
Contemporary Mathematics

Tropical convexity over max-min semiring

Viorel Nitica and Sergĕı Sergeev

Abstract. This is a survey on an analogue of tropical convexity developed
over the max-min semiring, starting with the descriptions of max-min seg-
ments, semispaces, hyperplanes and an account of separation and non-separation
results based on semispaces. There are some new results. In particular, we
give new “colorful” extensions of the max-min Carathéodory theorem. In the
end of the paper, we list some consequences of the topological Radon and
Tverberg theorems (like Helly and Centerpoint theorems), valid over a more
general class of max-T semirings, where multiplication is a triangular norm.

1. Introduction

The max-min semiring is defined as the unit interval B = [0, 1] with the opera-
tions a⊕ b := max(a, b), as addition, and a⊗ b := min(a, b), as multiplication. The
operations are idempotent, max(a, a) = a = min(a, a), and related to the order:

(1.1) max(a, b) = b ⇔ a ≤ b ⇔ min(a, b) = a.

One can naturally extended them to matrices and vectors leading to the max-min
(fuzzy) linear algebra of [3, 6, 7]. We denote by B(d,m) the set of d×m matrices
with entries in B and by Bd the set of d-dimensional vectors with entries in B. Both
B(d,m) and Bd have a natural structure of semimodule over the semiring B.

The max-min segment between x = (xi)i, y = (yi)i ∈ Bd is defined as

(1.2) [x, y]⊕ = {α⊗ x⊕ β ⊗ y | α⊕ β = 1}.

A set C ⊆ Bd is called max-min convex, if it contains, with any two points
x, y, the segment [x, y]⊕ between them. For a general subset X ⊆ Bd, define its
convex hull conv⊕(X) as the smallest max-min convex set containing X , i.e.,
the smallest set containing X and stable under taking segments (1.2). As in the
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ordinary convexity, conv⊕(X) is the set of all max-min convex combinations

(1.3)

m
⊕

i=1

λi ⊗ xi : m ≥ 1,

m
⊕

i=1

λi = 1,

of all m-tuples of elements x1, . . . , xm ∈ X . The max-min convex hull of a finite
set of points is also called a max-min convex polytope.

A (max-min) semispace at x ∈ Bd is defined as a maximal max-min convex
set not containing x. A straightforward application of Zorn’s Lemma shows that
if C ⊆ Bd is convex and x /∈ C, then x can be separated from C by a semispace.
It follows that the semispaces constitute the smallest intersectional basis of max-
min convex sets. This fact is true more generally in abstract convexity. Some new
phenomena appear in max-min convexity, which further emphasize the importance
of semispaces in any convexity theory. For example, separation of a point and a
convex set by hyperplanes it is not always possible in max-min convexity [12], [13].

The max-min segments and semispaces were described, respectively, in [16, 19]
and in [17]. In the present paper, the max-min segments are introduced in Sec-
tion 2. We recall the structure of max-min semispaces in Section 3 together with
some immediate consequences from abstract convexity. In [13, 14] further progress
is made in the study of max-min convexity focusing on the role of semispaces.
Being motivated by the Hahn-Banach separation theorems in the tropical (max-
plus) convexity [21] and extensions to functional and abstract idempotent semi-
modules [4, 11, 22], we compared semispaces to max-min hyperplanes in [13], and
developed an interval extension of separation by semispaces in [14]. These results
are summarized in Section 4. Another principal goal of this paper is to investigate
classical convexity results such as the theorems of Caratheódory, Helly and Radon
in the realm of max-min convexity. These results are presented in Sections 5, 6 and 7
and are inspired by a paper of Gaubert and Meunier [8], in which similar state-
ments can be found for the case of max-plus convexity. The max-min Carathéodory
theorem with some “colorful” extensions is presented in Section 5. The strongest
extension relies on what we call the internal separation theorem, which is proved in
Section 6. In the last section, motivated by the fuzzy algebra of [10], we consider
a more general class of max-T semirings, where the role of multiplication is played
by a triangular norm. We show how the topological Radon and Tverberg theorems
can be applied to obtain, in particular, the max-min analogues of Radon, Helly,
Centerpoint and (in part) Tverberg theorems.

2. Description of segments

In this section we describe general segments in Bd, following [16, 19], where
complete proofs can be found. Note that the description of the segments in [16, 19]
is done for the equivalent case where B = [−∞,+∞].

Let x = (x1, ..., xd), y = (y1, ..., yd) ∈ Bd, and assume that we are in the
case of comparable endpoints, say x ≤ y in the natural order of Bd. Sorting the
set of all coordinates {xi, yi, i = 1, ..., d} we obtain a non-decreasing sequence,
denoted by t1, t2, . . . , t2d. This sequence divides the set B into 2d + 1 subintervals
σ0 = [0, t1], σ1 = [t1, t2], ..., σ2d = [t2d, 1], with consecutive subintervals having one
common endpoint.

Every point z ∈ [x, y]⊕ is represented as z = α ⊗ x ⊕ β ⊗ y, where α = 1 or
β = 1. However, case β = 1 yields only z = y, so we can assume α = 1. Thus z



TROPICAL CONVEXITY OVER MAX-MIN SEMIRING 3

can be regarded as a function of one parameter β, that is, z(β) = (z1(β), ..., zd(β))
with β ∈ B. Observe that for β ∈ σ0 we have z(β) = x and for β ∈ σ2d we
have z(β) = y. Vectors z(β) with β in any other subinterval form a conventional
elementary segment. Let us proceed with a formal account of all this.

Theorem 1. Let x, y ∈ Bd and x ≤ y.

(i) We have

(2.1) [x, y]⊕ =

2d−1
⋃

l=1

{z(β) | β ∈ σl},

where z(β) = x ⊕ (β ⊗ y) and σℓ = [tl, tl+1] for ℓ = 1, . . . , 2d − 1, and
t1, . . . , t2d is the nondecreasing sequence whose elements are the coordi-
nates xi, yi for i = 1, . . . , d.

(ii) For each β ∈ B and i, let M(β) = {i : xi ≤ β ≤ yi}, H(β) = {i | β ≥ yi}
and L(β) = {i : β ≤ xi}. Then

(2.2) zi(β) =











β, if i ∈ M(β),

xi, if i ∈ L(β),

yi, if i ∈ H(β),

and M(β), L(β), H(β) do not change in the interior of each interval σℓ.
(iii) The sets {z(β) | β ∈ σℓ} in (2.1) are conventional closed segments in Bd

(possibly reduced to a point), described by (2.2) where β ∈ σℓ.

For incomparable endpoints x 6≤ y, y 6≤ x, the description can be reduced to
that of segments with comparable endpoints, by means of the following observation.

