = (f,..., f))T e R",c = (c1,...,Cm)",d = (d1,...,dm)" € RM, A = (aj) andB =
(bij) € R™" are given matrices and vectors. These problems will be denoted by"NM[ALP ™2
and we also denote everywhekké = {1,...,m} andN = {1, ..., n}. Note that it is not possible to
convert MLP"" to MLP™2% or vice versa.

Any system of the forng5) is called a ‘non-homogenous max-linear system’ and the set of solutions
of this system will be denoted b§. The set of optimal solutions for ML [MLP ™2 will be denoted
by SMn [SM3] Any system of the form

ERz=F®z (6)

is called a ‘homogenous max-linear system’ and the solution set to this system will be den&gdiby

the next proposition, we show that any non-homogenous max-linear system can easily be converted to
a homogenous one. Here and elsewhere, the symbol 0 will be used to denote both the real number zero
and the zero vector of an appropriate dimension.

PROPOSITION3.1 LetE = (A|0) andF = (B|0) be matrices arising frord and B, respectively, by

adding a zero column. Kk € S, then(x|0) € S and conversely, it = (z, ..., szrl)T € S, then
zn_il Q(z1,....,zn)" €S
Proof. The statement follows straightforwardly from the definitions. O

Given MLP™N [MLP™2, we denote
K = max{|a;jl, [bijl, Icil, [dj[, [ fjl;1 € M, j € N}. (7)
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THEOREM3.1 (Cuninghame-Green & Butkovj@003 LetE = (gj), F = (fj;) € Z™"andK’ be the
greatest of the valugsij |, | fij|,i € M, j € N. There is an algorithm of complexity @n(m + n)K”)
that finds arx satisfying(6) or decides that no suchexists.

Proposition3.1 and Theoren8.1 show that the feasibility question for MI"B* and MLP™" can
be solved in pseudo-polynomial time. We will use this result to develop bisection methods for solving
MLP™M and MLP"@X We will prove that these methods need a polynomial number of feasibility checks
if all entries are integers and hence are also of pseudo-polynomial complexity.

The algorithm inCuninghame-Green & Butkovi@003 is an iterative procedure that starts with an
arbitrary vector and then only uses the operations of, max and min applied to the starting vector
and the entries of andF. Hence, using Propositiat 1, we deduce the following theorem.

THEOREM 3.2 If all entries in a homogenous max-linear system are integers and the system has a
solution, then this system has an integer solution. The same is true for non-homogenous max-linear
systems.

As a corollary to Lemmd.1, we have the following lemma.

LEMMA 3.1 Leta,a’ e R,a’ <a,andf(x) = fT ®@x, f'(x) = f'T ® x, wheref/ < f; for every
j € N. Then, the following holds for every € R: f(x) = a ifandonly if f(X) ® o’ = f'(X) ® a.

The following proposition shows that the problem of attainment of a value for a MLP can be con-
verted to a feasibility question.

PrROPOSITION3.2 f(X) = a for somex € Sif and only if the following non-homogenous max-linear
system has a solution:

ARx@dc=Bex®d,
fX)@a =1 X)Pa,

wherea’ < a and f'(x) = f'T ® x, Wherefj’ < fj foreveryj e N.
Proof. The statement follows from Lemmasl and3.1 O

COROLLARY 3.1 If all entries in MLP"® or MLP™" are integers, then an integer objective function
value is attained by a real feasible solution if and only if it is attained by an integer feasible solution.

Proof. It follows immediately from Theorer8.2and Propositior3.2 O

COROLLARY 3.2 If all entries in MLP"® or MLP™" and« are integers, then the decision problem
whether f (x) = o for somex € SN Z" can be solved by using @n(m + n)K’) operations where
K’ =maxK + 1, |a]).

Proof.Fora’ and f]-’ in Proposition3.2, we can taker — 1 and f; — 1, respectively. Using Theoregl
and Propositior8.2, the computational complexity then is

O((m+(n+ H(M+n+ 2K’y = O(mn(m + n)K"). 0

A setC C R"is said to be ‘max-convex’ il ® x ® u ® y € C for everyx,y € C, 1, u € R with
A u=0.
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PrROPOSITION3.3 Sand$, are max-convex.

