
1 23

Soft Computing
A Fusion of Foundations,
Methodologies and Applications

ISSN 1432-7643

Soft Comput
DOI 10.1007/s00500-013-1027-5

Universal algorithms for solving the matrix
Bellman equations over semirings

G. L. Litvinov, A. Ya. Rodionov,
S. N. Sergeev & A. N. Sobolevski

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

FOUNDATIONS

Universal algorithms for solving the matrix Bellman equations
over semirings

G. L. Litvinov • A. Ya. Rodionov • S. N. Sergeev •

A. N. Sobolevski

� Springer-Verlag Berlin Heidelberg 2013

Abstract This paper is a survey on universal algorithms

for solving the matrix Bellman equations over semirings

and especially tropical and idempotent semirings. How-

ever, original algorithms are also presented. Some appli-

cations and software implementations are discussed.

1 Introduction

Computational algorithms are constructed on the basis of

certain primitive operations. These operations manipulate

data that describe ‘‘numbers.’’ These ‘‘numbers’’ are ele-

ments of a ‘‘numerical domain,’’ that is, a mathematical

object such as the field of real numbers, the ring of integers,

different semirings etc.

In practice, elements of the numerical domains are

replaced by their computer representations, that is, by

elements of certain finite models of these domains.

Examples of models that can be conveniently used for

computer representation of real numbers are provided by

various modifications of floating point arithmetics,

approximate arithmetics of rational numbers (Litvinov

et al. 2008), interval arithmetics etc. The difference

between mathematical objects (‘‘ideal’’ numbers) and their

finite models (computer representations) results in com-

putational (for instance, rounding) errors.

An algorithm is called universal if it is independent of a

particular numerical domain and/or its computer represen-

tation (Litvinov and Maslov 1996, 1998, 2000; Litvinov

et al. 2000). A typical example of a universal algorithm is

the computation of the scalar product (x, y) of two vectors

x ¼ ðx1; . . .; xnÞ and y ¼ ðy1; . . .; ynÞ by the formula ðx; yÞ ¼
x1y1 þ � � � þ xnyn: This algorithm (formula) is independent

of a particular domain and its computer implementation,

since the formula is well-defined for any semiring. It is clear

that one algorithm can be more universal than another. For

example, the simplest Newton–Cotes formula, the rectan-

gular rule, provides the most universal algorithm for

numerical integration. In particular, this formula is valid

also for idempotent integration [that is, over any idempotent

semiring, see (Kolokoltsov and Maslov 1997; Litvinov

2007)]. Other quadrature formulas (for instance, combined

trapezoid rule or the Simpson formula) are independent of

computer arithmetics and can be used (for instance, in the

iterative form) for computations with arbitrary accuracy. In

contrast, algorithms based on Gauss–Jacobi formulas are

designed for fixed accuracy computations: they include

constants (coefficients and nodes of these formulas) defined

with fixed accuracy. (Certainly, algorithms of this type can

be made more universal by including procedures for com-

puting the constants; however, this results in an unjustified

complication of the algorithms.)

Modern achievements in software development and

mathematics make us consider numerical algorithms and

Communicated by A. D. Nola.

This work is supported by the RFBR-CRNF grant 11-01-93106 and

RFBR grant 12-01-00886-a.

G. L. Litvinov (&) � A. N. Sobolevski

A.A. Kharkevich Institute for Information Transmission

Problems, and National Research University Higher School

of Economics, Moscow, Russia

e-mail: glitvinov@gmail.com

A. Ya. Rodionov � S. N. Sergeev

Moscow Center for Continuous Mathematical Education,

Moscow, Russia

S. N. Sergeev

University of Birmingham, School of Mathematics,

Edgbaston B15 2TT, UK

123

Soft Comput

DOI 10.1007/s00500-013-1027-5

Author's personal copy

their classification from a new point of view. Conventional

numerical algorithms are oriented to software (or hard-

ware) implementation based on floating point arithmetic

and fixed accuracy. However, it is often desirable to per-

form computations with variable (and arbitrary) accuracy.

For this purpose, algorithms are required that are inde-

pendent of the accuracy of computation and of the specific

computer representation of numbers. In fact, many algo-

rithms are independent not only of the computer repre-

sentation of numbers, but also of concrete mathematical

(algebraic) operations on data. In this case, operations

themselves may be considered as variables. Such algo-

rithms are implemented in the form of generic programs

based on abstract data types that are defined by the user in

addition to the predefined types provided by the language.

The corresponding program tools appeared as early as in

Simula-67, but modern object-oriented languages (like

C??, see, for instance (Lorenz 1993; Pohl 1997)) are more

convenient for generic programming. Computer algebra

algorithms used in such systems as Mathematica, Maple,

REDUCE, and others are also highly universal.

A different form of universality is featured by iterative

algorithms (beginning with the successive approximation

method) for solving differential equations (for instance,

methods of Euler, Euler–Cauchy, Runge–Kutta, Adams, a

number of important versions of the difference approxi-

mation method, and the like), methods for calculating

elementary and some special functions based on the

expansion in Taylor’s series and continuous fractions (Padé

approximations). These algorithms are independent of the

computer representation of numbers.