Theorem 2. Let x, y ∈ Bd. Then [x, y]⊕ is the concatenation of two segments
with comparable endpoints, namely [x, y]⊕ = [x, x ⊕ y]⊕ ∪ [x⊕ y, y]⊕.

All types of segments for d = 2 are shown in the right side of Figure 1.
The left side of Figure 1 shows a diagram, where for x = (x1, x2, x3) and y =

(y1, y2, y3), the segments [x1, y1], [x2, y2], and [x3, y3] are placed over one another,
and their arrangement induces a tiling of the horizontal axis, which shows the
possible values of the parameter β. The partition of the real line induced by this
tiling is associated with the intervals σl, and the sets of active indices i with zi(β) =
β associated with each σl are also shown.

Remark 1. We observe that, similarly to the max-plus case (see [15], Remark
4.3) in Bd there are elementary segments in only 2d − 1 directions. Elementary
segments are the ”building blocks” for the max-min segments in Bd, in the sense
that every segment [x, y] ⊂ Bd is the concatenation of a finite number of elemen-
tary subsegments (at most) 2d − 1, respectively 2d − 2, in the case of comparable,
respectively incomparable, endpoints.

Max-min segments allow to introduce a natural metric on Bd ([9]). More pre-
cisely, one defines the distance between two points to be the Euclidean length of
the max-min segment joining them.
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Segments in B2, comparable endpoints

Segment in B2, incomparable endpoints

t1 t2 t3 t4 t5 t6 β

∅ {1} {1, 2} {1, 2, 3} {2, 3} {2} ∅ M(β)

σ0 σ1 σ2 σ3 σ4 σ5 σ6

x1 y1

x2 y2

x3 y3

Diagram showing intervals σℓ and sets

of coordinates moving together M(β)

Figure 1. Max-min segments.

3. Description of semispaces

For any point x0 = (x0
1, . . . , x

0
d) ∈ Bd we define a finite family of subsets

S0(x0), . . . , Sd(x0) in Bd. These subsets were shown to be semispaces in [17, Propo-
sition 4.1]. A point x0 is called finite if it has all coordinates different from zeros
and ones. This definition is motivated by the isomorphic version of max-min al-
gebra where the least element (and zero of the semiring) is −∞, and the greatest
element (and unity of the semiring) is +∞.

Without loss of generality we may assume that x0 is non-increasing: x0
1 ≥

· · · ≥ x0
d. Writing this more precisely we have

(3.1)

x0
1 = · · · = x0

k1
> · · · > x0

k1+l1+1 = · · · = x0
k1+l1+k2

> . . .

> x0
k1+l1+k2+l2+1 = · · · = x0

k1+l1+k2+l2+k3
> . . .

> x0
k1+l1+···+kp−1+lp−1+1 = · · · = x0

k1+l1+···+kp−1+lp−1+kp

> · · · > x0
k1+l1+···+kp+lp

(= x0
d),

where
∑p

j=1(kj + lj) = d, k1 = 0 if the sequence (3.1) starts with strict inequalities
and lp = 0 if the sequence ends with equalities.

Let us introduce the following notations:

L0 = 0,K1 = k1, L1 = K1 + l1 = k1 + l1,

Kj = Lj−1 + kj = k1 + l1 + ... + kj−1 + lj−1 + kj (j = 2, ..., p),

Lj = Kj + lj = k1 + l1 + ... + kj + lj (j = 2, ..., p);

we observe that lj = 0 if and only if Kj = Lj .
We are ready to define the subsets. We need to distinguish the cases when the

sequence (3.1) ends with zeros or begin with ones, since some subsets Si become
empty in that case.
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Definition 1. Let x0 ∈ Bd be a non-increasing vector
a) If x0 has 0 < x0

i < 1 for all 1 ≤ i ≤ d, then:

S0(x0) ={x ∈ Bd|xi > x0
i for some 1 ≤ i ≤ d},

SKj+q(x
0) ={x ∈ Bd|xKj+q < x0

Kj+q, or xi > x0
i

for some Kj + q + 1 ≤ i ≤ d}(q = 1, ..., lj ; j = 1, ..., p if lj 6= 0),

SLj−1+q(x
0) ={x ∈ Bd|xLj−1+q < x0

Lj−1+q, or xi > x0
i

for some Kj + 1 ≤ i ≤ d}

(q = 1, ..., kj ; j = 1, ..., p if k1 6= 0, or j = 2, ..., p if k1 = 0).

b) If there exists an index i ∈ {1, ..., d} such that x0
i = 1, but no index j such

that x0
j = 0, then the subsets are S1, ..., Sd of part a).

c) If there exists an index j ∈ {1, ..., d} such that x0
j = 0, but no index i such

that x0
i = 1, then the subsets are S0, S1, ..., Sβ−1 of part a), where β := min{1 ≤

j ≤ n| x0
j = 0}.

d) If there exist an index i ∈ {1, ..., d} such that x0
i = 1, and an index j such

that x0
j = 0, then the subsets are S1, ..., Sβ−1.

Let now x0 ∈ Bd have arbitrary order of coordinates, and let us formally
extend Definition 1. For this, consider a permutation π of the index set {1, . . . , d}
such that the vector (xπ(1), xπ(2), . . . , xπ(d)) is non-increasing. Let π : Bd → Bd

be the invertible map of Bd induced by the permutation π. Then we can define
Si(x

0) = π−1(Sj(π(x0))), where j = π(i).
Further, for any x0 ∈ Bd we denote by I(x0) the set of indices i such that

Sπ(i)(π(x0)) is present in Definition 1. Observe that I(x0) consists of the compo-

nents i such that x0
i > 0 and, possibly, 0.

Pictures of all semispaces at a finite point for d = 2 are shown in Figure 2.

Semispaces at a point with equal coordinates

Semispaces at a point with unequal coordinates

Figure 2. Semispaces in B2 at a finite point
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The following theorem is the main result in [17]. See also [14].

Theorem 3. For any p ∈ Bd the sets Si(p), i ∈ I(p), are maximal max-min
convex avoiding the point p. Thus for any p ∈ Bd, there exists at least one and at
most d + 1 semispaces Si(p), 0 ≤ i ≤ d, at p.

For all C ⊆ Bd max-min convex and any p ∈ Bd \ C, there exists a semispace
Si(p) such that C ⊆ Si(p) and p 6∈ Si(p).

The complement of a semispace Si(p) is denoted by ∁Si(p). These complements
are also called sectors, in analogy with the max-plus convexity.

The lemma below follows from the abstract definition of the semispaces and it
is our main tool in extending Caratheódory theorem and its colorful versions to the
max-min setup. As only a finite number of semispaces at a given point exist, the
max-min convexity can be regarded as a multiorder convexity [16, 17].

