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Abstract. We investigate the complexity of the problem of finding an integer vector in the
max-algebraic column span of a matrix, which we call the integer image problem. We show some
cases where we can determine in polynomial time whether such an integer vector exists, and find such
an integer vector if it does exist. On the other hand we also describe a group of related problems each
of which we prove to be NP-hard. Our main results demonstrate that the integer image problem is
equivalent to finding a special type of integer image of a matrix satisfying a property we call column
typical. For a subclass of matrices this problem is polynomially solvable but if we remove the column
typical assumption then it becomes NP-hard.
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1. Introduction. This paper deals with the task of finding integer vectors in
the max-algebraic column span of a matrix. For a, b ∈ R = R ∪ {−∞} we define
a⊕ b = max(a, b) , a⊗ b = a+ b and extend the pair (⊕,⊗) to matrices and vectors
in the same way as in linear algebra, that is (assuming compatibility of sizes)

(α⊗A)ij = α⊗ aij ,
(A⊕B)ij = aij ⊕ bij , and

(A⊗B)ij =
⊕
k

aik ⊗ bkj .

All multiplications in this paper are in max-algebra and we will usually omit the ⊗
symbol. Note that α−1 stands for −α, and we will use ε to denote −∞ as well as
any vector or matrix whose every entry is −∞. The zero vector is denoted by 0. A
vector/matrix whose every entry belongs to R is called finite. If a matrix has no ε
rows (columns) then it is called row (column) R-astic and it is called doubly R-astic
if it is both row and column R-astic.

Max-algebra (also called tropical algebra) is a rapidly expanding area of idempo-
tent mathematics, linear algebra and applied discrete mathematics. One key advan-
tage is that problems from areas such as operational research, science and engineering
which are non-linear in the conventional algebra, can be modeled as linear problems
within the max-algebraic setting [1, 7, 9, 10]. Applications of max-algebra are both
theoretical and practical; in [10] the Dutch railway system is modeled using max-
algebra.

The integer image problem (IIm) is the problem of determining whether there
is an integer vector in the column span (called here the image space) of a matrix

A ∈ Rm×n. The set of integer images is

IIm(A) := {z ∈ Zm : (∃x ∈ Rn)Ax = z}.
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We also define X(A) to be the set of vectors x for which Ax belongs to the set of
integer images, that is

X(A) := {x ∈ Rn : Ax ∈ IIm(A)}.

A related question is whether X(A) ∩ Zn is nonempty, we define

IIm∗(A) := {z ∈ Zm : (∃x ∈ Zn)Ax = z}.

One application of the integer image problem is as follows [4]. Suppose machines
M1, ...,Mn produce components for products P1, ..., Pm. Let xj denote the starting
time of Mj and aij be the time taken for Mj to complete its component for Pi. Then
all components for product Pi are ready at completion time

ci = max(ai1 + x1, ..., ain + xn) i = 1, ...,m.

Equivalently this can be written as Ax = c. In this context the integer image problem
asks whether there exists a set of starting times for which the completion times are
integer (this can easily be extended to ask for any discrete set of values). If we
additionally require that the starting times are integer/discrete values then we want
to find c ∈ IIm∗(A).

Further it is known [5] that the max-algebraic integer eigenspace, defined as

{x ∈ Zn : Ax = λx, x 6= ε}

for a fixed eigenvalue λ ∈ R, is equal to the integer image space of a matrix B obtained
from A. Currently is it not known whether it is possible to find an integer eigenvector
in polynomial time. The eigenproblem in max-algebra can be used to analyse stability
in production systems [2, 7]: Assume machines M ′1, ...,M

′
n work interactively and in

stages. In each stage all the machines produce components for the other machines to
use in the next stage. Let xi(r) denote the starting time of the rth stage on machine
M ′i and aij denote the time taken for M ′i to complete its component for machine M ′j .
Then

xi(r + 1) = max(x1(r) + ai1, ..., xn(r) + ain) i = 1, ..., n, r = 0, 1, ...

This can be written as x(r + 1) = Ax(r). A steady regime is reached if this process
moves forwards in regular steps, i.e. if x(r + 1) = λx(r) for all r ≥ 0. Clearly this
occurs if and only if x(0) is an eigenvector of A corresponding to some eigenvalue
λ ∈ R. It is natural to look for integer starting times, and therefore we aim to solve
the integer eigenproblem. A solution to the corresponding integer image problem
would achieve this.

An algorithm for testing whether IIm(A) 6= ∅ and finding an integer image if it
exists was described in [5]. This algorithm always terminates in a finite number of
steps and is pseudopolynomial if the input matrix is finite. We investigate whether
the problem could in fact be in P, the class of polynomially solvable problems.

In searching for integer solutions to the integer image problem one helpful tool is
being able to identify potential active positions. Given vectors x, z such that Ax = z
we say that a position (i, j) is active with respect to x or z if aij + xj = zi, and
inactive otherwise. It will be useful in this paper to talk about the entries of the
matrix corresponding to active positions and therefore we say that an element aij of
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Fig. 1.1. Simple relations between the different versions of the integer image problem considered
in this paper, excluding IIm-P4.

A is active if and only if the position (i, j) is active. In the same way we call a column
Aj active if it contains an active position.

We define a column typical matrix to be a matrix A ∈ Rm×n such that for each
j we have fr(aij) 6= fr(akj) for any i and k, i 6= k such that aij , akj ∈ R. Note that
fr(·) denotes the fractional part and will be defined in Section 2.

In this paper we will consider a number of integer image problems, each with
an additional requirement on the set of integer images. These are detailed in the
definition below. Figure 1 outlines the relations between these problems.

Definition 1.1. Given A ∈ Rm×n we consider the following related problems to
IIm.
(IIm-CT) If A is column typical does there exist x ∈ Rn such that Ax ∈ Zm?
(IIm-CT-P1) If A is column typical does there exist x ∈ Rn such that Ax ∈ Zm with
exactly one active entry per row with respect to x?
(IIm-P1) Does there exist x ∈ Rn such that Ax ∈ Zm with exactly one active entry
per row with respect to x?
(IIm-P2) Does there exist x ∈ Rn such that Ax ∈ Zm with exactly two active entries
per row with respect to x?
(IIm-P3) Does there exist x ∈ Rn such that Ax ∈ Zm with at most two active entries
per row with respect to x?
(IIm-P4) Given t ∈ N does there exist x ∈ Rn such that Ax ∈ Zm with at most t
active columns of A with respect to x?
(IIm∗) Does there exist x ∈ Zn such that Ax ∈ Zm?
(IIm∗-P1) Does there exist x ∈ Zn such that Ax ∈ Zm with exactly one active entry
per row with respect to x?
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In Section 2 we summarise the existing theory necessary for the presentation
of our results and describe some simple cases for which we can determine whether
IIm(A) 6= ∅ in polynomial time, and find an integer image if it exists. These cases
include IIm-CT. In Section 3 we give two different transformations of a general matrix