The concept of a generic program was introduced by

many authors; for example, in Lehmann (1977) such pro-

grams were called ‘program schemes.’ In this paper, we

discuss universal algorithms implemented in the form of

generic programs and their specific features. This paper is

closely related to Litvinov (2007), Litvinov and Maslov

(1996, 1998), Litvinov and Maslova (2000), Litvinov et al.

(2000, 2011), Sergeev (2011), in which the concept of a

universal algorithm was defined and software and hardware

implementation of such algorithms was discussed in con-

nection with problems of idempotent mathematics, see, for

instance, Kolokoltsov and Maslov (1997), Litvinov and

Sobolevskiı̌ (2001), Mikhalkin (2006), Viro (2001, 2008).

The so-called idempotent correspondence principle, see

Litvinov and Maslov (1996, 1998), linking this mathematics

with the usual mathematics over fields, will be discussed

below. In a nutshell, there exists a correspondence between

interesting, useful, and important constructions and results

concerning the field of real (or complex) numbers and similar

constructions dealing with various idempotent semirings.

This correspondence can be formulated in the spirit of the

well-known N. Bohr’s correspondence principle in quantum

mechanics; in fact, the two principles are closely connected

(see Litvinov 2007; Litvinov and Maslov 1996, 1998). In a

sense, the traditional mathematics over numerical fields can

be treated as a ‘quantum’ theory, whereas the idempotent

mathematics can be treated as a ‘classical’ shadow (or

counterpart) of the traditional one. It is important that the

idempotent correspondence principle is valid for algorithms,

computer programs and hardware units.

In quantum mechanics the superposition principle

means that the Schrödinger equation (which is basic for the

theory) is linear. Similarly in idempotent mathematics the

(idempotent) superposition principle (formulated by V.

P. Maslov) means that some important and basic problems

and equations that are nonlinear in the usual sense (for

instance, the Hamilton-Jacobi equation, which is basic for

classical mechanics and appears in many optimization

problems, or the Bellman equation and its versions and

generalizations) can be treated as linear over appropriate

idempotent semirings, see Maslov (1987a, b).

Note that numerical algorithms for infinite dimensional

linear problems over idempotent semirings (for instance,

idempotent integration, integral operators and transforma-

tions, the Hamilton–Jacobi and generalized Bellman

equations) deal with the corresponding finite-dimensional

approximations. Thus idempotent linear algebra is the basis

of the idempotent numerical analysis and, in particular, the

discrete optimization theory.

Carré (1971, 1979) (see also Gondran 1975; Gondran and

Minoux 1979, 2010) used the idempotent linear algebra to

show that different optimization problems for finite graphs

can be formulated in a unified manner and reduced to solving

Bellman equations, that is, systems of linear algebraic

equations over idempotent semirings. He also generalized

principal algorithms of computational linear algebra to the

idempotent case and showed that some of these coincide with

algorithms independently developed for solution of optimi-

zation problems. For example, Bellman’s method of solving

the shortest path problem corresponds to a version of Jaco-

bi’s method for solving a system of linear equations, whereas

Ford’s algorithm corresponds to a version of Gauss–Seidel’s

method. We briefly discuss Bellman equations and the cor-

responding optimization problems on graphs, and use the

ideas of Carré to obtain new universal algorithms. We stress

that these well-known results can be interpreted as a mani-

festation of the idempotent superposition principle.

Note that many algorithms for solving the matrix Bellman

equation could be found in Baccelli et al. (1992), Carré

(1971, 1979), Cuninghame-Green (1979), Gondran (1975),

Gondran and Minoux (2010), Litvinov et al. (2011),

Litvinov and Maslova (2000), Rote (1985), Sergeev (2011),

Tchourkin and Sergeev (2007). More general problems of

linear algebra over the max-plus algebra are examined, for

instance in Butkovič (2010).

G. L. Litvinov et al.

123

Author's personal copy

We also briefly discuss interval analysis over idempo-

tent and positive semirings. Idempotent interval analysis

appears in Litvinov and Sobolevskiı̌ (2000, 2001), Sobo-

levskiı̌ (1999), where it is applied to the Bellman matrix

equation. Many different problems coming from the

idempotent linear algebra, have been considered since then,

see for instance Cechlárová and Cuninghame-Green

(2002), Fiedler et al. (2006), Hardouin et al. (2009),

Myškova (2005, 2006). It is important to observe that

intervals over an idempotent semiring form a new idem-

potent semiring. Hence universal algorithms can be applied

to elements of this new semiring and generate interval

extensions of the initial algorithms.