Lemma 1 (Multiorder principle). Let X ⊆ Bd and p ∈ Bd. Then the following
statements are equivalent:

(i) p ∈ conv⊕(X);
(ii) for all i ∈ I(p), there exists xi ∈ X such that xi ∈ ∁Si(p).

Proof. (i) → (ii) By contradiction. Assume there is i0 ∈ I(p) such that
X ∩ ∁Si0(p) = ∅. Then p ∈ conv⊕(X) ⊆ Si0(p), in contradiction to p 6∈ Si0(p).

(ii) → (i) By contradiction. Assume that p 6∈ conv⊕(X). As conv⊕(X) is
a convex set, it follows from Theorem 3 that there exists i0 ∈ I(p) such that
conv⊕(X) ⊆ Si0(p), which implies ∁Si0(p) ⊆ ∁ conv⊕(X). But from (ii), there
exists xi0 ∈ ∁Si0(p) ∩ conv⊕(X), which gives a contradiction. �

4. Separation and non-separation

In what follows Bd has the usual Euclidean topology. If A ⊆ Bd, we denote by
A the closure of A, by int(A) the interior of A and by ∁A the complement of A.

In the tropical convexity, all semispaces are open tropical halfspaces expressed
as solution sets to a strict two-sided max-linear inequality. See e.g. [15]. Thus the
closures of semispaces are hyperplanes.

In the case of max-min convexity, hyperplane in Bd can be defined as the
solution set to a max-min linear equation

(4.1) max(min(a1, x1), . . . ,min(ad, xd), ad+1) = max(min(b1, x1), . . . ,min(bd, xd), bd+1).

The structure of a max-min hyperplane is presented in [12]. One investigates
the distribution of values for the left and right hand side of (4.1), and then identifies
the regions in Bd where the values of the sides coincide. We illustrate this procedure
in Figure 3, which shows the structure of a max-min hyperplane (line) in B2. The
left side pictures show the distribution of values for both sides of (4.1): for the
white regions the distribution is uniform and the value is equal to the coordinate
of the finite point on the main diagonal that belongs to their boundary; the regions
labeled x1 are tiled by vertical lines each of value equal to its x1 coordinate, and
the regions labeled x2 are tiled by horizontal lines each of value equal to its x2

coordinate. The right side picture shows the graph of the line.
In [13] we investigated the relation between the max-min hyperplanes and

the closures of semispaces Si(x). We recall that the diagonal of Bd is the set
Dd = {(a, . . . , a) ∈ Bd | a ∈ B}.
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x1

x2

x1

x2

a3

a3

a2

a2

a1

a1

b2

b2

b1

b1b3
b3

x1

x2

E1

E2

x1x2

x1

x2

b3 b1 b2

a2

Figure 3. A max-min hyperplane (line) in B2.

Theorem 4 ([13], Theorem 3.1). A closure of semispace is a hyperplane if and
only if it can be represented as Si(y) for some y belonging to the diagonal.

Theorem 4 shows exactly when classical separation by hyperplanes is possible.

Corollary 1 ([13], Corollary 3.3 and 3.4). Let x ∈ Bd, then any closed max-
min convex set C ⊆ Bd not containing x can be separated from x by a hyperplane
if and only if x lies on the diagonal.

In [14], we found a way to enhance separation by semispaces showing that a
point can be replaced by a box, i.e., a Cartesian product of closed intervals. Namely,
we investigated the separation of a box B = [x1, x1] × . . . × [xd, xd] ⊆ Bd from a
max-min convex set C ⊆ Bd, by which we mean that there exists a set S described
in Definition 1, which contains C and avoids B.

Assume that x1 ≥ . . . ≥ xd and suppose that t(B) is the greatest integer such
that xt(B) ≥ xi for all 1 ≤ i ≤ t(B). We will need the following condition:

If (x1 = 1) & (yl ≥ xl, 1 ≤ l ≤ d) &

(xl < yl for some l ≤ t(B)), then y /∈ C.
(4.2)

Note that if the box is reduced to a point and if x1 = 1, then xl = 1 for all l ≤ t(B)
so that xl < yl is impossible. So (4.2) always holds in the case of a point.

Theorem 5 ([14], Theorem 1). Let B = [x1, x1] × . . .× [xd, xd] ⊆ Bd, and let
C ⊆ Bd be a max-min convex set avoiding B. Suppose that B and C satisfy (4.2).
Then there is a semispace that contains C and avoids B.
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The box B can be a point and in this case condition (4.2) always holds. There-
fore, some results on max-min semispaces [17] can be deduced from Theorem 5.
The following is an immediate corollary of Theorem 5 and Proposition 3.

Corollary 2 ([17]). Let x ∈ Bd be non-increasing and C ⊆ Bd be a max-min
convex set avoiding x. Then C is contained in one Si(x), i ∈ I(p), as in Definition
1. Consequently these sets are indeed the family of semispaces at x.

However, separation by semispaces is impossible when B,C do not satisfy (4.2).

Theorem 6 ([14], Theorem 2). Suppose that B = [x1, x1]× . . .× [xd, xd] ⊆ Bd

and the max-min convex set C ⊆ Bd are such that B ∩ C = ∅ but the condition
(4.2) does not hold. Then there is no semispace that contains C and avoids B.

In [14] we also investigate the separation of max-min convex sets by a box,
and by a box and a semispace. We show that both kinds of separation are always
possible if n = 2, but they are not valid in higher dimensions.

5. Caratheódory theorems

In this section we investigate classical convexity results in max-min setup.

Theorem 7 (Caratheódory’s theorem). Consider X = {x1, x2, . . . , xm} ⊆ Bd,
m ≥ d + 1. Assume that p ∈ conv⊕(X). Then there exists X ′ = {x′i|i ∈ I} ⊆ X,
1 ≤ |I| ≤ d + 1, such that p ∈ conv⊕(X ′).

Proof. By Lemma 1, implication (i) → (ii), p ∈ conv⊕(X) shows that for any
i ∈ I(p) there exists x′i ∈ X ∩ ∁Si(p). Define X ′ = {x′i|i ∈ I(p)} ⊆ X . Then again
by Lemma 1, now implication (ii) → (i), it follows that p ∈ conv⊕(X ′). �

Theorem 8 (Colorful Caratheódory’s theorem-weak form). Let X0, X1, . . . ,
Xd be subsets in Bd and p ∈ Bd. Assume that p ∈ conv⊕(X i) for all 0 ≤ i ≤ d.
Then, up to a permutation of indices, there exist xi ∈ X i, i ∈ I(p), such that
p ∈ conv⊕({xi|i ∈ I(p)}).