Proof.

AR(L®XBu®Yy) ®cC
=AR(UURXPuURY)DPIRCDOuRC
=10 (A®XBC0)BuUR(ARY®DC)
=@ Bexed)eou®(Beyad)
=BRUXDuky)didduxd
=BRURXDuRYy) dd.

Hence,Sis max-convex an&;, is max-convex for similar reasons. O

PROPOSITION34 Ifx,y € S, f(X) = a < f = f(y), then for everyy € (a, ff), thereisaz € S
satisfyingf(z) = .

Proof.Leti =0,y =p"1®y andz=1Q@x® u ®Yy. Then,A & u = 0 andz € Sby Propositiors.3
and by Lemma&.1, we have

f@=lofouef(y)=adpfey®p=7. O

Before we develop solutions methods for solving the optimization problems™igd MLP™,
we need to find and prove criteria for the existence of optimal solutions. For simplicity, we denote
inf yes f (x) by f™" and similarly sugesf (x) by fma

We start with the lower bound. We may assume without loss of generality thajtue(havec > d.
LetM~ ={i e M; ¢ > d}. Forr e M~, we denote

: -1
Ly = erII(I] fk®c ® b

and

L = maxL,.
reM>

As usual may¥ = —oo by definition.
LEMMA 3.2 Ifc > d, thenf(x) > L for everyx € S.

Proof. If M~ = @, then the statement follows trivially sinte= —oo. Letx € Sandr € M~. Then,
(B X)r = ¢

and so

X > ¢ @ byt

for somek e N. Hence, f (x) > fk ® x« > fk ® ¢ ® b " > L, and the statement now follows. O
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THEOREM3.3 fMN = o ifand only ifc = d.

Proof. If ¢ = d, thena ® x € Sfor anyx € R" and everya € R small enough. Hence, by letting
o — —oo,we havef (a ® X) =a ® f(X) > —oo.
If ¢ # d, then without loss of generality > d and the statement now follows by Lemra2 since
L > —o0. O
Now, we discuss the upper bound.

LEMMA 3.3 Letc > d. If x € Sand(A®Xx); > ¢; foralli € M, thenx’ = a®x € Sand(A®X'); = ¢;
for somei € M, where

o = maxc ® (A® X)), 8)
Proof. Letx € S. If
(AR X); > G
for everyi € M, thenA ® X = B ® x. For everya € R, we also have
AR (@ ®X)=B® (a ®X).
It follows from the choice of: that also
(A® (e ®X))i =a® (A®X)i >¢

for everyi € M with equality for at least onee M. Hence x’ € Sand the lemma follows. O
Let us denote

U = maxmax fj —1 .
reM jeN J®a” G

LEMMA 3.4 If c > d, then the following holds:

(a) if x e Sand(A® X)r < ¢; for somer € M, thenf (x) < U;

(b) if A® x = B ® x has no solution, theffi(x) < U for everyx € S.
Proof. (a) Since
&) ®Xj <G
forall j € N, we have
F0) < maxf ®a; ®c <U.
je
(b) If S= @, then the statement holds trivially. Lete S. Then,
(A®X) <G

for somer € M since otherwisé ® x = B ® x, and the statement now follows from (a). O
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THEOREM3.4 M = 4o if and only if A® x = B ® x has a solution.

Proof. We may assume without loss of generality that d. If A® x = B ® x has no solution, then
the statement follows from Lemmntad4. If it has a solution, say, then for all sufficiently bigx € R,
we have

AR(@®2)=B®(@@®z)>caodd

and hencer ® z € S. The statement now follows by letting — +o0. O

We also need to show that the maximal [minimal] value is attaine®l $# ¢ and f™® < +o0
[f™" > —o0]. Due to continuity off, this will be proved by showing that both for minimization and
maximization the se$ can be reduced to a compact subset. To achieve this, we denote the following for
j € N:

_ minl mina=L o minh=Led. f-1
hl—m'”({‘;kﬂ‘aﬂ <X>c,,rrr€1|,\r/|1brj ®d,,fj ®L), 9)
h| = min (rmema;jl ®¢j, min b'® d,-) (10)
andh = (hy, ..., hy)T, W = (", ..., h;)T. Note thath is finite if and only if f ™" > —co.

