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Abstract�In this paper we consider the generalized eigen-
problem in max-algebra, i.e. given matrices A;B, �nd x and �
such that A 
 x = � 
 B 
 x. We present several conditions
that are necessary or suf�cient for the existence of a solution
to this problem.
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I. INTRODUCTION

A. De�nitions

Let a� b = max(a; b) and a
 b = a+ b for a; b 2 R :=
R[f�1g. Obviously,�1 plays the role of a neutral element

for � and a null for 
: Throughout the paper we denote �1
by " and for convenience we also denote by the same symbol

any vector or matrix whose every component is�1: If a 2 R
then the symbol a�1 stands for �a: If a1; :::; an 2 R then
the expression a1� :::�an will be denoted by

P�

i=1;:::;n ai:

The iterated expression a 
 a 
 ::: 
 a where the symbol a

appears k-times (k � 1) will be denoted a(k) and a(0) = 0
by de�nition.

By max-algebra we understand the analogue of linear

algebra developed for the pair of operations (�;
), extended
to matrices and vectors. That is if A = (aij); B = (bij)
and C = (cij) are matrices of compatible sizes (this is also
assumed in all matrix expressions below) with entries from

R, we write C = A � B if cij = aij � bij for all i; j and

C = A 
 B if cij =
P�

k aik 
 bkj = maxk(aik + bkj)
for all i; j. If � 2 R then � 
 A = (�
 aij). We assume
everywhere in this paper that n � 1 is an integer. Pn will
stand for the set of permutations of the set f1; :::; ng:
A square matrix D is called diagonal, notation D =

diag(d1; :::; dn); if its diagonal entries are d1; :::; dn 2 R and
off-diagonal entries are ": We also denote I = diag(0; :::; 0):
Obviously, A
I = A for every m�n matrix A. Any matrix
arising from I and D by permuting its rows and/or columns

is called a permutation matrix and generalised permutation

matrix, respectively.

If A is an n�n matrix then the iterated product A
A

:::
A in which the symbol A appears k-times (k � 1) will
be denoted by A(k); and �(A) = A�A(2) � :::�A(n). We
set A(0) = I by de�nition. The conjugate of an m�n matrix
A = (aij) is the n�m matrix A� =

�
a�1ji

�
:

Of the elementary properties of matrices in max-algebra

we mention at least the isotonicity of 
 :

A
 C � B 
 C and C 
A � C 
B

whenever A � B and A;B;C are matrices including

possibly vectors and scalars.

Max algebra has been studied by various authors [1], [3],

[8], [9], [11].

B. Problem formulation

The aim of this paper is to study the problem: Given

A;B 2 R
m�n

, �nd all � 2 R and x 2 R
n
; x 6= " such

that
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A
 x = �
B 
 x: (1)

A motivation for this research is given by the following

practical interpretation: Consider the multi-machine interac-

tive production process (MMIPP) where products P1; :::; Pm
are prepared using n machines (or processors), every machine

contributing to the completion of each product by producing

a partial product. It is assumed that every machine can work

for all products simultaneously and that all these actions on

a machine start as soon as the machine starts to work. Let

aij be the duration of the work of the j
th machine needed

to complete the partial product for Pi (i = 1; :::;m; j =
1; :::; n): Let us denote by xj the starting time of the j

th

machine (j = 1; :::; n). Then all partial products for Pi
(i = 1; :::;m) will be ready at time max(x1 + ai1; :::; xn +
ain). Now suppose that independently, n other machines

prepare partial products for products Q1; :::; Qm and the

duration and starting times are bij and yj ; respectively. Then

the synchronisation problem is to �nd starting times of all

2n machines so that each pair (Pi; Qi) (i = 1; :::;m) is
completed at the same time. This task is equivalent to �nding

x1; :::; xn; y1; :::; yn 2 R satisfying the system

max(x1 + ai1; :::; xn + ain) = max(y1 + bi1; :::; yn + bin)

for i = 1; :::;m: If the machines are linked it may also
be required that the starting times (xj ; yj) of each pair of
machines (j = 1; :::; n) differ by the same value. If we denote
this value by � then the equations read

max(x1+ai1; :::; xn+ain) = max(�+x1+bi1; :::; �+xn+bin)
(2)

for i = 1; :::;m: If we denote a� b = max(a; b) and a
 b =
a+ b for a; b 2 R then this system gets the form