Proof. From Lemma 1, implication (i) → (ii), it follows that there exist xi
j ∈

X i, 1 ≤ i ≤ d + 1, j ∈ I(p), such that xi
j ∈ ∁Sj(p), j ∈ I(p). Then again from

Lemma 1, implication (ii) → (i), and from xi := xi
i ∈ ∁Si(p), i ∈ I(p), it follows

that p ∈ conv⊕({xi|i ∈ I(p)}). �

Lemma 2. Let p, q ∈ Bd. Then for all i ∈ I(q) there exists j ∈ I(p) such that
∁Sj(p) ⊆ ∁Si(q).

Proof. The statement is equivalent to Si(q) ⊆ Sj(p). This follows from the
fact that the convex set Si(q) has to be included in a semispace at p. �

We now explain the concept of internal separation property, in the max-min
setting. The proof of internal separation property is deferred to the next section.

Definition 2. Given X = {x0, . . . , xd} ⊆ Bd, we say that a finite point p ∈
conv⊕(X) internally separates x0, . . . , xp if up to a permutation, each semispace
Si(p), 0 ≤ i ≤ d, corresponds to xi ∈ ∁Si(p).

Theorem 9. For any subset X = {x0, . . . , xd} ⊆ Bd, consisting of finite points,
conv⊕(X) contains a point p with internal separation property.
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We will need yet another simple observation, to obtain the colorful Carathéodory
theorem in most general form. Let B be a closed interval on the real line strictly
containing B = [0, 1], and denote by 0, resp. 1 the least, resp. the greatest element
of B. We have 0 < 0 < 1 < 1, and we can define the max-min semiring over B with
zero 0 and unity 1. For X ⊆ Bd, denote by conv⊕(X) the max-min convex hull of

X in B
d
.

Lemma 3. For any X ⊆ Bd, we have conv⊕(X) = conv⊕(X).

Proof. The “new” convex hull conv⊕(X) is the set of combinations

(5.1)

m
⊕

i=1

λi ⊗ xi : m ≥ 1, λi ∈ B,
m
⊕

i=1

λi = 1,

taken for all m-tuples of points xi from X .
To obtain conv⊕(X) ⊆ conv⊕(X), observe that when λi = 1 in (1.3) is changed

to λi = 1 the “product” λi⊗xi is unaffected (since all components of xi are ≤ 1). To
show conv⊕(X) ⊆ conv⊕(X), use the same observation to change λi = 1 to λi = 1
in (5.1). Next, no combination (5.1) (now with 1 instead of 1) has any negative
components since all xi are nonnegative and there is a point with coefficient λi = 1.
Hence all λi : 0 ≤ λi < 0 can be changed to 0 without affecting (5.1). This completes
the proof. �

Corollary 3. A max-min convex set C ⊆ Bd remains max-min convex in B
d
.

Theorem 10 (Colorful Carathéodory’s theorem). Let X0, X1, . . . , Xd ⊆ Bd,
and C ⊆ Bd be a max-min convex set. Assume that C ∩ conv⊕(X i) 6= ∅ for all 0 ≤
i ≤ d. Then there exist xi ∈ X i, 0 ≤ i ≤ d, such that C ∩ conv⊕({x0, x1, . . . , xd}) 6=
∅.

Proof. Assume first that all points in X0, X1, . . . , Xd are finite. Take pi ∈
C ∩ conv⊕(X i), 0 ≤ i ≤ d. By Theorem 9 we can select a point q which separates
p0, p1, . . . , pd internally, thus pi ∈ ∁Si(q) for all i. As pi ∈ C, 0 ≤ i ≤ d, by Lemma
1 one has also q ∈ C. It remains to show that q ∈ conv⊕({x0, x1, . . . , xd}), with
some xi ∈ X i, 0 ≤ i ≤ d.

By Lemma 2, for any 0 ≤ i ≤ d, there exists 0 ≤ j ≤ d such that ∁Sj(p
i) ⊆

∁Si(q). As pi ∈ conv⊕(X i), by Lemma 1 there exists xi ∈ Xi ∩ ∁Sj(pi). Hence
xi ∈ ∁Si(q). Hence again by Lemma 1 one has q ∈ conv⊕({x0, x1, . . . , xd}). This
proves the claim under assumption that X0, X1, . . . , Xd have only finite points.

Without that assumption, regard X0, X1, . . . , Xd, C ∈ Bd as subsets of B
d

where B is a closed interval strictly containing B. By Corollary 3, C remains max-

min convex in B
d
, and by Lemma 3 none of the convex hulls in the claim change

when they are considered in B
d
. This extension makes all points in X0, X1, . . . , Xd

finite, and the previous argument works in B
d

(with sectors in B
d
). �

We conclude the section with the proof of internal separation property in
the cases when 1) conv⊕(X) has a non-empty interior, 2) all vectors pℓ are non-
increasing. These proofs can be skipped by the reader, who can proceed to a general
proof of Theorem 9 written in the next section.

Let us introduce the notion of interior of a max-min convex set.
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Definition 3. Interior of a max-min convex set C ∈ Bd, denoted by int(C) is
the subset of C consisting of points y such that there is an open d-dimensional box
(y1 − ǫ, y1 + ǫ) × · · · × (yd − ǫ, yd + ǫ) for some ǫ > 0

Proposition 1. Assume X = {x0, x1, . . . , xd} ⊆ Bd generates a max-min poly-
tope S = conv⊕(X) with non-empty interior. Then for any point p ∈ int(S) with all
coordinates different, up to a permutation of indices, one has xi ∈ ∁Si(p), i ∈ I(p).

Proof. We proceed by contradiction. As p has all coordinates different and it
is away from the boundary, the interiors of ∁Si(p), 0 ≤ i ≤ d, are disjoint. If p does
not internally separate the points of X , then there exists i : 0 ≤ i ≤ d such that
int(∁Si(p)) ∩X = ∅. However, as the complement ∁(int(∁Si(p))) is the topological
closure of Si(p), it is a max-min convex set, and hence conv⊕(X)∩ int(∁Si(p)) = ∅.
But then p is not in the interior of conv⊕(X). �

The notion of interior and, more generally, of dimension in max-min convexity
will be investigated in another publication. We now treat the other special case.

Proposition 2. Assume that xℓ ∈ Bd, 0 ≤ ℓ ≤ d, are non-increasing, i.e.,

(5.2) xℓ
1 ≥ xℓ

2 ≥ . . . ≥ xℓ
d, 0 ≤ ℓ ≤ d,

and finite. Then there exists p ∈ Bd such that xℓ ∈ ∁Sℓ(p) for all ℓ ∈ {0, 1, . . . , d}.