PROPOSITION3.5 For anyx € S, there is arx’ € Ssuch thaix’ > hand f (x) = f(x/).

Proof. Letx e S. Itis sufficient to sek’ = x @ h since ifx; < hj, j € N, thenx; is not active on any
side of any equation or in the objective function and therefore, changingh; will not affect any of
the equations or the objective function value. O

COROLLARY 3.3 If ™" > _co0 andS # @, then there is a compasétS such that

£ — min f (x).
XeS

Proof. Note thath is finite sincef ™" >~ —co. Let%X € S, X > h, then
S=SN{xeR%hj <x < 1@ (R, ] eN}

is a compact subset @andX e S If there was ay € S, f(y) < min, g f(x) < f(X), then by
Proposition3.5, thereisay’ > h,y' € S, f(y') = f(y). Hence,

fiey; <fy)=fy)<f®
foreveryj e Nandthusy’ € S, f(y') < min,_= f (x), a contradiction. O

XeS

PROPOSITION3.6 For anyx € S, there is arx’ € Ssuch thaix’ > h' and f (x) < f(X)).

Proof. Letx € Sandj e N. Itis sufficient to sek’ = x @ h’ since ifx; < hj, thenx; is not active on

any side of any equation and therefore changiptp h’j does not violate any of the equations. The rest

follows from isotonicity of f (x). 0
LetS = SN {x e R W, <xj < f71®@U, j e N},
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COROLLARY 3.4 If fM&X < 400, then

f M = max f (x).
xeS

Proof. The statement follows immediately from Lem@a&, Theorem3.4and Propositior3.6. O
COROLLARY 3.5 If S# @and f™MN > —oo [ fM < 400], thenS™N £ ¢ ST £ g].

It follows from Lemma3.2that f ™ > L. However, this information is not useful if = d since
thenL = —oo. Since we will need a lower bound fdm&* even whert = d, we defineL’ = f (h") and
formulate the following.

COROLLARY 3.6 Ifx € S, thenx’ = x @ h’' satisfiesf (x’) > L’ and thusf M > L',

4. The algorithms

It follows from Proposition3.1 and Theoren8.1 that in pseudo-polynomial time either a feasible so-
lution to () can be found or it can be decided that no such solution exists. Due to Thedréarsd

3.4, we can also recognize the cases when the objective function is unbounded. We may therefore as-
sume that a feasible solution exists, the objective function is bounded (from below or above depending
on whether we wish to minimize or maximize) and hence an optimal solution exists (Cor@Mrif

x0 e Sis found, then using the scaling (if necessary) proposed in Leffwar Corollary3.6, we find
(another)x? satisfyingL < f(x%) < U or L’ < f(x% < U (see Lemma$.2and3.4). The use of

the bisection method applied to eith@r, f (x%)) or (f (x%), U) for finding a minimizer or maximizer

of f(x) is then justified by Propositio8.4. The algorithms are based on the fact that (see Proposition
3.2) checking the existence of ane S satisfying f (x) = a for a givena € R can be converted to a
feasibility problem. They stop when the interval of uncertainty is shorter than a given precisi@n

ALGORITHM 4.1 MAXLINMIN (max-linear minimization)
Input: f = (fg,..., f)T e R, c=(cy,...,cm)",d=(dy,...,dn)T eR™c>d,c#d, A=
(a@j), B = (bjj) e R™", & > 0. _
Output:x € Ssuch thatf (x) — f™" < &.
. If L = f(x) for somex € S, then stop ™" = L).
Find anx? € S. If (A® x%); > ¢ foralli € M, then scale by « defined in(8).
. L(0):=L,U(0) := f(x%,r :=0.
o= 3L +U@)).
. Check whethef (x) = « is satisfied by somr € Sand in the positive case find one.
Ifyes,thenU(r +1) :=a,L(r +1) := L(r).
If not,thenU(r + 1) :=U(),Lr +1) :=a.
6.r:=r+1
7. 1fU(r) — L(r) < &, then stop else go to 4.