This paper is about software implementations of uni-

versal algorithms for solving the matrix Bellman equations

over semirings. In Sect. 2 we present an introduction to

mathematics of semirings and especially to the tropical

(idempotent) mathematics, that is, the area of mathematics

working with idempotent semirings (that is, semirings with

idempotent addition). In Sect. 3 we present a number of

well-known and new universal algorithms of linear algebra

over semirings, related to discrete matrix Bellman equation

and algebraic path problem. These algorithms are closely

related to their linear-algebraic prototypes described, for

instance, in the celebrated book of Golub and Van Loan

(1989) which serves as the main source of such prototypes.

Following the style of Golub and van Loan (1989) we

present them in MATLAB code. The perspectives and

experience of their implementation are also discussed.

2 Mathematics of semirings

2.1 Basic definitions

A broad class of universal algorithms is related to the

concept of a semiring. We recall here the definition (see,

for instance, Golan 2000).

A set S is called a semiring if it is endowed with two

associative operations: addition � and multiplication �
such that addition is commutative, multiplication distrib-

utes over addition from either side, 0 (resp., 1) is the

neutral element of addition (resp., multiplication), 0� x ¼
x� 0 ¼ 0 for all x 2 S; and 0 6¼ 1:

Let the semiring S be partially ordered by a relation �
such that 0 is the least element and the inequality x � y

implies that x� z � y� z; x� z � y� z; and z� x � z� y

for all x, y, z [S; in this case the semiring S is called

positive (see, for instance, Golan 2000).

An element x [S is called invertible if there exists an

element x-1 [S such that xx�1 ¼ x�1x ¼ 1: A semiring

S is called a semifield if every nonzero element is

invertible.

A semiring S is called idempotent if x� x ¼ x for all

x [S. In this case the addition � defines a canonical

partial order � on the semiring S by the rule: x � y iff

x� y ¼ y: It is easy to prove that any idempotent semiring

is positive with respect to this order. Note also that x� y ¼
supfx; yg with respect to the canonical order. In the sequel,

we shall assume that all idempotent semirings are ordered

by the canonical partial order relation.

We shall say that a positive (for instance, idempotent)

semiring S is complete if for every subset T , S there exist

elements sup T 2 S and inf T 2 S; and if the operations �
and � distribute over such sups and infs.

The most well-known and important examples of posi-

tive semirings are ‘‘numerical’’ semirings consisting of (a

subset of) real numbers and ordered by the usual linear

order B on R : the semiring R? with the usual operations

� ¼ þ; � ¼ � and neutral elements 0 = 0, 1 = 1, the

semiring Rmax ¼ R [f�1g with the operations � ¼
max;� ¼ þ and neutral elements 0 = -?, 1 = 0, the

semiring bRmax ¼ Rmax [f1g; where x � 1; x�1 ¼ 1
for all x; x�1 ¼ 1� x ¼ 1 if x = 0, and 0�1 ¼
1� 0; and the semiring Smax,min

[a,b] = [a, b], where

-? B a \ b B ??, with the operations � ¼ max;� ¼
min and neutral elements 0 = a, 1 = b. The semirings

Rmax; bRmax; and Smax,min
[a,b] = [a, b] are idempotent. The

semirings bRmax; S
½a;b�
max;min;

bRþ ¼ Rþ
S

f1g are complete.

Remind that every partially ordered set can be imbedded to

its completion (a minimal complete set containing the

initial one). The semiring Rmin ¼ R
S

f1g with operations

� ¼ min and � ¼ þ and neutral elements 0 = ?, 1 = 0

is isomorphic to Rmax.

The semiring Rmax is also called the max-plus algebra.

The semifields Rmax and Rmin are called tropical algebras.

The term ‘‘tropical’’ initially appeared in Simon (1988) for

a discrete version of the max-plus algebra as a suggestion

of Choffrut, see also Gunawardena (1998), Mikhalkin

(2006), Viro (2008).

Many mathematical constructions, notions, and results

over the fields of real and complex numbers have nontrivial

analogs over idempotent semirings. Idempotent semirings

have become recently the object of investigation of new

branches of mathematics, idempotent mathematics and

tropical geometry, see, for instance Baccelli et al. (1992),

Cuninghame-Green (1979), Litvinov (2007), Mikhalkin

(2006), Viro (2001, 2008).

Denote by MatmnðSÞ a set of all matrices A = (aij) with

m rows and n columns whose coefficients belong to a

semiring S. The sum A� B of matrices A;B 2 MatmnðSÞ
and the product AB of matrices A 2 MatlmðSÞ and B 2

Universal algorithms for solving the matrix

123

Author's personal copy

MatmnðSÞ are defined according to the usual rules of linear

algebra: A� B ¼ ðaij � bijÞ 2 MatmnðSÞ and

AB ¼ a
m

k¼1

aij � bkj

 !

2 MatlnðSÞ;

where A 2 MatlmðSÞ and B 2 MatmnðSÞ: Note that we write

AB instead of A� B:

If the semiring S is positive, then the set MatmnðSÞ is

ordered by the relation A ¼ ðaijÞ � B ¼ ðbijÞ iff aij � bij in

S for all 1 B i B m, 1 B j B n.