Proof. Let yd := maxd
ℓ=0 x

ℓ
d, and ℓ′1 be an index where this maximum is at-

tained. Reordering the points, we can assume ℓ′1 = d. Let yd−1 := maxd−1
ℓ=0 xℓ

d−1 and

ℓ′2 be an index where this maximum is attained. Reordering the points x0, . . . , xd−1

we can assume ℓ′2 = d − 1. On a general step of this procedure, we have obtained

the partial maxima yd, yd−1, . . . , yd−t+1 equal to xd
d, xd−1

d−1, . . . , x
d−t+1
d−t+1 (having re-

organized the given points x), and we define yd−t := maxd−t
ℓ=0 x

ℓ
d−t, requiring that

yd−t = xd−t
d−t. On the last step, we have y1 = max(x0

1, x
1
1) and swap x0 with x1 (if

necessary) to obtain y1 = x1
1.

This process defines the vector y = (y1, . . . , yd) and rearranges the given points
x0, . . . , xd in such a way that

(5.3) yt = maxt
ℓ=0x

ℓ
t = xt

t, ∀t ∈ {1, . . . , d}.

Now define p to be the largest non-increasing vector satisfying p ≤ y. We will
show that p is a point that we need. Before the main argument we observe that

(5.4) pt ≤ yt = xt
t ∀t ∈ {1, . . . , d},

and

(5.5)

{

p1 = y1,

pt = yt = maxt
ℓ=0x

ℓ
t = xt

t if pt < pt−1.

Only (5.5) has to be shown. Indeed, if p1 < y1, then (y1, p2, . . . , pd) is a non-
increasing vector bounded by y from above and contradicting the maximality of
z, so p1 = y1 holds. If pt < pt−1 and pt < yt then defining p′t := min(pt−1, yt)
we have pt−1 ≥ p′t ≥ pt+1 and p′t ≤ yt, so again, (p1, . . . , pt−1, p

′
t, pt+1, . . . , pd) is a

non-increasing vector bounded by y from above and contradicting the maximality
of p.

For what follows, we refer the reader to Definition 1, that describes the structure
of the semispaces.



TROPICAL CONVEXITY OVER MAX-MIN SEMIRING 11

We now show that xℓ ∈ ∁Sℓ(p) for all ℓ ∈ {0, 1, . . . , d}, starting with ℓ = 0.
In this case we need to argue that x0

t ≤ pt for all t. Indeed, when pt−1 > pt,
the inequality x0

t ≤ pt follows from (5.5) (second part). If pt−1 = pt, then either
p1 = . . . = pt, or pt−i−1 > pt−i = . . . = pt−1 = pt. In the first case we have x0

s ≤ ps
for s = 1, and in the second case for s = t − i, and in both cases the required
inequality x0

t ≤ pt follows since x0 is a non-increasing vector.
When ℓ > 0 and pℓ−1 > pℓ, we have xℓ

ℓ = pℓ by (5.5), so xℓ
ℓ ≥ pℓ. When

pt−1 > pt, the inequalities xℓ
t ≤ pt for t > ℓ follow from (5.5), and when pt−1 = pt,

we have pt−i−1 > pt−i = . . . = pt for some i, where t−i ≥ ℓ. In this case xℓ
t−i ≤ pt−i

follows from (5.5), and we use that xℓ is non-increasing to obtain xℓ
t ≤ pt = pt−i.

If pℓ−1 = pℓ, then either pℓ = pℓ+1 = . . . = pd, or there exists i such that pℓ =
. . . = pℓ+i > pℓ+i+1. In this case xℓ

ℓ ≥ pℓ follows from (5.4), and the inequalities
xℓ
t ≤ pt for t > ℓ + i are shown as in the previous case.

The proof is complete. �

6. Internal separation property

This section is devoted to the proof of Theorem 9 (the internal separation
property). Let u(i), for i = 1, . . . , d + 1 be the given points in Bd, and let A ∈
B(d+1)×d be the matrix where these vectors are rows. For such a matrix, denote by
A(h) the Boolean matrix with entries

(6.1) a
(h)
ij =

{

1, if aij ≥ h,

0, if aij < h.

Following the literature on max-min algebra, we may call it the threshold matrix of
level h. Let t be the greatest h for which A(h) contains a d × d submatrix with a
nonzero permanent (in other words, a permutation with nonzero weight).

For every h > t, every d× d submatrix of A(h) has zero permanent. Take h > t
to be smaller than any entry of A that is greater than t, and consider the bipartite
graph corresponding to A(h)1. As A(h) has zero permanent, the size of maximal
matching in that graph is less than d. By the König theorem, the size of maximal
matching is equal to the size of the minimal vertex cover. In particular, there
exists a subset of rows M2 and a subset of columns N2 with number of elements
m2 and n2 respectively, such that m2 + n2 < d and such that all 1’s of A(h) are
in these columns and rows. Let M1, resp. N1, be the complements of M2, resp.

N2 in {1, . . . , d + 1}, resp. {1, . . . , d}. Then all entries of the submatrix A
(h)
M1N1

are zero, and hence all entries of AM1N1
are less than or equal to t, and we have

m1 + n1 > d + 1, where m1, resp. n1 are the number of elements in M1, resp. N1.
Thus A contains an m1 ×n1 submatrix B≤t := AM1N1

where all entries do not
exceed t and we have m1 + n1 > d + 1. At the same time, there is a row index f
which we call the free index, and a permutation π : {1, . . . , d+ 1}\{f} 7→ {1, . . . , d}
such that aiπ(i) ≥ t for all i 6= f . The pair (B≤t, π) will be called a (König) diagram.
Denote the number of intersections of π with AM1N1

by r and with AM2N2
by s.

Then we obtain, having d as the sum of the number of intersections of π with

1One part of the vertices represents the rows, and the other represents the columns. The

graph contains an edge between the row vertex i and the column vertex j if and only if a
(h)
ij = 1,

that is, aij ≥ h.



12 VIOREL NITICA AND SERGEĬ SERGEEV

AM1N1
, AM1N2

, AM2N1
and AM2N2

that

(6.2) d =

{

r + (m1 − r − 1) + (n1 − r) + s, if f ∈ M1,

r + (m1 − r) + (n1 − r) + s, if f /∈ M1.

Eliminating r from (6.2) we obtain

(6.3) r =

{

m1 + n1 − (d + 1) + s, if f ∈ M1,

m1 + n1 − d + s, if f /∈ M1.

We see that with m1, n1 and d fixed, the number r is minimal when f ∈ M1

and s = 0. Such diagrams will be called tight. See Figure 4 for an illustration of a
tight diagram. The entries in π are represented by *. In general, the tightness of a
diagram is defined as the non-positive integer m1 + n1 − d− 1 − r.

B≤t

VOID

FREE ROW

M1

M2

N1 N2

*
*

*
*

*

M̃1

*
*

*

Figure 4. A tight diagram (M̃1 is the set appearing in the proof
of Theorem 9 in the end of this section).

Let us indicate some sufficient conditions for (B≤t, π) to be tight (the proof is
omitted).

Lemma 4. The diagram (B≤t, π) is tight if m1 + n1 = d + 2, f ∈ M1 and π
intersects with B≤t only once. In particular, if B≤t is a column, then (B≤t, π) is
tight.