A ∈ Rm×n to a matrix B ∈ Rm×mn for which IIm(A) = IIm(B) and give reasons why
we suspect IIm(B) will be easier to describe than IIm(A). In particular determining
whether IIm(B) 6= ∅ reduces to checking whether B is an instance of IIm-CT or IIm∗

and for both these problems we can find an integer image in a special case. However
in general B fails to satisfy the requirements of this special case so this does not
solve the integer image problem, but it does lend support to the idea that the integer
image problem could be solvable in polynomial time. In Section 4 we show that IIm
is polynomially equivalent to IIm-CT-P1 and IIm-CT. Section 5 contains proofs that
IIm-P1, IIm-P2, IIm-P3, IIm-P4 and IIm∗-P1 are NP-hard. Since the only difference
between IIm-P1 and IIm-CT-P1 is the assumption that the matrix is column typical
this raises the question of whether the integer image problem may in fact be NP-hard.
Section 6 contains the proof that the transformation described in Section 3 is valid
and can be achieved in polynomial time.

What this paper aims to demonstrate is that on the one hand the integer image
problem for general matrices is closely related to the integer image problem for column

typical matrices A ∈ Rm×n, which is polynomially solvable if either m ≥ n or we
fix the value of m. On the other hand IIm-CT and IIm-CT-P1 are polynomially
equivalent and if we remove the assumption that the matrix is column typical IIm-P1
is NP-hard. So we are in essence approaching the integer image problem from two
sides, one a set of problems in P and the other a set of problems that are NP-hard.

2. Preliminaries and simple cases. We denote by P the class of all problems
which are solvable in polynomial time. The class NP and the definition of an NP-hard
problem can be found, for example, in [8]. For general problems P1 and P2 we write
P1 ≤p P2 to mean that P1 can be reduced to P2 in polynomial time. It is known
that if P1 ≤p P2 and P1 is NP-hard then P2 is NP-hard, if instead P2 ∈ P then
P1 ∈ P .

We will use the following standard notation. For positive integers m,n we denote

M = {1, ...,m} and N = {1, ..., n}. If A = (aij) ∈ Rm×n then Aj stands for the jth

column of A.

Given a square matrix, the maximum cycle mean, λ(A) is,

λ(A) = max

{
ai1i2 + ...+ aiki1

k
: i1, ...ik ∈ N, k = 1, ..., n

}
.

It is known that λ(A) can be calculated in O(n3) time [3, 11]. If λ(A) = 0 then we say
that A is definite. If moreover aii = 0 for all i ∈ N then A is called strongly definite.
Given a definite matrix we define

A∗ = I ⊕A⊕A2 ⊕ ...⊕An.

A matrix is called diagonal if its diagonal entries are finite and its off diagonal
entries are ε. The identity matrix is a diagonal matrix in which all diagonal entries
are equal to 0. A matrix Q is called a generalised permutation matrix if it can be
obtained from a diagonal matrix by permuting the rows and/or columns.
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We use Pn to denote the set of permutations on N . For A ∈ Rn×n the max-
algebraic permanent is given by

maper(A) =
⊕
π∈Pn

⊗
i∈N

ai,π(i).

The weight of a permutation π with respect to A is

w(π,A) =
⊗
i∈N

ai,π(i)

and the set of permutations whose weight is maximum is

ap(A) = {π ∈ Pn : w(π,A) = maper(A)}.

For a ∈ R the fractional part of a is fr(a) := a − bac. For a matrix A ∈ Rm×n

we use bAc (dAe) to denote the matrix with (i, j) entry equal to baijc (daije) and
similarly for vectors. We set fr(ε) = ε = bεc = dεe. We outline a number of simple
properties of fr(·) below.

Lemma 2.1. Let a, b, c ∈ R and x ∈ Z. Then
(1) fr(a) ≥ 0 so a ≥ 0⇔ fr(a) ≤ a
(1) fr(−a) = 1− fr(a)
(2) fr(a+ b) = fr(fr(a) + fr(b))
(3) fr(a− b) = fr(fr(a)− fr(b))
In fact,

fr(a) > fr(b)⇒ fr(a− b) = fr(a)− fr(b),
fr(a) < fr(b)⇒ fr(a− b) = 1− fr(b) + fr(a),

(4) ba+ bc > dae ⇒ b > 1− fr(a)
(5) fr(x+ a) = fr(a)
(6) fr(x− a) = 1− fr(a)
(7)

b−ac =

{
−a if a ∈ Z
−1− bac otherwise

(8)

d−ae =

{
−a if a ∈ Z
1− dae otherwise

(9) If b+ c ∈ Z then

fr(a+ c) = fr(a− b)

Proof. Many follow directly from definition. We give details for a few.
(4) a+ b > dae therefore fr(a) + fr(b) > 1
(9) Since b+ c ∈ Z we have fr(c) = 1− fr(b). Then

fr(a+ c) = fr(fr(a) + fr(c)) = fr(fr(a) + 1− fr(b)) = fr(a− b)
5



using (2) and (3).
We detail here two max-linear systems of equations that will be useful in this

paper. For A ∈ Rn×n we define the set of integer subeigenvectors with respect to
λ ∈ R as

IV ∗(A, λ) = {x ∈ Zn : Ax ≤ λx, x 6= ε}.

The set of all integer subeigenvectors can be described in O(n3) time due to the
following result.

Theorem 2.2. [5] Let A ∈ Rn×n, λ ∈ R.
(i) IV ∗(A, λ) 6= ∅ if and only if

λ(dλ−1Ae) ≤ 0.

(ii) If IV ∗(A, λ) 6= ∅ then

IV ∗(A, λ) = {dλ−1Ae∗z : z ∈ Zn}.

Given A ∈ Rm×n and B ∈ Rm×k the two-sided system with separated variables is

Ax = By for vectors x ∈ Rn, y ∈ Rk. The problem of finding integer vectors x, y such
that Ax = By was studied in [6] and we outline below the results we need.

The pair (A,B) is said to satisfy Property OneFP if for each i ∈M there is exactly
one pair of indices (r(i), r′(i)) such that fr(air(i)) = fr(bir′(i)) and air(i), bir′(i) ∈ R.
Without loss of generality these fractional parts are zero (this can be assumed since
a constant can be subtracted from each row of the matrix equation without changing
the set of integer solutions).