The matrix multiplication is consistent with the order �
in the following sense: if A;A0 2 MatlmðSÞ;B;B0 2
MatmnðSÞ and A � A0;B � B0; then AB � A0B0 in MatlnðSÞ:
The set MatnnðSÞ of square (n 9 n) matrices over a [posi-

tive, idempotent] semiring S forms a [positive, idempotent]

semi-ring with a zero element O = (oij), where oij ¼
0; 1� i; j� n; and a unit element I = (dij), where dij ¼ 1 if

i = j and dij ¼ 0 otherwise.

The set Matnn is an example of a noncommutative

semiring if n [1.

2.2 Closure operation

In what follows, we are mostly interested in complete

positive semirings, and particularly in idempotent semi-

rings. Regarding examples of the previous section, recall

that the semirings S
½a;b�
max;min;

bRmax ¼ Rmax [fþ1g; bRmin ¼
Rmin [f�1g and bRþ ¼ Rþ [fþ1g are complete posi-

tive, and the semirings Smax,min
[a,b] , bRmax and bRmin are

idempotent.

bRþ is a completion of R?, and bRmax (resp. bRmin) are

completions of Rmax (resp. Rmin). More generally, we note

that any positive semifield S can be completed by means of

a standard procedure, which uses Dedekind cuts and is

described in Golan (2000), Litvinov et al. (2001). The

result of this completion is a semiring bS; which is not a

semifield anymore.

The semiring of matrices MatnnðSÞ over a complete

positive (resp., idempotent) semiring is again a complete

positive (resp., idempotent) semiring. For more back-

ground in complete idempotent semirings, the reader is

referred to Litvinov et al. (2001).

In any complete positive semiring S we have a unary

operation of closure a 7! a	 defined by

a	 :¼ sup
k
 0

1� a� � � � � ak; ð1Þ

Using that the operations � and � distribute over such

sups, it can be shown that a* is the least solution of x ¼
ax� 1 and x ¼ xa� 1; and also that a*b is the the least

solution of x ¼ ax� b and x ¼ xa� b:

In the case of idempotent addition (1) becomes partic-

ularly nice:

a	 ¼ a
i
 0

ai ¼ sup
i
 0

ai: ð2Þ

If a positive semiring S is not complete, then it often

happens that the closure operation can still be defined on

some ‘‘essential’’ subset of S. Also recall that any positive

semifield S can be completed (Golan 2000; Litvinov et al.

2001), and then the closure is defined for every element of

the completion.

In numerical semirings the operation * is usually very

easy to implement: x* = (1 - x)-1 if x \ 1 in Rþ; or bRþ

and x	 ¼ 1 if x C 1 in bRþ; x	 ¼ 1 if x � 1 in Rmax and

bRmax; x
	 ¼ 1 if x � 1 in bRmax; x	 ¼ 1 for all x in Smax,min

[a,b] .

In all other cases x* is undefined.

The closure operation in matrix semirings over a com-

plete positive semiring S can be defined as in (1):

A	 :¼ sup
k
 0

I � A� � � � � Ak; ð3Þ

and one can show that it is the least solution X satisfying

the matrix equations X ¼ AX � I and X ¼ XA� I:

Equivalently, A* can be defined by induction: let

A* = (a11)* = (a11
*) in Mat11ðSÞ be defined by (1), and for

any integer n [1 and any matrix

A ¼ A11 A12

A21 A22

� �

;

where A11 2 MatkkðSÞ;A12 2 Matkn�kðSÞ;A21 2 Matn�kk

ðSÞ;A22 2 Matn�kn�kðSÞ; 1� k� n; by definition,

A	 ¼ A	11 � A	11A12D	A21A	11 A	11A12D	

D	A21A	11 D	

� �

; ð4Þ

where D ¼ A22 � A21A	11A12:
Defined here for complete positive semirings, the clo-

sure operation is a semiring analogue of the operation

(1 - a)-1 and, further, (I - A)-1 in matrix algebra over

the field of real or complex mumbers. This operation can

be thought of as regularized sum of the series I þ Aþ
A2 þ � � � ; and the closure operation defined above is

another such regularization. Thus we can also define the

closure operation a* = (1 - a)-1 and A* = (I - A)-1 in

the traditional linear algebra. To this end, note that the

recurrence relation above coincides with the formulas of

escalator method of matrix inversion in the traditional

linear algebra over the field of real or complex numbers, up

to the algebraic operations used. Hence this algorithm of

matrix closure requires a polynomial number of operations

in n, see below for more details.