abh wN P

THEOREM4.1 Algorithm MAXLINMIN is correct and the number of iterations before termination is

O(I092U — L).
&€
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Proof. Correctness follows from Propositiéch4 and Lemmé3.2 Sincec # d, we have the following
at the end of Step 2f(x%) > L > —oo (Lemma3.2) andU(0) := f(x° < U by Lemma3.4
Thus, the number of iterations is(@;gz UE;L) since after every iteration the interval of uncertainty is
halved. O

ALGORITHM 4.2 MAXLINMAX (max-linear maximization)
Input: f = (f1,..., f))T e R, c=(cy,...,Cm)",d=(d1,...,dm)" € R™,
A = (aj), B=(bjj) e R™", ¢ > 0.
Output:x € Ssuch thatf ™ — f (x) < ¢ or an indication thaf M = 4o0.
. IfU = f(x) for somex e S, then stop (™ = U).
. Check whetheA ® x = B ® x has a solution. If yes, stoff " = +00).
Find anx® € Sand se? := x° @ h’, whereh’ is as defined inX0).
L(0) := f(x%),U(0) :=U,r :=0.
ca= (L) +Ur)).
. Check whethef (x) = a is satisfied by somg € Sand in the positive case find one.
Ifyes,thenU(r +1):=U(),LFr +1) :=a.
If not,thenU(r + 1) :==a, L(r +1) := L(r).
7.r:=r+1.
8. IfU(r) — L(r) < ¢, then stop else go to 5.

o UlA WN R

THEOREM4.2 Algorithm MAXLINMAX is correct and the number of iterations before termination is

Uu-L’
@) (I092 ) .
&

Proof. Correctness follows from Propositidh4 and Lemma3.4. By Lemma3.4 and Corollary3.6,
U > f(x% > L’ and thus the number of iterations is( 09, %) since after every iteration the
interval of uncertainty is halved. O

5. The integer case

The algorithms of SectioA may immediately be applied to MI"P" or MLP™® when all input data are
integers. However, we show that in such a c&®& and f ™ are integers and therefore, the algorithms
find an ‘exact’ solution once the interval of uncertainty is of length 1 since then dittngror U (r) is

the optimal value. Note thdt andU are now integers and we will show how integrality lofr ) and

U (r) can be maintained during the run of the algorithms. This implies that the algorithms will find exact
optimal solutions in a finite number of steps and we will prove that their computational complexity is
pseudo-polynomial.

THEOREMS5.1 If A, B, c,d and f are integersS # ¢ and f ™" > —oo, then f ™" e Z (and therefore,
SN 70 £ ).

Proof. Supposef Mn ¢ Z and letz = (zy, ..., z,)" e S™N. We assume again without loss of generality
thatc > d. For anyx € R", denote

Fx)={jeN; fj®x;=fXx)}
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Hence, we have
zj ¢ Z foreveryj € F(2). (12)

We will now show that alkj, j € F(2), can be reduced while maintaining feasibility which will be a
contradiction with optimality ofz. To prove this, we develop a special procedure called the reduction
algorithm. Let us first denote the following fare R":

Q) ={i e M; (A®X)i > ¢}
and fori € M andx € R",
Ti(x)={] e N;a; ® Xj = (A® X)i},
Ri(x) ={j € N;bjj ®x; = (B®X)i}.

Since all entries are integes; ® zj = ¢ cannot hold for any e M andj € F(z) and ifaj; ® z; < ¢
for everyi e M andj € F(z), then allzj, j € F(x), could be reduced without violating any equation
which contradicts the optimality of Hence,Q(z) # @.

Reduction algorithm

1. P(2 .= F(2).
2. E1:=1{i € Q(2);Ti(9) C P(2) andR (2) £ P(2)},
E2:={i € Q@;Ti(2) £ P(z) andRi(2) € P(2)}.
3. If E1 U Ex = 0, thenP(2) is the set of indices of variables to be reduced, STOP.
4. P(2) .= P(@ U Uieg, (R(D\ P(2) U Uieg, (Ti(2) \ P(2)).
5. Goto 2.