X

j=1;:::;n

�

aij 
 xj = �

X

j=1;:::;n

�

bij 
 xj (i = 1; :::;m)

(3)

which is essentially (1).

A related problem, important in max-algebra, is:

EIGENPROBLEM (EP): Given A 2 R
n�n

; �nd all x 2
R
n
; x 6= " (eigenvectors) such that A
 x = �
 x for some

� 2 R (eigenvalue).
The set of all eigenvalues and eigenvectors of A

will be denoted by � (A) and V (A); respectively. If
� 2 � (A) then V (A; �) will stand for the setn
x 2 R

n
;A
 x = �
 x; x 6= "

o
: EV has been studied

since the 1960's and can now be ef�ciently solved [5], [7],

[9], [1], [3], [6], [12]. Obviously, when B = I then (1)

coincides with EV. To mark this connection we will call (1)

the GENERALISED EIGENPROBLEM (GEP).

For the GEP we denote

�(A;B) =
n
� 2 R;

�
9x 2 R

n
� f"g

�
A
 x = �
B 
 x

o

and

V (A;B) =
n
x 2 R

n
� f"g ;A
 x = �
B 
 x; � 2 R

o
:

When the GEP (1) is solvable then we write (A;B) is
solvable. To our knowledge [2] is the only paper dealing

with this generalisation of EP. That paper solves the problem

completely when m = 2 and some special cases for general
m and n: No solution method seems to exist either for �nding

a � or an x satisfying (1) for general matrices.

In this paper we will present a number of solvability

conditions for general matrices and show how to solve GEP

in some special cases.

C. Previous results

We now give a brief overview of earlier results relevant for

the present paper, especially on EP. The reader is referred to

[1], [10], [5], [9], [12] for comprehensive information.

We start with terminology and notation. An ordered pair

D = (N;F ) is called a digraph if N is a non-empty set

(of nodes) and F � N � N (the set of arcs). A sequence

� = (v1; :::; vp) of nodes is called a path (in D) if p = 1;
or p > 1 and (vi; vi+1) 2 F for all i = 1; :::; p � 1: The
node v1 is called the starting node and vp the endnote of �,

respectively. If there is a path in D with starting node u and

endnote v then we say that v is reachable from u, notation

u ! v. Thus u ! u for any u 2 N: As usual a digraph D
is called strongly connected if u ! v for all nodes u; v in

D. A path (v1; :::; vp) is called a cycle if v1 = vp and p > 1
and it is called an elementary cycle if, moreover, vi 6= vj
for i; j = 1; :::; p � 1; i 6= j: The arcs (vi; vi+1) 2 F for

i = 1; :::; p� 1 are called the arcs of the cycle.
In the rest of the paper N = f1; :::; ng: The digraph

associated with A = (aij) 2 R
n�n

is

DA = (N; f(i; j); aij > "g):

The matrix A is called irreducible if DA is strongly con-

nected, reducible otherwise.

If � = (i1; :::; ip) is a path in DA then the weight of �

is w(�;A) = ai1i2 + ai2i3 + ::: + aip�1ip if p > 1; and " if
p = 1. The symbol �(A) stands for the maximum cycle mean

of A, that is if DA has at least one cycle then

�(A) = max
�

�(�;A); (4)

where the maximisation is taken over all cycles in DA and

�(�;A) =
w(�;A)

k
(5)

denotes the mean of the cycle � = (i1; :::; ik; i1). If DA

is acyclic we set �(A) = ": Various algorithms for �nding

�(A) exist. One of them is Karp's [13] of computational

complexity O(n3).
In this subsection we we will concentrate on known

properties of irreducible matrices. However the following

fundamental results for general matrices will also be useful:
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Theorem 1.1: [1], [10], [5] The maximum cycle mean

�(A) is the greatest eigenvalue for every A 2 R
n�n

and

j�(A)j � n:

We now present some results on EP for irreducible matri-

ces.