Let S be a complete positive semiring. The matrix (or

discrete stationary) Bellman equation has the form

G. L. Litvinov et al.

123

Author's personal copy

X ¼ AX � B; ð5Þ

where A 2 MatnnðSÞ;X;B 2 MatnsðSÞ; and the matrix X is

unknown. As in the scalar case, it can be shown that for

complete positive semirings, if A* is defined as in (3) then

A*B is the least in the set of solutions to equation (5) with

respect to the partial order in MatnsðSÞ: In the idempotent

case

A	 ¼ a
i
 0

Ai ¼ sup
i
 0

Ai: ð6Þ

Consider also the case when A = (aij) is n 9 n strictly

upper-triangular (such that aij ¼ 0 for i C j), or

n 9 n strictly lower-triangular (such that aij ¼ 0 for

i B j). In this case An = O, the all-zeros matrix, and it

can be shown by iterating X ¼ AX � I that this equation

has a unique solution, namely

A	 ¼ I � A� � � � � An�1: ð7Þ

Curiously enough, formula (7) works more generally in the

case of numerical idempotent semirings: in fact, the series

(6) converges there if and only if it can be truncated to (7).

This is closely related to the principal path interpretation of

A* explained in the next subsection.

In fact, theory of the discrete stationary Bellman equa-

tion can be developed using the identity A	 ¼ AA	 � I as

an axiom without any explicit formula for the closure (the

so-called closed semirings, see, for instance, Golan 2000;

Lehmann 1977; Rote 1985). Such theory can be based on

the following identities, true both for the case of idempo-

tent semirings and the real numbers with conventional

arithmetic (assumed that A and B have appropriate sizes):

ðA� BÞ	 ¼ ðA	BÞ	A	;
ðABÞ	A ¼ AðBAÞ	:

ð8Þ

This abstract setting unites the case of positive and idem-

potent semirings with the conventional linear algebra over

the field of real and complex numbers.

2.3 Weighted directed graphs and matrices

over semirings

Suppose that S is a semiring with zero 0 and unity 1: It is

well-known that any square matrix A ¼ ðaijÞ 2 MatnnðSÞ
specifies a weighted directed graph. This geometrical

construction includes three kinds of objects: the set X of

n elements x1; . . .; xn called nodes, the set C of all ordered

pairs (xi, xj) such that aij 6¼ 0 called arcs, and the mapping

A: C! S such that A(xi, xj) = aij. The elements aij of the

semiring S are called weights of the arcs.Conversely, any

given weighted directed graph with n nodes specifies a

unique matrix A 2 MatnnðSÞ:

This definition allows for some pairs of nodes to be

disconnected if the corresponding element of the matrix

A is 0 and for some channels to be ‘‘loops’’ with coincident

ends if the matrix A has nonzero diagonal elements.

Recall that a sequence of nodes of the form

p ¼ ðy0; y1; . . .; ykÞ

with k C 0 and ðyi; yiþ1Þ 2 C; i ¼ 0; . . .; k � 1; is called a

path of length k connecting y0 with yk. Denote the set of all

such paths by Pk(y0,yk). The weight A(p) of a path p 2
Pkðy0; ykÞ is defined to be the product of weights of arcs

connecting consecutive nodes of the path:

AðpÞ ¼ Aðy0; y1Þ � � � � � Aðyk�1; ykÞ:

By definition, for a ‘path’ p 2 P0ðxi; xjÞ of length k = 0 the

weight is 1 if i = j and 0 otherwise (Fig. 1).

For each matrix A 2 MatnnðSÞ define A0 = E = (dij)

(where dij ¼ 1 if i = j and dij ¼ 0 otherwise) and

Ak = AAk-1, k C 1. Let ai,j
[k] be the (i, j)th element of the

matrix Ak. It is easily checked that

a
½k�
ij ¼ a

i0¼i;ik¼j

1� i1;...;ik�1 � n

ai0i1 � � � � � aik�1ik :

Thus ai,j
[k] is the supremum of the set of weights corre-

sponding to all paths of length k connecting the node xi0 ¼
xi with xik ¼ xj.

Let A* be defined as in (6). Denote the elements of the

matrix A* by ai,j
* , i; j ¼ 1; . . .; n; then

a	ij ¼ a
0� k\1

a
p2Pkðxi;xjÞ

AðpÞ:

The closure matrix A* solves the well-known algebraic

path problem, which is formulated as follows: for each pair

(xi, xj) calculate the supremum of weights of all paths (of

arbitrary length) connecting node xi with node xj. The

closure operation in matrix semirings has been studied

extensively (see, for instance, Baccelli et al. 1992; Carré

1971; 1979; Cuninghame-Green 1979; Golan 2000;

Gondran and Minoux 1979, 2010; Kolokoltsov and

Fig. 1 Weighted directed graph

Universal algorithms for solving the matrix

123

Author's personal copy

Maslov 1997; Litvinov and Sobolevskiı̌ 2001 and

references therein).

Example 1 (The shortest path problem) Let S ¼ Rmin; so

the weights are real numbers. In this case

AðpÞ ¼ Aðy0; y1Þ þ Aðy1; y2Þ þ � � � þ Aðyk�1; ykÞ:

If the element aij specifies the length of the arc (xi, xj) in

some metric, then ai,j
* is the length of the shortest path

connecting xi with xj.