Theorem 2.3. [6] Let A ∈ Rm×n, B ∈ Rm×k satisfy Property OneFP. For all
i, j ∈M let

wij = daj,r(i)ea−1i,r(i) ⊕ dbj,r′(i)eb
−1
i,r′(i).

Then an integer solution to Ax = By exists if and only if λ(W ) ≤ 0. If this is the
case then Ax = By = z−1 where z ∈ IV ∗(W, 0).

Corollary 2.4. [6] For A ∈ Rm×n, B ∈ Rm×k it is possible to decide whether
an integer solution to Ax = By exists in O(m3 + n+ k) time.

Remark 2.5. Once z from Theorem 2.3 is determined we can find the integer
solution (x, y) to the two sided system by solving each of the equations Ax = z−1 and
By = z−1. These can be solved in O(mn) and O(mk) time respectively [5].

The first treatment of the integer image problem appeared in [5]. We briefly
note the important results from that paper here, the main one being that for column

typical matrices A ∈ Rn×n IIm can be solved in O(n3) time by Theorem 2.6 below.
Let A be a square matrix. Consider a generalised permutation matrix Q. It is

easily seen that IIm(A) = IIm(A ⊗ Q). Further, from [3] we know that for every
matrix A with maper(A) > ε there exists a generalised permutation matrix Q such
that A⊗Q is strongly definite and Q can be found in O(n3) time.

Observe that if A ∈ Rm×n has an ε row then IIm(A) = ∅, and if A has an
ε column then IIm(A)=IIm(A′) where A′ is obtained from A by removing the ε
column. Hence it is sufficient to only consider doubly R-astic matrices for the entirety
of this paper.
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Theorem 2.6. [5] Let A ∈ Rn×n be a column typical matrix.
(a) If maper(A) = ε then A has no integer image.
(b) If maper(A) > ε and |ap(A)| > 1 then A has no integer image.
(c) If maper(A) > ε and |ap(A)| = 1 let Q be the unique generalised permutation

matrix such that A⊗Q is strongly definite. Then

IIm(A) = IIm(A⊗Q) = IV ∗(A⊗Q, 0).

Observe that if A ∈ Rm×n is column typical with m ≤ n then

(∃x)Ax = z ⇔ (∃j1, ..., jm ∈ N)(∃x′)A′x′ = z

where A′ ∈ Rm×m is the matrix formed of columns Aj1 , ..., Ajm . Therefore if A
is column typical with m ≤ n then we could simply check each of the

(
n
m

)
square

submatrices of A to see if they have an integer image. Checking each submatrix can
be achieved in O(m3) time by Theorems 2.2 and 2.6.

Corollary 2.7. For fixed m the integer image problem is solvable in polynomial
time.

It is also shown in [5] that the integer image problem can be easily solved if either
m = 2 or n = 2.

3. Transformations which preserve the set of integer images. We present
two transformations which allow us to assume some structure on the matrix for which
we are seeking an integer image. In both cases the transformation can be achieved in
polynomial time and we expect that the added structure will help in finding integer
images. Indeed for each type of structure described we find a small class of matrices
for which we can solve the integer image problem efficiently.

3.1. Transformation to matrices with integer active entries. Here we
describe a transformation A → B such that IIm(A) = IIm∗(B). Further we show
that if a general matrix C has at most one integer entry in each row then we can
decide in O(m3 + n) time whether C ∈IIm∗.

Given a matrix A ∈ Rm×n let Aint be constructed from A by replacing each
column Aj , j ∈ N with m columns,

fr(a1j)
−1Aj , fr(a2j)

−1Aj , ..., fr(amj)
−1Aj .

Example 3.1.

A =

 0 1.1
0.5 −2.3
−0.6 −0.9

 , Aint =

 0 −0.5 −0.4 1 0.4 1
0.5 0 0.1 −2.4 −3 −2.4
−0.6 −1.1 −1 −1 −1.6 −1


Note that each column takes at least one entry of the matrix and makes it integer.

Observe that for any z ∈ IIm∗(Aint), if the position (i, j) is active then it is
necessary that aij ∈ Z since aij + xj = zi where by definition xj and zi are integer.
Therefore the following result tells us that when considering the integer image problem
we can assume without loss of generality that only integer entries can be active.

Theorem 3.2. IIm(A) = IIm(Aint) = IIm∗(Aint).
Proof. Let Aint have columns Aj(i) where Aj(i) = fr(aij)

−1Aj . We first show
that IIm(A) = IIm(Aint).
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Suppose ∃x ∈ Rn such that Ax = z ∈ IIm(A). Then

z =
⊕
j∈N

Ajxj =
⊕
j∈N

⊕
i∈M

Ajfr(aij)fr(aij)
−1xj

=
⊕
j∈N

⊕
i∈M

Aintj(i) (fr(aij)xj) ∈ IIm(Aint).

For the other inclusion assume that

y = (y1(1), ..., y1(m), y2(1), ..., y2(m), ..., yn(1), ..., yn(m)) ∈ Rmn

satisfies Ay = z ∈ IIm(A). Then

z =
⊕
j∈N

⊕
i∈M

Aj(i)yj(i) =
⊕
j∈N

⊕
i∈M

Ajfr(aij)
−1yj(i)

=
⊕
j∈N

Aj

(⊕
i∈M

fr(aij)
−1yj(i)

)
∈ IIm(A).

Further it is clear that IIm∗(Aint) ⊆ IIm(Aint). This together with IIm(A) =
IIm(Aint) implies IIm∗(Aint) ⊆ IIm(A). It remains to show IIm(A) ⊆ IIm∗(Aint).

Clearly

(∃x ∈ Rn)Ax = z ∈ Zm ⇒ (∃y ∈ Zmn)Ainty = z ∈ Zm

since if Aj is active with respect to x then (∃i ∈ M)fr(aij) = 1 − fr(xj) and aij is
active, therefore

aij+xj = baijc+fr(aij)+bxjc+fr(xj) = baijc+1−fr(xj)+bxjc+fr(xj) = aintit +dxje

for some t ∈ {1, ..,mn}. This means that xjAj = dxje(fr(aij)−1Aj) = ytA
int
t where

yt = dxje. Hence the result.
This transformation is expected to be helpful in solving the integer image problem

since it allows us to look for integer images of the matrix for which active positions
are (i, j) where aij ∈ Z. While it remains unknown whether IIm∗ is in P or not we
can describe one class of matrices for which it is solvable in O(m3 + n) time.

Indeed suppose C ∈ Rm×n has at most one integer entry in each row. Then either
the matrix does not satisfy the necessary condition that every row has an active entry,
in which case IIm∗(C) = ∅, or C has exactly one integer in each row. In this case let
I be the identity matrix with dimension m. Then the pair (A, I) satisfies Property
OneFP and

IIm∗(A) 6= ∅ ⇔ (∃x ∈ Zn, y ∈ Zm)Ax = Iy.