Theorem 1.2: [8] Let A = (aij) 2 R
n�n

be irreducible,

n > 1; and k be the number of columns of �((�(A))�1
A)
having zero diagonal entries. Then

1) �(A) > " and it is the unique eigenvalue of A,

2) k > 0 and V (A) = f�0 
 x;x 2 Rkg � R
n where

�0 is the n � k matrix consisting of the columns of

�((�(A))�1 
A) having zero diagonal entries.

In this paper we follow terminology introduced in [8]. Be-

ing motivated by Theorem 1.2, the columns of �((�(A))�1

A) having zero diagonal entries are called the fundamental
eigenvectors of A (FEV). Two vectors x; y 2 Rn are called
equivalent (x � y) if x = � 
 y for some � 2 R: It

is easily seen that if � 2 � (A) and x; y 2 V (A; �) then
�
 x� � 
 y 2 V (A; �) for all �; � 2 R: Therefore when
j�(A)j = 1 (in particular when A is irreducible) we will call
V (A) the eigenspace of A:
Corollary 1.3: V (A) = f�00 
 x;x 2 Rdg where d is the

maximal number of non-equivalent fundamental eigenvectors

of A and �00 is any matrix consisting of d non-equivalent
fundamental eigenvectors of A:

It is known that none of the FEVs can be expressed as a

linear combination of other (non-equivalent) FEVs [1], [8].

The number d in Corollary 1.3 is called the dimension of the

eigenspace for A and will be denoted by d(A):
We denote E(A) = fi 2 N ;9� = (i = i1; :::; ik; i1) :

�(�;A) = �(A)g: The elements of E(A) are called critical
nodes (of DA). A cycle � is called critical if �(�;A) =
�(A). The critical digraph of A is the digraph C(A) with
the set of nodes N ; the set of arcs is the union of the sets of
arcs of all critical cycles. All cycles in a critical digraph are

critical [1].

Theorem 1.4: [8] Suppose that A 2 R
n�n

is irreducible,

n > 1; �((�(A))�1 
 A) = (gij) and let g1; :::; gn be the
columns of �((�(A))�1 
A): Then

� i 2 E(A) if and only if gii = 0:
� If i; j 2 E(A) then gi � gj if and only if i and j belong

to the same critical cycle of A:

Corollary 1.5: V (A) = f
P�

i2E�(A) xi 
 gi;xi 2 Rg

where E�(A) is any maximal set of indices of non-equivalent
FEVs of A and d(A) = jE�(A)j is the number of non-trivial
strongly connected components of C(A).
We also de�ne LEFT EIGENPROBLEM (LEP) [8]: Given

A 2 R
n�n

�nd all x 2 R
n
; x 6= " (left eigenvectors) such

that xT 
A = �
xT for some � 2 R (left eigenvalue). The
expression "left eigenspace" will have the meaning similar

to that of "eigenspace". Note that we will sometimes refer to

EP as to the "right" eigenproblem (and correspondingly we

say "right eigenvalue" and "right eigenvector").

It easily seen that LEP is equivalent to EP for AT : Since

�(A) = �(AT ) and �(AT ) = �(A)T it follows:
Theorem 1.6: Irreducible matrices have a unique left

eigenvalue that coincides with the right eigenvalue, critical

nodes for EP and LEP are identical and the left eigenspace

is generated by the rows of �((�(A))�1 
 A) with indices
corresponding to the critical nodes.