Example 2 (The maximal path width problem) Let S ¼
R [f0; 1g with � ¼ max;� ¼ min : Then

a	ij ¼ max
p2
S

k
 1

Pkðxi;xjÞ
AðpÞ;

AðpÞ ¼ minðAðy0; y1Þ; . . .;Aðyk�1; ykÞÞ:

If the element aij specifies the ‘‘width’’ of the arc

(xi, xj), then the width of a path p is defined as the minimal

width of its constituting arcs and the element aij
* gives the

supremum of possible widths of all paths connecting xi

with xj.

Example 3 (A simple dynamic programming problem)

Let S ¼ Rmax and suppose aij gives the profit corresponding

to the transition from xi to xj. Define the vector B ¼ ðbiÞ 2
Matn1ðRmaxÞ whose element bi gives the terminal profit

corresponding to exiting from the graph through the node

xi. Of course, negative profits (or, rather, losses) are

allowed. Let m be the total profit corresponding to a path

p 2 Pkðxi; xjÞ; that is

m ¼ AðpÞ þ bj:

Then it is easy to check that the supremum of profits that

can be achieved on paths of length k beginning at the node

xi is equal to (AkB)i and the supremum of profits achievable

without a restriction on the length of a path equals (A*B)i.

Example 4 (The matrix inversion problem) Note that in

the formulas of this section we are using distributivity of

the multiplication � with respect to the addition � but do

not use the idempotency axiom. Thus the algebraic path

problem can be posed for a nonidempotent semiring S as

well (see, for instance, Rote 1985). For instance, if S ¼ R;

then

A	 ¼ I þ Aþ A2þ ¼ ðI � AÞ�1:

If kAk[1 but the matrix I - A is invertible, then this

expression defines a regularized sum of the divergent

matrix power series
P

iC0 Ai.

We emphasize that this connection between the matrix

closure operation and solutions to the Bellman equation

gives rise to a number of different algorithms for numerical

calculation of the matrix closure. All these algorithms are

adaptations of the well-known algorithms of the traditional

computational linear algebra, such as the Gauss–Jordan

elimination, various iterative and escalator schemes, etc.

This is a special case of the idempotent superposition

principle (see below).

2.4 Interval analysis over positive semirings

Traditional interval analysis is a nontrivial and popular

mathematical area, see, for instance, Alefeld and Herz-

berger (1983), Fiedler et al. (2006), Kreinovich et al.

(1998), Moore (1979), Neumaier (1990). An ‘‘idempotent’’

version of interval analysis (and moreover interval analysis

over positive semirings) appeared in Litvinov and Sobo-

levskiı̌ (2000, 2001), Sobolevskiı̌ (1999). Rather many

publications on the subject appeared later, see, for instance,

Cechlárová and Cuninghame-Green (2002), Fiedler et al.

(2006), Hardouin et al. (2009), Myškova (2005, 2006).

Interval analysis over the positive semiring R? was dis-

cussed in Barth and Nuding (1974).

Let a set S be partially ordered by a relation � : A closed

interval in S is a subset of the form x ¼ ½x; x� ¼ fx 2 S j
x � x � xg; where the elements x � x are called lower and

upper bounds of the interval x. The order � induces a

partial ordering on the set of all closed intervals in S : x �
y iff x � y and x � y:

A weak interval extension I(S) of a positive semiring S is

the set of all closed intervals in S endowed with operations

� and � defined as x� y ¼ ½x� y; x� y�; x� y ¼
½x� y; x� y� and a partial order induced by the order in

S. The closure operation in I(S) is defined by x	 ¼ ½x	; x	�:
There are some other interval extensions (including the so-

called strong interval extension (Litvinov and Sobolevskiı̌

2001)) but the weak extension is more convenient.

The extension I(S) is positive; I(S) is idempotent if S is

an idempotent semiring. A universal algorithm over S can

be applied to I(S) and we shall get an interval version of the

initial algorithm. Usually both versions have the same

complexity. For the discrete stationary Bellman equation

and the corresponding optimization problems on graphs,

interval analysis was examined in Litvinov and Sobolevskiı̌

(2000, 2001) in details. Other problems of idempotent

linear algebra were examined in Cechlárová and

Cuninghame-Green (2002), Fiedler et al. (2006), Hardouin

et al. (2009), Myškova (2005, 2006).

Idempotent mathematics appears to be remarkably

simpler than its traditional analog. For example, in tradi-

tional interval arithmetic, multiplication of intervals is not

distributive with respect to addition of intervals, whereas in

idempotent interval arithmetic this distributivity is pre-

served. Moreover, in traditional interval analysis the set of

all square interval matrices of a given order does not form

G. L. Litvinov et al.

123

Author's personal copy

even a semigroup with respect to matrix multiplication: this

operation is not associative since distributivity is lost in the

traditional interval arithmetic. On the contrary, in the

idempotent (and positive) case associativity is preserved.