Therefore in this case we can determine whether IIm∗(A) 6= ∅ in O(m3 + n) by
Theorem 2.3.

Generally however Aint will not be square, nor will it have a small number of
integer entries in each row. We finish this subsection by detailing a few observations
about IIm∗(C) for an arbitrary matrix C.

Proposition 3.3. Suppose C ∈ Rm×n.
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(i) IIm∗(C) ⊆ IIm(dCe)
(ii) IIm∗(C) ⊆ IIm(bCc)
Proof. If Cx = z ∈ Zm where x ∈ Zn then

max
j

(cij + xj) = zi ⇒ max
j

(dcije+ xj) = zi.

The other result is also trivial to prove.
For each i ∈M let

di(C) = max
j∈N
dcije − max

j:cij∈Z
cij .

Clearly di(C) ≥ 0 for all i ∈M . Using this we obtain a simple sufficient condition for
IIm∗(C) 6= ∅.

Proposition 3.4. Let C ∈ Rm×n have at least one integer in each row. If
(∀i ∈M)di(C) = 0 then C ⊗ 0 ∈ IIm∗(C).

Proof.

(∀i)di(C) = 0⇒ (∀i ∈M)(∃j(i) ∈ N)cij(i) ∈ Z and cij(i) =
⊕
t∈N

cit.

∴


c1j(1)
c2j(2)

...
cmj(m)

 = C ⊗ 0.

This belongs to IIm(C) since the left hand side is an integer vector.

3.2. Transforming to column typical matrices. Here we show that, for the
problem of determining if IIm(A) 6= ∅, we may assume without loss of generality
that A is column typical with m ≤ n. It follows that in order to solve the problem
of whether or not a matrix has an integer vector in its column span it is sufficient to
find a method for column typical matrices only.

First observe that if A ∈ Rm×n is column typical and Ax ∈ Zm then each column
Aj contains at most one active entry with respect to x. Since every row contains an
active entry it is necessary that at least m columns are active in this equation. We
conclude:

Observation 3.5. Suppose A ∈ Rm×n is column typical with m > n. Then
IIm(A) = ∅.

Suppose without loss of generality in this subsection that A ∈ Rm×n is doubly
R-astic and no two columns in A are the same. Let

Jct(A) = {j ∈ N : Aj is column typical}.

If j ∈ N − Jct(A) then define

Ictj = {i ∈M : ∃t ∈M, t 6= i such that fr(aij) = fr(atj)}

otherwise set Ictj = {∅}. The column typical counterpart, Act, of A is the

m× (
∑
j∈N
|Ictj |)
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matrix obtained from A by replacing each column Aj with |Ictj | columns as follows:
If Ictj = {∅} then add one copy of Aj . Otherwise for each i ∈ Ictj add a column

with entries {
atj − δt if t ∈ Ictj − {i}
atj otherwise.

(3.1)

The values δi, i ∈ M will satisfy 0 < δi < 1 and be chosen to ensure that each new
column has entries with different fractional parts.

Example 3.6. The columns
0
0

0.5
0

0.5
0.2

 and


0

0.1
0.2
0.3
0.4
0.5


would be replaced by

0 0− δ1 0− δ1 0− δ1 0− δ1
0− δ2 0 0− δ2 0− δ2 0− δ2

0.5− δ3 0.5− δ3 0.5 0.5− δ3 0.5− δ3
0− δ4 0− δ4 0− δ4 0 0− δ4

0.5− δ5 0.5− δ5 0.5− δ5 0.5− δ5 0.5
0.2 0.2 0.2 0.2 0.2

 and


0

0.1
0.2
0.3
0.4
0.5


where 0 < δs < 1 are such that the new matrix is column typical.

The columns in Act which replace Aj will be called the counterparts of Aj . For
now we suppose that δi ∈ (0, 1), i ∈M satisfy the following four assumptions:

(A1) δi are distinct;
(A2) Act is column typical;
(A3i) (∀j ∈ N)(∀i, t ∈M)fr(aij) 6= fr(atj) & aij , atj > ε⇒ fr(aij−atj) > δi, δt;
(A3ii) (∀i ∈M)(∀j, p ∈M)fr(aij) 6= fr(aip) & aij , aip > ε⇒ fr(aij − aip) > δi;
(A4) (∀i ∈M)(∀j ∈ N)fr(aij) 6= 0 & aij > ε⇒ δi < min(fr(aij), 1− fr(aij)).
Theorem 3.7. Let A ∈ Rm×n be doubly R-astic and Act be the column typical

counterpart of A where δi, i ∈M satisfy A1-A4. Then

IIm(A) = IIm(Act).

This will be proved in Section 6, where we also prove that δi, i ∈ M satisfying
A1-A4 can be found efficiently and hence Act can be constructed in O((mn)2) time.

3.3. Combining the transformations. So far in this section we have described
two transformations which create some structure in the input matrix of the integer
image problem. If the matrix A is column typical then we know that each column
will have at most one active position with respect to any z ∈ IIm(A). Further IIm
is equivalent to IIm∗ and in this case we know that the only candidates for active
positions are (i, j) such that aij ∈ Z.

Both structures lead to subcases where the problem is polynomially solvable hence
it seems helpful to know as much about the locations of the possible active positions
as we can as well as knowing that there are not too many.

10



Given a matrix A ∈ Rm×n we could first construct B = Act ∈ Rm×mn and then

C = Bint ∈ Rm×m
2n

. Then IIm(A) = IIm∗(C) and further the candidates for active
position of C are (i, j) such that cij ∈ Z of which there is exactly one per column since
C is column typical (it inherits the property from B). We conclude that A ∈ IIm if
and only if C ∈ IIm∗-P1. We will prove in Section 5 that IIm∗-P1 is NP-hard. Of
course, this does not resolve the complexity of IIm, C is also column typical and there
is evidence to suggest that column typical matrices add structure which would help
in finding a polynomial solution method to the integer image problem, if one exists.

4. Problems that are polynomially equivalent to IIm. We show that IIm,
IIm-CT and IIm-CT-P1 are polynomially equivalent, and therefore belong in the same
complexity class. Recall, from Definition 1.1 that IIm-CT is the class of column typical
matrices with an integer image, and IIm-CT-P1⊆ IIm-CT which also requires that
an integer image exists with exactly one active position in each row of the matrix.