Proof. Substituting m1 + n1 = d + 2 and r = 1 in the first line of (6.3) we
have s = 0. �

Our next aim is to show that there always exists at least one tight diagram,
and let us start with a pair of auxiliary lemmas.

Lemma 5 (Sinking). Let (B≤t, π) be not tight, and let (k0, π(k0)) ∈ M1 ×N1.
Then we have one of the following alternatives:

(i) There exists a sequence k0, . . . , kl such that (ki, π(ki)) ∈ M2 × N1 for
i = 1, . . . , l − 1, (kl, π(kl)) ∈ M2 ×N2 or kl is free, and akiπ(ki−1) > t for
all i = 1, . . . , l;

(ii) There is a tight diagram (B̃≤t, π).

Proof (see Figures 5 and 6). If we have aiπ(k0) ≤ t for all i, then the entire

column with index π(k0) can be taken for B̃≤t, that is M1 = {1, . . . , d + 1}, N1 =

π(k0) and the diagram (B̃≤t, π) is tight (by Lemma 4). If this is not the case, select
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k′1 ∈ M2 with ak′

1
π(k0) > t. Then we proceed as in the following general description

(with the sequence k0, k
′
1).

In general, suppose that we have found a sequence of rows k0, k
′
1, . . . , k

′
l where

k0 ∈ M1, k′1, . . . , k
′
l ∈ M2 and π(k0), π(k′1), . . . , π(k′l−1) ∈ N1 with the following

property:
(*) For each s : 1 ≤ s ≤ l there is a subsequence k0, k1 . . . kr of k0, k

′
1, . . . , k

′
s

such that kr = k′s and akiπ(ki−1) > t for all i = 1, . . . , r.
If π(k′l) is in N2 or k′l is free then we are done. Otherwise consider the submatrix

extracted from the columns π(k0), π(k′1), . . . , π(k′l) and all rows except for k′1, . . . , k
′
l.

If this submatrix does not contain any entries greater than t then it can be taken
for B̃≤t and the diagram (B̃≤t, π) is tight by Lemma 4. Otherwise we choose k′l+1 /∈
{k0, k

′
1, . . . , k

′
l} in M2 in such a way that ak′

l+1
π(i) > t for some i in {k0, k

′
1, . . . , k

′
l}.

Then k0, k
′
1, . . . , k

′
l, k

′
l+1 satisfies the property (*), and the process is continued until

the intersection of π with M2 ×N1 is exhausted and we end up either with a free
kl, or such that (kl, π(kl)) ∈ M2 ×N2. �

•

•
•

•

B≤t

FREE ROW

M1

M2

N1 N2

*
*

*
*

*
*

•

•

B≤t

FREE ROW

M1

M2

N1 N2

*
*

*
*

*
*

Figure 5. Possible outcomes of sinking (the free row could belong
to M1 but then the outcome on the right is impossible).

B≤tB̃≤t

FREE ROW

M1

M2

N1 N2

*
*

*
*

*
*

Figure 6. A tight diagram arising when the sinking stops.

Now we consider a reverse process.

Lemma 6 (Lifting). Let (B≤t, π) be not tight, and let (k0, π(k0)) ∈ M2 × N2.
Then we have one of the following alternatives:
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(i) There exists a sequence k0, . . . , kl such that (ki, π(ki)) ∈ M1 × N2 for
i = 1, . . . , l − 1, (kl, π(kl)) ∈ M2 ×N2 or kl is free, and akiπ(ki−1) > t for
all i = 1, . . . , l;

(ii) There is a tighter diagram (B̃≤t, π).

Proof (see Figures 7 and 8). If we have aiπ(k0) ≤ t for all i, then the

column index π(k0) can be added to M1 and the resulting diagram (B̃≤t, π) is

tighter (i.e., has a greater tightness) than (B≤t, π), since the size of B̃≤t increased
while the number of intersections with π is the same. Otherwise we can select
k′1 ∈ M1 with ak′

1
π(k0) > t and proceed as in the following general description (with

the sequence k0, k
′
1).

In general, suppose that we have found a sequence of rows k0, k
′
1, . . . , k

′
l where

k0 ∈ M2, k′1, . . . , k
′
l ∈ M1 and π(k0), π(k′1), . . . , π(k′l) ∈ N2 with the property (*) in

the proof of Lemma 5.
If π(k′l) is in N1 or is free then we are done. Otherwise consider the submatrix

extracted from the columns of N1 and π(k0), π(k′1), . . . , π(k′l), and all rows of M1

except for k′1, . . . , k
′
l. If this submatrix does not contain any entries greater than

t then it can be taken for B̃≤t and the diagram (B̃≤t, π) is tighter than (B≤t, π)
since the sum of dimensions increases by one but the number of intersections of
π with B̃≤t is the same. Otherwise we choose k′l+1 /∈ {k0, k

′
1, . . . , k

′
l} in M2 in

such a way that ak′

l+1
π(i) > t for some i in {k0, k

′
1, . . . , k

′
l}. Then the sequence

k0, k
′
1, . . . , k

′
l, k

′
l+1 satisfies the property (*), and the process is continued until the

intersection of π with M1 × N2 is exhausted and we end up either with a free kl,
or such that (kl, π(kl)) ∈ M1 ×N1. �

B≤t

FREE ROW

M1

M2

N1 N2

*

•

*
• *

• *
•

*

•
B≤t

FREE ROW

M1

M2

N1 N2

*

•

*

•

*

•

Figure 7. Possible outcomes of lifting (the free row could also
belong to M2).

We mainly need to show the following.

Lemma 7 (Diagram Improvement). If (B≤t, π) is not tight, then there is a

tighter diagram (B̃≤t, π̃).

Proof. By contradiction, suppose that a tighter diagram does not exist. Then,
Lemma 5 yields a sequence kl0 , kl0+1 . . . , km0

, where l0 = 0, (kl0 , π(kl0)) ∈ M1×N1,
(km0

, π(km0
)) ∈ M2×N2 or km0

is free, (ks, π(ks)) ∈ M2×N1 for all s = l0, . . . ,m0−
1, and aksπ(ks−1) > t for all s = l0 + 1, . . . ,m0.

If km0
is free then we define π̃ by π̃(ks) := π(ks−1) for s = l0 + 1, . . . ,m0. The

row kl0 becomes free, and for all the remaining indices i we define π̃(i) := π(i). We
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B≤t

B̃≤t
M1

M2

N1 N2

*
*

*

*

Figure 8. A tighter diagram arising when the lifting stops.

see that the number of intersections of π̃ with B≤t is one less than that of π with
B≤t, hence (B≤t, π̃) is tighter.