Finally, in traditional interval analysis some problems of

linear algebra, such as solution of a linear system of

interval equations, can be very difficult (more precisely,

they are NP-hard, see Kreinovich et al. 1998 and refer-

ences therein). It was noticed in Litvinov and Sobolevskiı̌

(2000, 2001) that in the idempotent case solving an interval

linear system requires a polynomial number of operations

(similarly to the usual Gauss elimination algorithm). Two

properties that make the idempotent interval arithmetic so

simple are monotonicity of arithmetic operations and pos-

itivity of all elements of an idempotent semiring.

Interval estimates in idempotent mathematics are usu-

ally exact. In the traditional theory such estimates tend to

be overly pessimistic.

2.5 Idempotent correspondence principle

There is a nontrivial analogy between mathematics of

semirings and quantum mechanics. For example, the field

of real numbers can be treated as a ‘‘quantum object’’ with

respect to idempotent semirings. So idempotent semirings

can be treated as ‘‘classical’’ or ‘‘semi-classical’’ objects

with respect to the field of real numbers.

Let R be the field of real numbers and Rþ the subset of

all non-negative numbers. Consider the following change

of variables:

u 7!w ¼ h ln u;

where u 2 Rþ n f0g; h [0; thus u ¼ ew=h;w 2 R: Denote

by 0 the additional element �1 and by S the extended real

line R [f0g: The above change of variables has a natural

extension Dh to the whole S by Dhð0Þ ¼ 0; also, we denote

Dhð1Þ ¼ 0 ¼ 1:

Denote by Sh the set S equipped with the two operations

�h (generalized addition) and �h (generalized multiplica-

tion) such that Dh is a homomorphism of fRþ;þ; �g to

fS;�h;�hg: This means that Dhðu1 þ u2Þ ¼ Dhðu1Þ �h

Dhðu2Þ and Dhðu1 � u2Þ ¼ Dhðu1Þ �h Dhðu2Þ; that is, w1 �h

w2 ¼ w1 þ w2 and w1 �h w2 ¼ h lnðew1=h þ ew2=hÞ: It is

easy to prove that w1 �h w2 ! maxfw1;w2g as h ? 0.

Rþ and Sh are isomorphic semirings; therefore we have

obtained Rmax as a result of a deformation of Rþ: We stress

the obvious analogy with the quantization procedure, where

h is the analog of the Planck constant. In these terms, Rþ (or

R) plays the part of a ‘‘quantum object’’ while Rmax acts as a

‘‘classical’’ or ‘‘semi-classical’’ object that arises as the result

of a dequantization of this quantum object. In the case of

Rmin; the corresponding dequantization procedure is gener-

ated by the change of variables u 7!w ¼ �h ln u:

There is a natural transition from the field of real

numbers or complex numbers to the idempotent semiring

Rmax (or Rmin). This is a composition of the mapping

x 7! jxj and the deformation described above.

In general an idempotent dequantization is a transition

from a basic field to an idempotent semiring in mathe-

matical concepts, constructions and results, see Litvinov

(2007), Litvinov and Maslov (1998) for details. Idempotent

dequantization suggests the following formulation of the

idempotent correspondence principle:

There exists a heuristic correspondence between

interesting, useful, and important constructions and

results over the field of real (or complex) numbers

and similar constructions and results over idempotent

semirings in the spirit of N. Bohr’s correspondence

principle in quantum mechanics.

Thus idempotent mathematics can be treated as a

‘‘classical shadow (or counterpart)’’ of the traditional

Mathematics over fields. A systematic application of this

correspondence principle leads to a variety of theoretical

and applied results, see, for instance, Litvinov (2007),

Litvinov and Maslov (1998, 2000), Litvinov and Sobo-

levskiı̌ (2001), Mikhalkin (2006), Viro (2001, 2008).

Relations to quantum physics are discussed in detail, for

instance, in Litvinov (2007).

In this paper we aim to develop a practical systematic

application of the correspondence principle to the algo-

rithms of linear algebra and discrete mathematics. For the

remainder of this subsection let us focus on an idea how the

idempotent correspondence principle may lead to a unify-

ing approach to hardware design. (See Litvinov et al. 2000,

2011 for more information.)

The most important and standard numerical algorithms

have many hardware realizations in the form of technical

devices or special processors. These devices often can be

used as prototypes for new hardware units resulting from

mere substitution of the usual arithmetic operations by their

semiring analogs (and additional tools for generating neu-

tral elements 0 and 1). Of course, the case of numerical

semirings consisting of real numbers (maybe except neutral

semirings and
semifields

QUANTUM
MECHANICS

MATHEMATICS
TRADITIONAL

numbers
real and complex

Fields of

N. Bohr’s Correspondence Principle

Idempotent Correspondence Principle

CLASSICAL
MECHANICS

IDEMPOTENT
MATHEMATICS

Idempotent

Universal algorithms for solving the matrix

123

Author's personal copy

elements) and semirings of numerical intervals is the most

simple and natural. Note that for semifields (including Rmax

and Rmin) the operation of division is also defined.