Theorem 4.1. IIm-CT-P1∈ P ⇔ IIm-CT∈ P ⇔ IIm∈ P , i.e.
(i) IIm-CT-P1 ≤p IIm-CT.
(ii) IIm-CT ≤p IIm-CT-P1.
(iii) IIm-CT ≤p IIm.
(iv) IIm ≤pIIm-CT.
Proof.
(i) and (ii): We show that if A is column typical then A has an integer image if

and only if A has an integer image in which there is exactly one active entry per row.
The sufficient direction is clear. So assume that A has an integer image z. Then

∃x ∈ Rn such that Ax = z. If there exist k, j ∈ N such that aij and aik are both
active for some i ∈ M then the vector x′ obtained from x by replacing xk by ε also
satisfies Ax′ = z. This is because A is column typical meaning there is at most one
active entry in every column and so removing Ak from the system will not affect active
entries in any other row. In this way we can construct a vector x′′ such that Ax′′ = z
and A has exactly one active entry per row.

(iii) Obvious.

(iv) Let A ∈ Rm×n. Let Act ∈ Rm×k, k ≤ mn be the column typical counterpart
of A as defined in Section 3.

We have IIm(A) 6= ∅ ⇔ IIm(Act) 6= ∅.
Therefore A is an instance of IIm-CT if and only if Act is an instance of IIm-CT-P1

and Act can be constructed in O((mn)2) time.
Corollary 4.2. To show that IIm ∈ NPC or IIm ∈ P it is enough to consider

either IIm-CT-P1 or IIm-CT.
We know from Theorem 2.6 that checking whether a square matrix is in IIm-

CT is achievable in polynomial time. But this does not imply that IIm for square
matrices is polynomially solvable since in transforming a matrix to its column typical
counterpart we increase the number of columns.

5. Related NP-hard problems. In this section we consider modifications of
the integer image problem which we can prove to be NP-hard. The hardness of these
related problems does not imply hardness of IIm, that question remains open. The
related problems we consider are IIm-P1, IIm-P2, IIm-P3, IIm-P4 and IIm∗-P1 as
described in Definition 1.1. Recall that each problem class requires the following
additional conditions on the matrix.
IIm-P1: Integer image with exactly one active position per row.
IIm-P2: Integer image with exactly two active position per row.

11



IIm-P3: Integer image with at most two active position per row.
IIm-P4: Integer image with at most t active columns.
IIm∗-P1: Integer image with exactly one active position per row and integer active
entries.

Each proof will use the following key result.
Proposition 5.1. Fix α ∈ (0, 1). Let A ∈ {0, α−1}m×n be a matrix in which

each column has at least one zero entry. If z ∈ IIm(A) then
(i) for any x ∈ X(A) such that Ax = z all active entries of A are integer (zero),
(ii) z is a constant vector, and
(iii) if Aj , j ∈ N contains an active position then (i, j) is active for all i ∈ M

such that aij = 0.

Proof. Assume (∃z ∈ Zm)(∃x ∈ Rn)Ax = z.
(i) Suppose aij = α−1 is active, so xj = ziα /∈ Z. By assumption there exists a

zero entry in every column so let t be an index such that atj = 0. Then atjxj /∈ Z, so
atj is inactive and there exists l such that atl is active. Hence we have

α−1xj =zi,

0xj <zt,

ailxl ≤zi and

atlxl =zt.

From the first two equations we obtain zi = α−1xj < xj < zt and therefore
zi1 ≤ zt. Using this and the last two equations we get

atlxl = zt ≥ zi1 ≥ ailxl1.

This implies that atl ≥ ail1, a contradiction with |aila−1tl | ≤ α < 1.

(ii) Suppose there exists x ∈ Rn such that Ax = z ∈ Zm where (∃i, t ∈M)zi 6= zt.
Without loss of generality assume that zi > zt, in fact zi ≥ zt1. Let aij , atl be active
entries in rows i and t respectively. Note that by (i), aij = 0 = atl, meaning xj = zi
and xl = zt. But then

Ajxj = Ajzi ≥ Aj(zt1) = (1Aj)zt > Alzt = Alxl

which implies that Al is inactive. This is a contradiction since atl is active.
(iii) Denote S = {j : There exists an active entry in Aj}. Fix j ∈ S and suppose

aijxj = zi. Then by (i), xj = zi and hence

Ajxj = Ajzi ≤

 z1
...
zm

 =

zi...
zi


where the final equality is obtained using (ii). Finally for all t ∈M such that atj = 0
we have atjxj = zi, therefore every integer (zero) entry in Aj is active.

It is important to observe that any matrix A ∈ {0, α−1}m×n with at least one
zero entry in each column has an integer image if and only if there is a zero in every
row, which occurs if and only if 0 ∈ IIm(A). In fact

IIm(A) 6= ∅ ⇔ IIm(A) = {γ0 : γ ∈ Z}.
12



Thus when we consider whether the matrix has an integer image that also satisfies
some specified property (number of active entries per row, column etc) this property
will be determined by the vector x such that Ax = 0. Note that it can be assumed
that x ∈ {0, ε}n where the finite components correspond to active columns of A.
These ideas will be used throughout the proofs of NP-hardness in this section.

We will use reductions from the following NP-hard problems.

(Monotone 1-in-3 SAT): 1-in-3 SAT is a modification of the SAT problem in which
each clause has 3 literals and we ask whether there exists a satisfying assignment such
that exactly one literal in each clause is TRUE. The monotone version of the problem
satisfies the additional condition that each clause contains only unnegated variables.
Note that without loss of generality each literal appears in at least one clause.
(Monotone NAE-3-SAT) Not all equal 3-SAT is a modification of the SAT problem
in which every clause contains 3 literals and we ask whether there exists a satisfying
assignment for which no clause contains only TRUE literals. This means that every
clause will contain at least one TRUE and at least one FALSE literal (no clause will
contain only FALSE literals with respect to a satisfying assignment). The monotone
version of the problem satisfies the additional condition that each clause contains only
unnegated variables.
(MCCP) The minimum cardinality cover problem: Given a universe U , a family S
of finite subsets of U and a positive integer t, does there exist a subfamily C ⊆ S,
|C| ≤ t such that C is a cover of U?

Remark 5.2.
(i) 1-in-3 SAT is problem L04 in [8], where it is noted that it remains NP complete

even if no clause contains a negated literal. The result follows from the classification
of NP-hard satisfiability problems in [13].

(ii) Monotone NAE-3-SAT is also NP complete, as noted in [12] and is again due
to the results in [13].

(iii) MCCP is problem SP5 in [8].
Theorem 5.3.
(i) Monotone 1-in-3 SAT≤p IIm-P1.
(ii) Monotone 1-in-3 SAT≤p IIm-P2.
Proof. Let F = C1 ∧ ... ∧ Cm where every clause contains 3 unnegated literals

from {y1, ..., yn}.
Construct an m× n matrix A = (aij) as follows: For some α ∈ (0, 1),

aij =

{
0 if yj ∈ Ci
α−1 otherwise.