Similarly we de�ne GENERALISED LEFT EIGENPROB-

LEM (GLEP) as the task of �nding � 2 R and x =
(x1; :::; xn)

T 2 R
n
; x 6= " such that

xT 
A = �
 xT 
B:

For similar reasons as in the case of LEP this task is

equivalent to GEP for the pair of matrices
�
AT ; BT

�
:

Note that we refer to GEP as to the "right" generalised

eigenproblem.

Min-algebra can be de�ned in a similar way as max-

algebra: We denote a �0 b = min (a; b) ; a 
0 b = a 
 b

for a; b 2 R and extend the pair of operations (�0;
0) to
matrices and vectors in the same way as for (�;
) : All
statements hold after the replacement of maximisation by

minimisation, �1 by +1 and converting the inequality

signs. In some cases we need to work with both max-algebra

and min-algebra at the same time. For this we extend the

four operations to R= R[f�1g[f+1g : The operations
� and �0 are extended in the natural way. Further we de�ne

�1
+1 = �1 = +1
�1

and

�1
0 +1 = +1 = +1
0 �1:

The minimum cycle mean of a matrix A will be denoted

by �0(A): It is easily seen that

�0(A) � aii � �(A) (6)

holds for any i 2 N and A = (aij) 2 R
n�n.

Min-algebra is useful when solving max-algebraic linear

systems (shortly max-linear systems).

Theorem 1.7: [8], [9] If A 2 R
m�n

; b 2 R
m
and x 2 R

n

then

A
 x � b if and only if x � A� 
0 b:
We will denote A� 
0 b everywhere by x̂ (A; b) or just x̂

and call it the principal solution to the system A
 x � b:

Corollary 1.8: If A 2 R
m�n

and b 2 R
m
then

(a) x̂ is the greatest solution to A
 x � b and

(b) A
x = b has a solution if and only if x̂ is a solution.

Corollary 1.9: If A 2 R
m�n

; B 2 R
m�k

and X̂ = A�
0

B then

(a) X̂ is the greatest solution to A
X � B and

(b) A 
 X = B has a solution if and only if X̂ is a

solution.

If A 
X = B has a solution then we say "B is a right

multiple of A" and X̂ will be called the principal solution

to the matrix inequality A
X � B:
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Given A 2 R
n�n

and x 2 R
n
; the set

n
A(k) 
 x; k = 0; 1; :::

o

is called the orbit of A starting at x and will be denoted by

T (A; x) : Obviously, if A(k0) 
 x 2 V (A) for some k0 then
A(k) 
 x 2 V (A) for all k � k0: In general it depends on

x whether T (A; x) \ V (A) 6= ;: If T (A; x) \ V (A) 6= ;
for every x 2 R

n
; x 6= " then the orbit of A reaches an

eigenvector of A with any non-trivial starting vector and A

is therefore called robust. Robust matrices have been fully

characterised [4], [5].

Following this review of relevant earlier results, we pro-

ceed to a consideration of GEP. The results following are

believed to be new, except where the contrary is explicitly

stated.

II. SOLVABILITY CONDITIONS

In this section we present some solvability conditions for

GEP provided that A and B are �nite matrices. We therefore

assume that A = (aij); B = (bij) 2 R
m�n are given

matrices and we denote M = f1; :::;mg and, as before,
N = f1; :::; ng. We will also denote

C = (cij) = (aij 
 b
�1
ij )

and

D = (dij) = (bij 
 a
�1
ij ):

A. Necessary conditions

Theorem 2.1: If (A;B) is solvable and � 2 �(A;B) then
C satis�es

max
i2M

min
j2N

cij � � � min
i2M

max
j2N

cij : (7)

Proof: No row of � 
 B strictly dominates the corre-

sponding row of A; so for every i there is a j such that

aij � � 
 bij ; i.e. � � cij : Hence for all i we have

� � maxj cij ; thus � � minimaxj cij : Similarly, no row
of A strictly dominates the corresponding row of � 
 B;

yielding for all i : � � minj cij ; thus � � maximinj cij :
Corollary 2.2: If (A;B) is solvable then C satis�es

max
i2M

min
j2N

cij � min
i2M

max
j2N

cij : (8)

Example 2.3: If A =

�
1 2

�1 0

�
and B =

�
0 1
0 1

�

then (A;B) is not solvable because C =

�
1 1

�1 �1

�

does not satisfy (8).