Claim: Reduction algorithm terminates after a finite number of steps and at termination,
zj ¢ Z forj e P(2). (12)

Proof of claim: Finiteness follows from the fact that the $§tz) strictly increases in size at every
iteration andP(z) C N. For the remaining part of the claim, it is sufficient to prove the following
for any iteration of this algorithm: ifi2) holds at Step 2, then it is also true at Step 5. The statement
then follows from the fact thatl@) is true when Step 2 is reached for the first time due to Step 1 and
assumption X1). Consider therefore a fixed iteration at the beginning of whith fiolds. Suppose
without loss of generality thaE; U E; # § and take any € E;. Hence,zj ¢ Z for | € Ti(2), thus
(A® 2)j ¢ Z.Buti € Q(2), implying (B ® 2)i = (A® 2); and so(B ® 2); ¢ Z too. Sinceb;; are
also integers, this yields thaf ¢ Z for j € Ri(z). Thereforezj ¢ Z for j € Uicg, (Ri(2) \ P(2).
Similarly, zj ¢ Z for j € Uieg, (Ti(2) \ P(2)) and the claim follows.

If i € M\ Q(2), then by integrality of the entries, both; ® zj < ¢ andbjj ® z; < ¢ for
j € P(2). We conclude that altj for j € P(z) can be reduced without violating any of the equations,
a contradiction with optimality of.

Hence,f ™" € Z. The existence of an integer optimal solution now follows from CorolBady [

THEOREMS5.2 If A, B,c,d and f are integersS # @ and f " < 4-oo, then f ™ ¢ Z (and therefore,
Smaxn zh £ §).
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Proof. (Sketch) The proof follows the ideas of the proof of Theof®th We suppose > d, fM& ¢ 7
and letz = (z1,...,2,)" € S™ We take one fixed € F(2) (hencez; ¢ Z) and show that it is
possible to increasg; without violating equality in any of the equations. Similarly as in the proof of
Theorenb.1, it is shown that the increase pf only forces the non-integer componentszab increase.
Due to integrality of all entries, it is not possible that the equality in an equation is achieved by both
integer and non-integer componentszofit the same time, an equality of the forA ® 2); = ¢ (if
any) cannot be attained by non-integer components,afju® z; < ¢ andbjj ® zj < ¢ whenever
zj ¢ Z and hence there is always scope for an increasg ¢fZ. The rest of the argument is the same
as in the proof of Theorerd. L O
Integer modifications of the algorithms are now straightforward sinde’ andU are also integers:
we only need to ensure that the algorithms start from an integer vector (see Th28yemd that the
integrality of both ends of the intervals of uncertainty is maintained, for instance, by taking one of the
integer parts of the middle of the interval.
We start with the minimization. Note that

L,L,U e[-3K, 3K], (13)

whereK is defined by 7).
ALGORITHM 5.1 INTEGER MAXLINMIN (integer max-linear minimization)
Input: f = (fy,..., f)T eZ" c=(ct,...,cm)",.d=(dy,...,dn)"T € ZM c>d,c#d,
A= (aj), B = (bjj) e Z™".
Output:x e S"N N Z",
. If L = f(x) for somex e SN Z", then stop (™" = L).
Findx® e SNZ". If (A® x%; > ¢ foralli e M, then scale? by « defined in(8).
.L):=L,U) := f(x%,r:=0.
cac= 3L +Ur)].
. Check whethef (x) = a is satisfied by some € SN Z" and in the positive case find one.
If x exists, therJ(r + 1) :=a, L(r +1) := L(r).
If it does not, therJ (r +1) :=U(r),L(r +1) :=a.
6.r:=r+1.
7. 1fU(@r) — L(r) = 1, then stop{ (r) = f™") else go to 4.
THEOREM 5.3 Algorithm INTEGER MAXLINMIN is correct and terminates after usingnan(m +
n)K log K) operations.