Note that A can be constructed in polynomial time.
Example 5.4. For F = (y1 ∨ y2 ∨ y3) ∧ (y1 ∨ y3 ∨ y4) we obtain

A =

(
0 0 0 α−1

0 α−1 0 0

)
.

Now assume there exists z ∈ Zm such that (∃x ∈ Rn) Ax = z.
Since A satisfies the conditions of Proposition 5.1 we know that there exists γ ∈ Z

such that z = γ0 and active entries are integer, thus x ∈ Zn. Further for all j ∈ S,

aij = 0⇒ aij is active
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where S = {j : There exists an active entry in Aj}.
(i) If Ax = z with exactly one active entry per row then y = (y1, ..., yn)T is a

satisfying assignment of F with exactly one TRUE literal per clause where

yj =

{
1 if j ∈ S
0 otherwise.

On the other hand if F has a satisfying assignment y in which exactly one literal
in each clause is satisfied then for all j ∈ N let

xj =

{
0 if yj = 1

ε else.

The vector x = (x1, ..., xn) ∈ Rn is such that Ax = 0 and there is exactly one active
entry per row.

Therefore F has a satisfying assignment with exactly one TRUE literal per clause
if and only if A has an integer image with exactly one active entry per row.

(ii) If Ax = z with exactly two active literals per clause then y = (y1, ..., yn)T is
a satisfying assignment of F with exactly two TRUE literals per clause where

yj =

{
1 if j ∈ S
0 otherwise.

Hence ȳ is a satisfying assignment of F with exactly one TRUE literal per clause.
Finally if F has a satisfying assignment y in which exactly one literal in each

clause are satisfied then for all j ∈ N let

xj =

{
0 if ȳj = 1

ε else.

The vector x = (x1, ..., xn) ∈ Rn is such that Ax = 0 and there are exactly two active
entries per row.

Therefore F has a satisfying assignment with exactly one TRUE literal per clause
if and only if A has an integer image with exactly two active entries per row.

Theorem 5.5. Monotone NAE-3-SAT≤p IIm-P3.
Proof. Let F = C1 ∧ ... ∧ Cm where every clause contains 3 unnegated literals

from {y1, ..., yn}.
Construct a matrix A = (aij) exactly as before: For some α ∈ (0, 1),

aij =

{
0 if yj ∈ Ci
α−1 otherwise.

Now assume there exists z ∈ Zm such that (∃x ∈ Rn) Ax = z with at most two
active entries per row.

By Proposition 5.1 there exists γ ∈ Z such that z = γ0 and if Aj contains an
active entry then all integer (zero) entries in Aj will be active. Observe that by
construction A has at most three integer (zero) entries in each row, so the condition
that there are at most two active entries in each row means that not all zero entries
are active.
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Now define a Boolean vector y = (y1, ..., yn)T where

yj =

{
1 if Aj is active

0 otherwise.

Then y is a satisfying assignment of F with no clause containing only TRUE literals.
Finally if F has a satisfying assignment y in which no clause contains only TRUE

literals then for all j ∈ N let

xj =

{
0 if yj = 1

ε else.

The vector x ∈ Rn is such that Ax = 0 and there are at most two active entries per
row.

Therefore A can be constructed in polynomial time and F has a satisfying as-
signment with no clause containing only TRUE literals if and only if A has an integer
image with at most two active entries per row.

Theorem 5.6. MCCP≤p IIm-P4.
Proof. Let U = {u1, ..., um}, S = {S1, ..., Sn}, Sj ⊆ U and t ∈ N be an instance

of the MCCP.
Fix α ∈ (0, 1) and define A = (aij) ∈ (0, α−1)m×n by

aij =

{
0, if ui ∈ Sj ;
α−1, otherwise.

Note that since S contains no duplicate sets the columns of A are distinct. Clearly
active entries will be the integer (zero) entries of A and any z ∈ IIm(A) is a constant
vector by Proposition 5.1.

Now assume there exists z ∈ Zm such that (∃x ∈ Rn) Ax = z with at most t
active columns. For all j ∈ N if Aj is active then every integer (zero) entry in Aj is
active and so we place Sj into C. It follows that C is a cover of U and |C| ≤ t.

Finally if C is a cover of U with |C| ≤ t then define x = (x1, ..., xn) ∈ Rn by

xj =

{
0 if Sj ∈ C
ε otherwise.

Now Ax = 0 and the number of active columns is at most the number of j such that
xj > ε, which is t.

Therefore A has an integer image for which at most t columns are active if and
only if there exists a cover of U of size at most t. Note that A can be constructed in
polynomial time.

Corollary 5.7. The following problems are NP-hard.
(i) IIm-P1,
(ii) IIm-P2,
(iii) IIm-P3,
(iv) IIm-P4 and
(v) IIm∗-P1.
Proof. (i)-(iv) follow immediately from Theorems 5.3, 5.5 and 5.6 and Remark

5.2.
(v) holds for the exact same reasons as (i), an identical proof can be used to show

Monotone 1-in-3 SAT≤p IIm∗-P1.
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6. Proving the validity of column typical counterparts. We prove the
results from Subsection 3.2 which we repeat below.

Theorem 3.7 states: Let A ∈ Rm×n be doubly R-astic and Act be the column
typical counterpart of A where δi, i ∈M satisfy A1-A4. Then

IIm(A) = IIm(Act).

Further δi, i ∈ M satisfying A1-A4 can be found efficiently and Act constructed
in O((mn)2) time where assumptions A1-A4 are as as follows.

(A1) δi are distinct;
(A2) Act is column typical;
(A3i) (∀j ∈ N)(∀i, t ∈M)fr(aij) 6= fr(atj) & aij , atj > ε⇒ fr(aij−atj) > δi, δt;
(A3ii) (∀i ∈M)(∀j, p ∈M)fr(aij) 6= fr(aip) & aij , aip > ε⇒ fr(aij − aip) > δi;
(A4) (∀i ∈M)(∀j ∈ N)fr(aij) 6= 0 & aij > ε⇒ δi < min(fr(aij), 1− fr(aij)).