Corollary 2.4: If m = n; (A;B) is solvable and � 2
�(A;B) then C satis�es

�0(C) � � � �(C):
Proof: A cycle in DC whose every arc has the weight

equal to a row maximum in C exists. The arc weights

on this cycle are all at least the smallest row maximum,

thus �(C) � mini2M maxj2N cij : The second inequality
now follows from Theorem 2.1 and the other inequality by

swapping max and min.

Recall that the conjugate of B is B� = (b�ij) = (b�1ji ):

Then the ith element of the diagonal of A
B� equals

max
j
(aij + b

�

ji) = max
j
(aij 
 b

�1
ij ) = max

j
cij :

Similarly, the ith element of the diagonal of A
0 B� equals
minj cij : Hence by Theorem 2.1 we have:
Corollary 2.5: If (A;B) is solvable then the greatest ele-

ment of the diagonal of A 
0 B� does not exceed the least
element of the diagonal of A
B�:
By Corollary 2.4 we also have:

Corollary 2.6: If (A;B) is solvable and � 2 �(A;B) then

�0(A
0 B�) � � � �(A
B�):

B. A necessary and suf�cient condition

Let

Di =

�
ai1 ::: ain
bi1 ::: bin

�
(i = 1; :::;m):

Theorem 2.7: A necessary and suf�cient condition for

(A;B) to be solvable is that the column spaces of theDi have

a common element such that the same multipliers express

the dependences for all i; that is there exists a � = (�1; �2)
T

and x = (x1; :::; xn)
T such that Di 
 x = yi 
 � for some

yi 2 R and for all i = 1; :::;m: If it is the case then
�1 
 �

�1
2 2 �(A;B):
Proof: Let x 2 Rn and B 
 x = y: Then A 
 x =

� 
 B 
 x if and only if Di 
 x =

�
�
 yi
yi

�
for all

i = 1; :::;m: We see that (A;B) is solvable if and only
if there exist x and � such that Di 
 x is a multiple of�
�

0

�
for all i = 1; :::;m; that is all Di
 x have the same

differences between the �rst and second component.

C. On the uniqueness of �

Theorem 2.8: [2] If both GEP and LGEP for (A;B) are
solvable then both have a unique and identical eigenvalue,

that is

�(A;B) = �(AT ; BT ) = f�g

provided that �(A;B) 6= ;;�(AT ; BT ) 6= ;:
Proof: Suppose

A
 x = �
B 
 x

AT 
 y = �
BT 
 y

for some �; �; x; y: Then

�
 yT 
B 
 x = yT 
A
 x

= xT 
AT 
 y

= �
 xT 
BT 
 y

= �
 yT 
B 
 x:

Since x; y;B are �nite it follows that � = �:

Corollary 2.9: If A;B 2 R
n�n are symmetric then

j�(A;B)j � 1.
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If the GEP for matrices A;B has at most one eigenvalue

then it is extremely unlikely that 0 is such an eigenvalue, thus
this corollary also implies that two-sided systems A 
 x =
B 
 x with A;B 2 R

n�n symmetric are "almost never"

solvable.

III. SOLVABLE SPECIAL CASES

A. Essentially EP

If either A or B is a generalised permutation matrix then

(1) is easily solvable. If (say) B is a generalised permutation
matrix then B has the inverse B�1 and after multiplying (1)
by B�1 the GEP is transformed to EP. Since in max-algebra

matrices other than generalised permutation matrices do not

have an inverse [8], this approach cannot be extended to other

GEPs.