Otherwise, Lemma 6 yields a sequence km0
, km0+1 . . . , kl1 , where (km0

, π(km0
)) ∈

M2 × N2, (kl1 , π(kl1) ∈ M1 × N1 or kl1 is free, (ks, π(ks)) ∈ M1 × N2 for all
s = m0, . . . , l1 − 1, and aksπ(ks−1) > t for all s = m0 + 1, . . . , l1.

If kl1 is free, then the diagram can be improved as above, replacing m0 with l1
in the definition of π̃.

The composition of sinking and lifting, or if any of these procedures end up
with a free row index, will be called a (full) turn of the trajectory.

The sinking and lifting procedures are then applied again and again, until either
one of the following holds.

a) On some turn, let it be turn number (s + 1), we encounter a row index
kls+t, t ≥ 1, which is already in the trajectory, written as klr+t′ (with r < s or t′ = 0
and r ≤ s). In this case we make a cyclic trajectory kls , kls+1, . . . , kls+t, klr+t′+1, . . . , kls
where no two intermediate indices are repeated.

b) There are no repetitions but we meet a free row index in the end.
In both cases, let p be the length of the trajectory, and rename the indices of

the resulting cyclic trajectory without repetitions, or the resulting acyclic trajectory
ending with the free row index, to l0, l1, . . . , lp. Clearly, for any two adjacent indices
ls and ls+1 of this trajectory, we have als+1π(ls) > t, and either (ls+1, π(ls)) ∈
M1×N2, or (ls+1, π(ls)) ∈ M2×N1. This shows that defining π̃ by π̃(ls) = π(ls−1)
for s = 1, . . . , p, setting lp as the new free row in case b), and defining π̃(i) := π(i)
for all the remaining row indices, we obtain a tighter diagram (B≤t, π̃), since the
number of intersections of π̃ with B≤t strictly decreases, by the number of full
turns made by the trajectory. Thus the diagram (B≤t, π) can be improved in any
case. �

Theorem 11. Let A ∈ B(d+1)×d and let t be the greatest number h such that
A(h) has a d× d submatrix with nonzero permanent. Then for this value t there is
a tight diagram (B≤t, π), such that all entries of B≤t are not greater than t, and
all entries of π are not smaller than t.

Proof. The König theorem (by the discussion in the beginning of this section)
yields a diagram (B≤t, π) which is not necessarily tight. However, a tight diagram
can be obtained from it by repeated application of Lemma 7. �
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Proof of Theorem 9. We will prove the following claim by induction:
If A ∈ B(d+1)×d (with finite entries) contains a permutation π such that aiπ(i) ≥ t
for all i (except for i being the free row f), then there is a point z with all coordinates
not less than t, which internally separates the rows of A.

The case d = 1 is the basis of induction. In this case A consists of just two
numbers, say x and y, and we can take z = max(x, y) as the “separating point”.
Then one of the numbers belongs to the sector {s | s ≤ z}, and the remaining one
to {s | s ≥ z}.

We now assume that the claim holds for all d < n, and let A ∈ B(n+1)×n have
only finite entries. By Theorem 11, there is a permutation π, a free index f such
that aiπ(i) ≥ t for all i 6= f , and a submatrix B≤t := AM1N1

with aij ≤ t for

i ∈ M1, j ∈ N1 such that the diagram (B≤t, π) is tight. Let M2 and N2 be the
complements of M1 in {1, . . . , n + 1} and of N1 in {1, . . . , n}, respectively. As the
diagram is tight, for each column with an index in N2 the corresponding entry of
π is in AM1N2

. Let M̃1 be the set of rows consisting of the free row (which belongs
to M1 since the diagram is tight), and the rows of M1 such that π(i) ∈ N2, see

Figure 4. Then the number of elements in N2 is one less than that of M̃1, and the
matrix AM̃1N2

contains a permutation π′ induced by π, with all entries not smaller

than t. Let n′ be the number of elements in N2, so n′ < n. By the induction
hypothesis there exists an n′-component vector z internally separating the rows of
AM̃1N2

.
Define x by xi = zi for i ∈ N2 and xi = t for i ∈ N1. We claim that x is the

separating point. Since the diagram is tight, we have π(i) ∈ N1 for all i ∈ M2, and

we also have π(i) ∈ N1 for all i ∈ M1\M̃1 by the definition of M̃1. This implies

that x satisfies aiπ(i) ≥ t for all i /∈ M̃1, determining the sectors in which the rows

with these indices lie. The sectors for the rows with indices in M̃1 are determined
by z (i.e., by induction), also using that aij ≤ t for all i ∈ M̃1 and j ∈ N1. �

7. An application of topological Radon theorem

In this section we go beyond the max-min semiring considering what we call
the max-T semiring Tmax: this is the unit interval B = [0, 1] equipped with the
tropical addition a ⊕ b := max(a, b) and multiplication ⊗T played by a T -norm
T : B ×B → B. These operations were introduced in [18] and a standard reference
is the monograph [10].

Definition 4. A triangular norm (briefly T -norm) is a binary operation T on
the unit interval [0, 1] which is associative, monotone and has 1 as neutral element,
i.e., it is a function T : [0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1]:

(T1) T (x, T (y, z)) = T (T (x, y), z),
(T2) T (x, y) ≤ T (x, z) and T (y, x) ≤ T (z, x) whenever y ≤ z,
(T3) T (x, 1) = T (1, x) = x.

A T -norm is continuous if for all convergent sequences (xn)n, (yn)n ∈ [0, 1]N

we have

lim
n→∞

T (xn, yn) = T ( lim
n→∞

xn, lim
n→∞

yn).

Remark 2. The axioms of semiring also require 0 to be absorbing with respect
to multiplication, that is, T (x, 0) = T (0, x) = 0. Note that this law follows from
(T2,T3) and since 1 is the greatest element.
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The multiplication ⊗T can be any of the continuous T-norms known in the
fuzzy sets theory, including the usual multiplication, ⊗ = min which we studied
above, and the  Lukasiewicz T-norm a⊗ L b := max(0, a + b− 1).

Note that the case of usual multiplication yields a part of the max-times semir-
ing, isomorphic to the non-positive part of the tropical/max-plus semiring.

Below we consider Bd, the set of d-vectors with components in B, equipped with
the componentwise tropical addition and T-multiplication by scalars. A set C ⊆ Bd

is called max-T convex if, together with any x, y ∈ C, it contains all combinations
λ⊗T x⊕ µ⊗T y where λ⊕ µ = 1.

For any set X ⊆ Bd, the max-T convex hull of X is defined as the smallest
max-T convex set containing X . Using the axioms of semiring, or 1)-4) above,
it can be shown that the max-T convex hull of X is the set of all max-T convex
combinations

m
⊕

i=1

λi ⊗T xi : m ≥ 1,

m
⊕

i=1

λi = 1,

of all m-tuples of elements x1, . . . , xm ∈ X . The max-T convex hull of a finite set
of points is also called a max-T convex polytope.