6.1. Proof of Theorem 3.7. Recall (from Subsection 3.2) that we assume

A ∈ Rm×n has no two identical columns.
Proposition 6.1. If A has no two identical columns then all columns of Act are

different when δi, i ∈M are chosen according to assumptions A1-A4 .
Proof. If Actj1 and Actj2 are both counterparts to Aj and j1 6= j2 then by definition

Actj1 6= Actj2 .
Assume then that Actc(j) and Actc(p) are counterparts of Aj and Ap respectively,

j 6= p. Since Aj 6= Ap there exists i such that aij 6= aip. We prove that actic(j) 6= actic(p)by
showing

aij − δi 6= aip − δi,
aij − δi 6= aip and

aij 6= aip − δi.

The first is immediate, the second and third are proved in the same way. To see
that the third statement holds assume, for a contradiction, that aij = aip − δi. If
fr(aip) = 0 then fr(aij) = 1− δi > 0, a contradiction with A4. If instead fr(aip) > 0
then by A4, fr(aip) > δi. Further (using A3 and Lemma 2.1)

aip > aij = aip − δi > baipc ⇒ fr(aip) > fr(aij) and

fr(aij) = fr(aip − δi) = fr(aip)− δi.

But then

δi = fr(aip)− fr(aij) = fr(aip − aij),

a contradiction with A3ii.
We set

r =
∑
j∈N
|Ictj |.

First assume that z ∈ IIm(A) 6= ∅. So there exists x ∈ X(A) such that Ax = z.
Observe that the vector

x′ = (x1, ..., x1, x2, ..., x2, ..., xn, ..., xn)T ∈ Rr

16



(where each xj , j ∈ N is repeated |Ictj | times) satisfies Actx′ = z.
For the other direction assume that z ∈ IIm(Act), x ∈ X(Act) and let

c(1), ..., c(m) ∈ {1, ..., r}

be indices of m active columns of Act such that

m⊕
t=1

Actc(t)xc(t) = z. (6.1)

So c(1), ..., c(m) represent a list of m active columns Actc(1), ..., A
ct
c(m) in Act with respect

to z. Note that there is exactly one active entry in each of the columns in the list as
they are column typical.

We prove that there exists some x′ ∈ Rn such that Ax′ = z by considering two
cases: when the list of these m active columns in Act contains at most one counterpart
of each column Aj , j ∈ N and when it contains more than one counterpart to some
column Aj . To do this we first need the following claim on the active entries of
columns in the list.

Claim 6.2. Let c(1), ..., c(m) represent a list of m active columns of Act satisfying
(6.1). For each t ∈ {1, ...,m} there exists an index p(t) such that the new list of
columns Actp(1), ..., A

ct
p(m) satisfies

m⊕
t=1

Actp(t)yp(t) = z

for some y ∈ X(Act) where the active entry of each Actp(t) has not been altered when

moving from A to Act.
Proof.
Fix t ∈ {1, ...,m} and suppose Actc(t) is a counterpart to Aj for some j ∈ N .

Further suppose that the active entry in Actc(t) is in row i. If actic(t) = aij then let

p(t) = c(t) and yp(t) = xc(t).
If instead actic(t) = aij − δi then we know |Ictj | ≥ 2 and

Actc(t)xc(t) ≤ z

with equality only in row i. Defining µ = xc(t) − δi, we obtain

(aij − δi) + (µ+ δi) = zi,

asj + (µ+ δi) < zs ∀s /∈ Ictj and

(asj − δs) + (µ+ δi) < zs ∀s ∈ Ictj − {i}.

Therefore

aij + µ = zi,

asj + µ < zs ∀s /∈ Ictj and

(asj − δs) + µ < zs ∀s ∈ Ictj − {i}.

But this means that there exists a counterpart of Aj in Act, say Actp , such that

Actp µ ≤ z
17



with equality only for zi and active entry actip = aij . So set p(t) = p in our choice of
columns, and yc(t) = xc(t) − δi.

Repeat this for each column in the list. For any unassigned entry of y set yl = xl.
This results in a new list of m distinct columns Actp(t), t ∈ {1, ...,m} such that

m⊕
t=1

Actp(t)yp(t) = z

and having active entries which are unaltered from A. It immediately follows that
Acty = z and hence y ∈ X(Act).

Hence we can assume that Ax = z, and further that there is a list of m active
columns Actc(t), t ∈ {1, ...,m} satisfying (6.1) with active entries unaltered by some δi,

i.e. entries such that actij = aij . We use this to describe x′ ∈ Rn such that Ax′ = z.
Case 1: (∀j, l ∈ {1, ...,m}, j 6= l) Actc(j) and Actc(l) are counterparts to different columns
in A.

By rearranging columns in A if necessary, we can assume without loss of generality
that Actc(t), t ∈ {1, ...,m} is a counterpart to At.

Define x′ ∈ Rn by x′t = xc(t), t ∈ {1, ...,m} and ε otherwise. Observe that Ax′ ≥ z
since if actic(j) is active in Act with respect to x then, using Claim 1, actic(j) + x′j =

aij + xj = zi. It remains to show Ax′ ≤ z.
Assume there exists i ∈ M , t ∈ {1, ...,m} such that ait + x′t > zi. Then, by

definition of Act, ait − δi = actic(t) and actic(t) is inactive in Actx = z. Note that Actc(t)
is active in (6.1) so there exists i′ ∈ M, i′ 6= i such that acti′c(t) + xc(t) = zi′ and

additionally acti′c(t) = ai′t by our assumptions on the active entries.

Case 1a: fr(ait) 6= fr(ai′t)
We have

ait + x′t > zi > actic(t) + xc(t) = ait − δi + x′t. (6.2)

Since zi ∈ Z we deduce

bait + x′tc ≥ dait − δi + x′te.

This implies that δi ≥ fr(ait+x′t). Further ai′t+x
′
t = zi′ implies fr(x′t) = 1−fr(ai′t).

Therefore, using Lemma 2.1,

δi ≥ fr(ait + x′t) = fr(fr(ait) + 1− fr(ai′t)) = fr(ait − ai′t)

but this is a contradiction with assumption A3i on δi.
Case 1b: fr(ait) = fr(ai′t)

Using ait + x′t > zi and ai′t + x′t = zi′ we get that ait + x′t ∈ Z and therefore
ait + x′t ≥ zi + 1. But then actic(t) + δi + xc(t) ≥ zi + 1 which is a contradiction with

actic(t) + xc(t) ≤ zi as it suggests δi ≥ 1.

In both subcases we reach a contradiction and therefore Atx
′
t ≤ z. Since this

argument holds for all i we conclude Ax′ ≤ z and then that Ax′ = z as required.
Case 2: (∃j ∈ N)(∃s, t ∈ {1, ...,m}) Actc(s) and Actc(t) are counterparts of Aj .