B. When A and B have a common eigenvector

Proposition 3.1: V (A) \ V (B) � V (A;B) for any

A;B 2 R
n�n

and if A
 x = �
 x and B 
 x = �
 x for
some x 2 R

n
; x 6= "; � > " then �
 ��1 2 �(A;B):

Proof: A
 x = �
 x = �
 ��1 
B 
 x:

C. When one of A;B is a right-multiple of the other

Theorem 3.2: If one of A;B 2 R
m�n

is a right-multiple

of the other then (A;B) is solvable.

Proof: Suppose e.g. A = B 
 P; where P 2 R
n�n

:

Let � 2 � (P ) and x 2 V (P; �) : Then

A
 x = B 
 P 
 x = B 
 (�
 x) = �
B 
 x:

Example 3.3: Suppose A =

�
4 6
7 9

�
; B =

�
0 1
3 1

�
; P =

�
4 6

�2 0

�
: Then �(P ) = 4;

�
�
��1 
 P

�
=

�
0 2

�6 �4

�
and x =

�
0

�6

�
; A
 x =

�
4
7

�
; B 
 x =

�
0
3

�
:

We can also prove a suf�cient condition for the upper

bound for � in (7) to be attained when (say) A is a right-

multiple of B and A;B 2 Rm�n: Recall that C = (cij) is
the matrix (aij 
 b�1ij ), D = (dij) = (bij 
 a�1ij ) and let us
denote

L = max
i
min
j
cij

U = min
i
max
j
cij :

It follows from the proof of Theorem 3.2 that � (P ) 2 [L;U ]
if A = B 
 P: In this case we also know by Corollary 1.9

that

A = B 
 (B� 
0 A) = B 
 P̂ :

Let us denote �̂ = �
�
P̂
�
; thus L � �̂ � U:

Lemma 3.4: If A;B 2 R
m�n and L0 = maxj mini cij

then L0 � �̂:

Proof:

�̂ = �
�
P̂
�

� max
i
p̂ii

= max
i
min
j
(b�ij 
 aji)

= max
i
min
j
(aji 
 b

�1
ji )

= max
i
min
j
cji

= max
j
min
i
cij = L0:

Theorem 3.5: If A;B 2 Rm�n; D has a saddle point and

there is a matrix P such that A = B
P then �̂ = U where

�̂ = �
�
P̂
�
= � (B� 
0 A) :

Proof: D has a saddle point means

max
i
min
j
dij = min

j
max
i
dij :

Therefore the inverses of both sides are equal:

U = min
i
max
j
cij = max

j
min
i
cij = L0:

Hence by Lemma 3.4: L0 = �̂ = U:

The following dual statement is proved in a dual way:

Theorem 3.6: Let A;B 2 Rm�n: If there is a matrix P

such that A = B
0 P and C has a saddle point then �̂
0

= L

where �̂
0

= �0
�
P̂
�
= �0 (B� 
0 A) :

Even if one of A;B is a right-multiple of the other, the

eigenvalue may not be unique as the following example

shows.

Example 3.7: With A;B as in Example 3.3, we �nd for

the principal solution matrix P̂ :

P̂ =

�
4 6
3 5

�
; �

�
P̂
�

= 5;�
�
��1 
 P̂

�
=

�
�1 1
�2 0

�
; A


�
1
0

�
=

�
6
9

�
; B


�
1
0

�
=

�
1
4

�
:

Hence for the same A;B we �nd two solutions to relation

(1), with different values of �:

It may be useful to note that unlike in EP the set of

all eigenvalues for a GEP may contain an interval. From

Examples 3.3 and 3.7, since A = B 
 X when X = P

and when X = P̂ ; it is clear by isotonicity that A = B 
X
whenever P � X � P̂ ; and therefore that every � (X) with
X in this range is an achievable value of � in a solution of

relation (1) :