We further make use of the following theorem of general topology that can be
found in [1]. By the unit simplex of dimension d we mean the set

∆d =

{

(µ0, µ1, . . . , µd) ∈ R
d+1|

d
∑

i=0

µi = 1, 0 ≤ µi ≤ 1

}

,

in the usual real space R
d+1 and with the usual arithmetics.

Theorem 12 (Topological Radon’s theorem). If f is any continuous function

from ∆d+1
0 to a d-dimensional linear space, then ∆d+1

0 has two disjoint faces whose
images under f are not disjoint.

Theorem 13 (Radon’s theorem for max-T). Let X be a set of d + 2 points in
Bd. Then there are two pairwise disjoint subsets X1 and X2 of X whose max-T
convex hulls have a common point.

Proof. Let X = {x0, x1, . . . , xd+1} ⊆ T d
max. We construct a continuous map

f from ∆d to the max-T convex hull of X that maps the faces of ∆d into max-T
convex hulls of subsets of X and apply topological Radon’s theorem to f . Define

∆max
d =

{

(µ0, µ1, . . . , µd+1) ∈ [0, 1]d+1|max{µi, 0 ≤ i ≤ d + 1} = 1
}

.

Using ordinary arithmetics, consider the map φ1 : ∆max
d → ∆d

0 given by:

φ1(µ0, µ1, . . . , µd+1) =

(

µ0
∑d+1

i=0 µi

,
µ1

∑d+1
i=0 µi

, . . . ,
µd+1
∑d+1

i=0 µi

)

,

which is clearly a homeomorphism, and thus has a continuous inverse. Moreover,
for any subset of indices I = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , d + 1}, φ1 maps the max-
T convex hull of the standard vectors ei1 , . . . , eik into the face of the simplex ∆d

0

determined by the vertices ei1 , . . . , eik .
Consider also the map φ2 defined on ∆max

d with values in Bd given by:

φ2(µ0, µ1, . . . , µd+1) = max(µ0 ⊗ x0, µ1 ⊗ x1, . . . , µd+1 ⊗ xd+1),

which for any subset of indices I as above takes the max-T convex hull of the
standard vectors ei1 , . . . , eik into the max-T convex hull of the vectors xi1 , . . . , xik .
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Define now f = φ2◦φ
−1
1 on ∆d

0 with values in Bd. Applying to it the topological
Radon theorem we get the claim. �

Remark 3. It is of interest to find a purely combinatorial proof of max-min
Radon’s theorem, or in the case of other known T-norms.

The following theorem is known more generally in abstract convexity, as a
consequence of Radon’s theorem.

Theorem 14 (Helly’s theorem). Let F be a finite collection of max-T convex
sets in Bd. If every d + 1 members of F have a nonempty intersection, then the
whole collection have a nonempty intersection.

Proof. Let C1, . . . , Cn be max-T convex sets in Bd and suppose that whenever
d+1 sets among them are selected, they have a nonempty intersection. We proceed
by induction on n. First assume that n = d + 2. Define xi to be a point in the set
∩d+2
j=1;j 6=iCj . We have then d+ 2 points x1, . . . , xd+2. If two of them are equal, then

this point is in the whole intersection. Hence, we can assume that all the xi are
different. By the Radon theorem, we have two disjoint subsets S and T partitioning
{1, . . . , d+ 2} such that there is a point x in conv⊕(∪i∈Sx

i)∩ conv⊕(∪i∈Tx
i). This

point x belongs to every Ci. Indeed, take j ∈ {1, . . . , d + 2}, which is either in S
or in T . Suppose without loss of generality that j ∈ S. Then, conv⊕(∪i∈Tx

i) is
included in Cj , and so x ∈ Cj . The case n = d + 2 is proved.

Suppose now that n > d+2 and that the theorem is proved up to n−1. Define
C′n−1 := Cn−1∩Cn. When d+2 convex sets Ci are selected, they have a nonempty
intersection, according to what we have just proved. Hence, every d + 1 members
of the collection C1, . . . , Cn−2, Cn−1 have a nonempty intersection.

By induction, the whole collection has a nonempty intersection. �

The following two theorems are also known more generally in abstract convexity,
as a consequences of Helly’s theorem.

Theorem 15 (Centerpoint theorem). Let P be a collection of n points in Bd.
Then there exists a point p ∈ Bd (the centerpoint) such that every max-T convex
set containing more than dn

d+1 points of P also contains p.

Proof. First construct all max-T convex polytopes containing more then dn
d+1

points in P . Any point lying in all such polytopes is the required point. Consider
a (d + 1)-tuple of such polytopes. The complement of each polytope in the tuple
contains less then n

d+1 points from P . The union of all (d + 1) complements of the
polytopes in the tuple contains less then n points from P . Thus the complement
of the union, which is the intersection of all polytopes, is nonempty. We only have
to prove that given a set of convex polytopes such that every (d + 1)-tuple has
a non-empty intersection, all of them have a non-empty intersection. But this is
Helly’s theorem. �

As Bd = [0, 1]d is endowed with the usual Euclidean topology we observe that
a max-T convex set is compact if and only if it is closed.

Theorem 16 (Helly’s theorem for infinite collections of convex sets). Suppose
F is an infinite, possibly uncountable family of max-T convex and compact sets in
Bd. Suppose that every d+1 of them have a nonempty intersection. Then the whole
family has a non-empty intersection.
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Proof. Let F = {Bi}i∈I . According to Helly’s theorem, every finite collection
of Bi’s has a nonempty intersection. Fix a member K of F and define Gi = ∁Bi.
Assume that no point of K belongs to all Bi. Then the family {Gi} form an open
cover for the the compact set K. One can find a finite subcover Gi1 , . . . , Gil such
that K ⊆ Gi1 ∪· · ·∪Gil . But this means K∩Bi1∩· · ·∪Bil = ∅, a contradiction. �

Let us conclude this section with Tverberg’s theorem for max-T, which can be
derived from the more general topological version.

Conjecture 1 (Topological Tverberg’s theorem). If f is any continuous func-
tion from ∆(d+1)(r−1) to a d-dimensional linear space, then ∆((d+1)(r−1) has r dis-
joint faces whose images under f contain a common point.

Conjecture 2 (Tverberg’s theorem for max-T). Let X be a set of (d+ 1)(r−
1)+1 points in Bd. Then there are r disjoint subsets X1, . . . , Xr of X whose max-T
convex hulls have a common point.

It is known that the topological Tverberg’s theorem is true for d ≥ 1 and r
equal to a prime number [2], and moreover for d ≥ 1 and r equal to a power of a
prime [20]. By the above argument, it also shows Tverberg’s theorem in max-T for
these cases.
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