O s wWN R

Proof. Correctness follows from the correctness of MAXLINMIN and Theofefn For computational
complexity, first note that the number of iterations idd@(U — L)) < O(log6K) = O(log K). The
computationally prevailing part of the algorithm is the checking whethgt) = o for somex e
SN Z" whena is given. By Corollary3.2, this can be done using(@n(m + n)K’) operations, where
K’ = maxK + 1, |a|). Sincea € [L, U], using (L3), we haveK’ = O(K). Hence, the computational
complexity of checking whethef (x) = a for somex € SN Z" is O(mn(m + n)K) and the statement
follows. O

ALGORITHM 5.2 INTEGER MAXLINMAX (integer max-linear maximization)
Input: f = (f,..., f)T €ZM c=(ct,....,cm)",d=(dy,...,dm)" € Z™,
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A= (&), B = (byj) € Z™".
Output:x € SN Z" or an indication thaf ™ = +oo.
. If U = f(x) for somex e SNZ", then stop (™ = U).
. Check whetheA ® x = B ® x has a solution. If yes, stoff & = +00).
Find anx? € SN Z" and se® := x9 @ h’, whereh'’ is as defined in%0).
L) := f(x%,U () :=U,r :=0.
cac= L@ +U@E) ]
Check whethef (x) = « is satisfied by some € SN Z" and in the positive case find one.
If x exists, thetd(r + 1) :=U(r),L(r +1) :=a.
If not, thenU(r +1) :=a, L(r +1) := L(r).
7.r:=r+4+1
8. IfU(r)—L(r) =1, thenstopl((r) = fM®)else goto 5.
THEOREMb.4 Algorithm INTEGER MAXLINMAX is correct and terminates after usingron(m +
n)K log K) operations.

o s ®wN P

Proof. Correctness follows from the correctness of MAXLINMAX and Theorgr The computa-
tional complexity part follows the lines of the proof of Theorér8 after replacing- by L. O

6. An example
Let us consider the MLP (minimization) in which
f=@314-20T7,

17 12 9 4 9
A=|19 0 7 9 10},
19 4 3 7 1

2 11 8 10
B=|11 0 12 20 3
2 13 5 16
12 12
c=[15], d=][12
13 3

and the starting vector is
x0=(-6,0,3,-5,2)".
Clearly, f (x%) = 7, M> = {2, 3} and the lower bound is
L = maxmilg fk®c @byt

reM> ke

= max(min(7, 16, 7, =7, 12), min(14, 1, 12, -5, 9)) = —5.
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We now make a record of the run of INTEGER MAXLINMIN for this problem.
Iteration 1: Check whethdr = —5 is attained byf (x) for somex e Sby solving the system

17 12 9 4 9 1 2 11 8 10 9 1
9 0O 7 9 10 15 11 0 12 20 3 12
Rw = R w.
19 4 3 7 11 13 2 13 5 16 4 3
3 1 4 -2 0 -6 2 0 3 -3 -1 -5

There is no solution, hendg(0) := —5,U(0) :=7,r := 0anda := 1.
Check whetherf (x) = 1 is satisfied by some € Sbhy solving

17 12 9 4 9 1 2 11 8 10 9 1
9 0 7 9 10 15 112 0 12 20 3 1
Qw = R w.
19 4 3 7 11 13 2 13 5 16 4 3
3 1 4 -2 0 O 2 0 3 -3 -1 1
There is a solutiok = (—6,0, —3, =5, 1)T. Hence,U(1) := 1,L(1) := —5,r := 1 andU(1)
—-L(Q > 1
Iteration 2: Check whethef (x) = —2 is satisfied by some € S by solving
17 12 9 4 9 1 2 11 8 10 9 1
9 0 7 9 10 15 112 0 12 20 3 12
Quw = R w.
19 4 3 7 11 13 2 13 5 16 4 3
3 1 4 -2 0 -3 2 0 3 -3 -1 -2
There is no solution. Hencl,(2) :=1,L(2) ;= —-2,r :=2andU(2) — L(2) > 1.
Iteration 3: Check whethef (x) = 0 is satisfied by some € S by solving
17 12 9 4 9 1 2 11 8 10 9 1
9 0 7 9 10 15 117 0 12 20 3 1
R w = ® w.
19 4 3 7 11 13 2 13 5 16 4 3
3 1 4 -2 0 -1 2 0 3 -3 -1 0

There is no solution. Hencél (3) := 1, L(3) := 0,U(1) — L(1) = 1, stop, f™" = 1, an optimal
solution isx = (-6, 0, —3, =5, 1)T.