In particular, P � X(a) � P̂ where

X(a) =

�
4 6

a� 2 a

�

and a 2 [0; 5]: It is easily seen that � (X(a)) = a when

a 2 [4; 5]; giving a continuum of attainable values of �:
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D. The case of commuting A and B

In this subsection A;B 2 R
n�n

and A
B = B 
A.
Lemma 3.8: Let x 2 V (B). Then A
 x 2 V (B).
Proof: B 
 x = �
 x for some � 2 R and thus

B 
 (A
 x) = A
 (B 
 x) = A
 �
 x = �
 (A
 x) :

Corollary 3.9: If A;B commute then the two-sided equa-

tion system

A
 x = B 
 y

is solvable, and a solution can be found by solving the EP

for either of A;B.

Proof: Let e.g. x 2 V (B); then by Lemma 3.8 A
x 2
V (B) and thus for the corresponding eigenvalue � we have

B 
 (A
 x) = �
 (A
 x) = A
 (�
 x) :

Any function of the form

f(x) = a0 
 x
(n) � a1 
 x

(n�1) � :::� an 
 x
(0)

where aj 2 R for all j = 0; 1; :::; n is called a max-algebraic
polynomial, shortly maxpolynomial.

Although most of the statements below hold for general

matrices we will assume throughout what follows that A;B

are �nite. For any matrix U and column-index j, the jth col-

umn of U is denoted Uj ; and ',  denote maxpolynomials.

Lemma 3.10: '(A)
 ( (B))j =  (B)
 ('(A))j .
Proof: Evidently,

'(A)
  (B) =  (B)
 '(A) (9)

Now, for any matrix multiplication U 
 V , we have (U 

V )j = U 
 Vj , and the result follows.
Lemma 3.11: If x 2 V (B), then '(A)
 x 2 V (B).
Proof: Let � = �(B): Using (9) with  (B) = B, we

have

B 
 '(A)
 x = '(A)
B 
 x = �(B)
 '(A)
 x (10)

Theorem 3.12: If A;B have a common critical index, say

j, then they have both a common eigenvector and a common

left eigenvector and accordingly both GEP and GLEP are

solvable, with identical, unique eigenvalue.

Proof: Take '(A) = �((�(A))�1 
 A) and  (B) =
�((�(B))�1 
 B). Then ('(A))j 2 V (A) and ( (B))j 2
V (B), so by Lemma 3.11,

'(A)
 ( (B))j 2 V (B) and  (B)
 ('(A))j 2 V (A):
(11)

Hence by Lemma 3.10, V (A); V (B) have a common element
and the solvability of problem (A;B) follows immediately
by Proposition 3.1.

Using properties of the left eigenproblem (Theorem 1.6),

the solvability of the GLEP is proved similarly, with the con-

sequent equality of all generalised eigenvalues by Theorem

2.8.

Theorem 3.13: Suppose one of A;B is robust. Then A, B

have both a common eigenvector and a common left eigen-

vector and accordingly both GEP and GLEP are solvable,

with identical, unique eigenvalue.

Proof: Suppose A is robust. Then for r suf�ciently

large, A(r) 
 x 2 V (A) for any �nite vector x. But if we
choose x 2 V (B), then also A(r) 
 x 2 V (B), by taking
'(A) = A(r) in Lemma 3.11. Hence, A, B have a common

eigenvector and similarly a common left eigenvector. The rest

now follows as in Theorem 3.12.

IV. CONCLUSIONS

We have presented a generalisation of the classical max-

algebraic eigenproblem for which, to our knowledge, only

paper [2] has been devoted before. No solution method seems

to exist for this problem for general matrices over R: We

have proved a number of necessary conditions for solvability

of GEP (which in some cases are also suf�cient) and cases

of special matrices for which the problem is easily solvable.

We have demonstrated that the set of generalised eigenvalues

may be both discrete and continuum.
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