We would like to argue that the same idea as in Case 1 holds here, however to do
this we must show that when we go from Actc(s) and Actc(t) back to Aj the components
xc(s) and xc(t) do not cause a problem.
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Both columns have a single active entry in different rows, i1 and i2 say.
So, using our assumptions on the active entries,

ai1j + xc(s) = acti1c(s) + xc(s) = zi1 and ai2j + xc(t) = acti2c(t) + xc(t) = zi2 ,

∴ acti1c(s) + xc(s) ≥ acti1c(t) + xc(t) and acti2c(s) + xc(s) ≤ acti2c(t) + xc(t).

Note that if p, q ∈ {1, ...,m} and Ac(p), Ac(q) are counterparts to the same column in
A then

(∀i ∈M)|actic(p) − a
ct
ic(q)| ∈ {0, δi}.

Using this we obtain

xc(t) − xc(s) ≤ acti1c(s) − a
ct
i1c(t)

≤ δi1 and xc(s) − xc(t) ≤ acti2c(t) − a
ct
i2c(s)

≤ δi2
∴ −δi1 ≤ xc(s) − xc(t) ≤ δi2 .

Substituting xc(s) = zi1 − ai1j and xc(t) = zi2 − ai2j gives

−δi1 ≤ zi1 − ai1j − zi2 + ai2j ≤ δi2 .

Case 2a: 0 = zi1 − ai1j − zi2 + ai2j .
Then fr(ai1j) = fr(ai2j) and more importantly 0 = zi1 − ai1j − zi2 + ai2j =

xc(s) − xc(t) so xc(s) = xc(t) and there will be no conflict in choosing x′j . We detail
this later.
Case 2b: 0 < zi1 − ai1j − zi2 + ai2j ≤ δi2 .

Then since δi2 < 1 and fr(ai2j) 6= fr(ai1j) we have,

δi2 ≥ zi1 − ai1j − zi2 + ai2j = fr(zi1 − ai1j − zi2 + ai2j) = fr(ai2j − ai1j).

But this is a contradiction with assumption A3i on δ. So this case does not occur.
Case 2c: 0 < zi2 − ai2j − zi1 + ai1j ≤ δi1 .

Similarly as in Case 2b we can reach a contradiction on the size of δi1 .
Since only Case 2a can occur we conclude that the active entries of Actc(s) and

Actc(t) correspond to entries of Aj with the same fractional part, and xc(s) = xc(t).
This proves that there is no conflict moving from multipliers xc(s) and xc(t) to a single
multiplier xj .

In general, given a list Actc(1), ..., A
ct
c(m) satisfying (6.1) with active entries unaltered

by any δi, we construct x′ ∈ Rn as follows:
For each j ∈ N
(1) If no column corresponding to Aj in Act is in the list then let x′j = ε.
(2) If exactly one column, Actc(j) say, corresponding to Aj is in the list set x′j =

xc(j).
(3) If more than one column corresponding to Aj in Act is in the list then choose

any of them, Actc(j′) say, and set xj = xc(j′).

Finally Ax′ = z can be shown using similar arguments as in Case 1; Ax′ ≥ z
because Ax′ ≥ Actx = z and Ax′ ≤ z because otherwise there would exist i, t such
that

ait + x′t > zi ≥ actic(t) + xc(t) ≥ ait − δi + x′t,

which is exactly (6.2) and so we can follow the same argument to reach a contradiction
with assumption A3i on δi.

This ends the proof of Theorem 3.7.
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6.2. The choice of δi. Given A ∈ Rm×n we show how to choose 0 < δi < 1, i ∈
M satisfying A1-A4 in O((mn)2) time.

We achieve this by showing there exists g ∈ (0, 1) such that any choice of δi, i ∈M
satisfying (∀i)δi < g will satisfy A3 and A4. It follows from A3 and A4 that satisfying
A1 is trivial. First we prove that A2 follows from A1, A3 and A4. It may be useful
to recall Lemma 2.1 on the basic properties of fr(·).

Claim 6.3. If 0 < δi < 1, i ∈ M satisfy A1, A3 and A4 then δi, i ∈ M satisfy
A2.

Proof. Assume that Act is not column typical, thus ∃j ∈ N − Jct(A). Then there
exist i, t ∈M, i 6= t such that

fr(aij − δi) = fr(atj − δt). (6.3)

Since δi 6= δt we conclude, using A4, that fr(aij) 6= fr(atj). Assume without loss of
generality that fr(aij) > fr(atj), therefore

fr(aij − δi) = fr(aij)− δi and fr(atj − δt) =

{
fr(atj)− δt; if fr(atj) > 0;

1− δt; otherwise.

Case 1: fr(atj) > 0
Substituting into (6.3) we obtain, using fr(aij) > fr(atj),

fr(aij − atj) = fr(aij)− fr(atj) = δi − δt ⇒ δi > fr(aij − atj)

which contradicts A3.
Case 2: fr(atj) = 0

From (6.3) we get fr(aij)− δi = 1− δt which implies 1− δt < fr(aij). But then
δt > 1− fr(aij) = fr(atj − aij), a contradiction with A3.

We now consider how to choose δi such that A3 and A4 hold.
Let

F = {fr(aij) : i ∈M, j ∈ N} − {0},
F ′ = {1− fr(aij) : i ∈M, j ∈ N} − {0} and

G = {fr(f + f ′) : f ∈ F, f ′ ∈ F ′} − {0}.

So |F |, |F ′| ≤ mn and |G| ≤ (mn)2.
Consider satisfying A3:
To satisfy A3i for each column j of A we need to exclude any fr(aij − atj) 6= 0

from our choice of δi. By Lemma 2.1

fr(aij − atj) = fr(fr(aij)− fr(atj))

and hence these excluded values are contained in G. The same argument holds for
rows so A3ii is also satisfied by excluding values from G.

To satisfy A4 we additionally exclude the values from F ∪ F ′ from our choice of
δi.

Now let g be the minimum of the at most (mn)2 + 2mn values from

F ∪ F ′ ∪G.

Then any choice of distinct δi satisfying 0 < δi < g will satisfy our assumptions.
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7. Conclusion. We have shown that the problem of determining whether a
matrix has a non empty set of integer images can be reduced to the problem of
determining whether a column typical matrix has a non empty set of integer images.
If the matrix is square then the column typical version of the problem can be solved
in polynomial time, which, on the one hand, gives hope that maybe the integer image
problem is polynomially solvable. On the other hand we show that similar problems
are hard. The problem of finding an integer image of a column typical matrix is
equivalent to determining whether a column typical matrix has an integer image for
which there is exactly one active entry per row. The complexity of this problem for
column typical matrices remains unresolved but if we remove the assumption that the
matrix is column typical, we find that the problem of determining whether a general
matrix has an integer image with exactly one active entry per row is NP-hard.
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