7. An easily solvable special case

One-sided systems of max-linear equations have been studied for many years and they are very well
understood Cuninghame-Greerl979 1995 Zimmermann 1976 Butkovic, 2003. Note that a one-

sided system is a special case of a two-sided sys&@mi{erea;; > bj; andc < d; for everyi andj.

Not surprisingly, MLPs with one-sided constraints have also been known for someZiima¢rmann

1976. Here, we present this special case for the sake of completeness.
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Let us consider one-sided systems of the form
A®Xx =Dh, (14)

where A = (ajj) € R™" andb = (by,...,bm)" € R™ These systems can be solved more easily
than their linear algebraic counterparts. One of the methods follows from the next theorem in which
S={xeR" A®x=Db}.

THEOREM7.1 LetX = (X1,...,Xn) ", whereX; = minjem b ® ai}l for j € N. Then,

(a) x < X for everyx € Sand
(b) x € Sifand only ifx < X and

U Mj=wm,

jr X=X
where forj € N,
Mj={i e M;X; =b ®agl}.

Proof. Can be found in standard texts on max-algel@aninghame-Greerl979 Heidergottet al,

2005 Zimmermann1976). O
Suppose thaf = (fy, ..., fn)T € R"is given. The task of minimizing [maximizing](x) = fT ®

x subject to 14) will be denoted by MLF}“” [MLPT'®]. The sets of optimal solutions will be denoted

Sf“” andS"® respectively. It follows from TheoreM 1and the isotonicity off (x) thatX e S"*. We

now present a simple algorithm which solves I\)[L"F?

ALGORITHM 7.1 ONEMAXLINMIN (one-sided max-linear minimization)
Input: A e R™" b e R™andc e R".
Output:x € S™.

1. FindX andMj, j € N.
2. Sort(fj ® Xj; j € N), without loss of generality let

f1eX1 < f2®@X2 < --- < fr ® Xpn.

3. ) ={1},r =1
4. If

UM,-:M,

jed

then stopXj = Xj for j € J andxj small enough foij ¢ J).
5r:=r+1J:=JU{r}.
6. Goto 4.

THEOREM7.2 Algorithm ONEMAXLINMIN is correct and its computational complexity i§ror?).

Proof. Correctness is obvious and computational complexity follows from the fact that the loop 4-6 is
repeated at mosttimes and each run is@n). Step 1 is @mn) and Step 2 is Q1logn). O
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Note that the problem of minimizing the functiof2r 2%2 + ... + 2% subject to one-sided max-
linear constraints i?NP-complete since the classical minimum set-covering problem (MSCP) can be
formulated as a special case of this problem with ma#igver {0, —1} andb = 0. Indeed, given a
finite setM = {v1, ..., om} and a collectiorMy, ..., My of its subsets, consider the ‘MSCP’ for this
system, i.e. the task of finding the smallestuch that

Mi, U---UMj, =M

forsomeiq, ..., ik € {1,...,n}. MSCP is known to b&P-complete Roseret al,, 2000. Let Q be the
minimization problem

fx) =24... 4+ 2% — min

subject to
A®x =D,

whereA = (ajj) e R™",b=0¢ R™and

0, ifi e Mj,
ajj = .
—1, otherwise

It follows from Theoreni7.1that at every local minimum = (X1, ..., X)) ', everyx;j is either O or
—oo and

U Mj=wm.
Xj=0

Thus, every local minimunx corresponds to a covering & and the valuef (x) is the number of
subsets used in this covering. Therefd@eis polynomially equivalent to MSCP.

Note also that some results of this paper may be extended to the case when the objective function
is ‘isotone’, i.e. f (X) < f(y) wheneverx < y. This generalization is beyond the scope of the present
paper.
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