Good and efficient technical ideas and decisions can be

taken from prototypes to new hardware units. Thus the

correspondence principle generates a regular heuristic

method for hardware design. Note that to get a patent it is

necessary to present the so-called ‘invention formula’, that

is to indicate a prototype for the suggested device and the

difference between these devices.

Consider (as a typical example) the most popular and

important algorithm of computing the scalar product of two

vectors:

ðx; yÞ ¼ x1y1 þ x2y2 þ � � � þ xnyn: ð9Þ

The universal version of (9) for any semiring A is obvious:

ðx; yÞ ¼ ðx1 � y1Þ � ðx2 � y2Þ � � � � � ðxn � ynÞ: ð10Þ

In the case A ¼ Rmax this formula turns into the following

one:

ðx; yÞ ¼ maxfx1 þ y1; x2 þ y2; . . .; xn þ yng: ð11Þ

This calculation is standard for many optimization

algorithms, so it is useful to construct a hardware unit for

computing (11). There are many different devices (and

patents) for computing (9) and every such device can be used

as a prototype to construct a new device for computing (11)

and even (10). Many processors for matrix multiplication and

for other algorithms of linear algebra are based on computing

scalar products and on the corresponding ‘‘elementary’’

devices. Using modern technologies it is possible to

construct cheap special-purpose multi-processor chips and

systolic arrays of elementary processors implementing

universal algorithms. See, for instance, Litvinov et al.

(2000, 2011), Rote (1985) where the systolic arrays and

parallel computing issues are discussed for the algebraic path

problem. In particular, there is a systolic array of n(n ? 1)

elementary processors which performs computations of the

Gauss–Jordan elimination algorithm and can solve the

algebraic path problem within 5n - 2 time steps.

3 Some universal algorithms of linear algebra

In this section we discuss universal algorithms computing A*

and A*B. We start with the basic escalator and Gauss–Jordan

elimination techniques in Sect. 3.1 and continue with its

specification to the case of Toeplitz systems in Sect. 3.2. The

universal LDM decomposition of Bellman equations is

explained in Sect. 3.3, followed by its adaptations to sym-

metric and band matrices in Sect. 3.4. The iteration schemes

are discussed in Sect. 3.5. In the final Sect. 3.6 we discuss the

implementations of universal algorithms.

Algorithms themselves will be described in a language of

Matlab, following the tradition of Golub and van Loan (1989).

This is done for two purposes: (1) to simplify the comparison

of the algorithms with their prototypes taken mostly from

(Golub and van Loan 1989), (2) since the language of Matlab

is designed for matrix computations. We will not formally

describe the rules of our Matlab-derived language, preferring

just to outline the following important features:

1. Our basic arithmetic operations are a� b; a� b and

a*.

2. The vectorization of these operations follows the rules

of Matlab.

3. We use basic keywords of Matlab like ‘for’, ‘while’,

‘if’ and ‘end’, similar to other programming languages

like C?? or Java.

Let us give some examples of universal matrix com-

putations in our language:

Example 1 vð1 : jÞ ¼ a	 � að1 : j; kÞ means that the result

of (scalar) multiplication of the first j components of the kth

column of A by the closure of a is assigned to the first

j components of v.

Example 2 aði; jÞ ¼ aði; jÞ � aði; 1 : nÞ � að1 : n; jÞ means

that we add (�) to the entry aij of A the result of the

(universal) scalar multiplication of the ith row with the jth

column of A (assumed that A is n 9 n).

Example 3 að1 : n; kÞ � bðl; 1 : mÞ means the outer

product of the kth column of A with the lth row of B. The

entries of resulting matrix C = (cij) equal cij ¼ aik � blj;

for all i ¼ 1; . . .; n and j ¼ 1; . . .;m:

Example 4 xð1 : nÞ � yðn : �1 : 1Þ is the scalar product

of vector x with vector y whose components are taken in

the reverse order: the proper algebraic expression is

a
n

i¼1
xi � ynþ1�i:

Example 5 The following cycle yields the same result as

in the previous example: s = 0

for i = 1:n

s ¼ s� xðiÞ � xðnþ 1� iÞ
end

3.1 Escalator scheme and Gauss–Jordan elimination

We first analyse the basic escalator method, based on the

definition of matrix closures (4). Let A be a square matrix.

Closures of its main submatrices Ak can be found induc-

tively, starting from A1
* = (a11)*, the closure of the first

diagonal entry. Generally we represent Ak?1 as

Akþ1 ¼
Ak gk

hT
k akþ1

� �

;

G. L. Litvinov et al.

123

Author's personal copy

assuming that we have found the closure of Ak. In this

representation, gk and hk are columns with k entries and

ak?1 is a scalar. We also represent Ak?1
* as

A	kþ1 ¼
Uk vk

wT
k ukþ1

� �

:

Using (4) we obtain that

ukþ1 ¼ ðhT
k A	kgk � akþ1Þ	;

vk ¼ A	kgkukþ1;

wT
k ¼ ukþ1hT

k A	k ;

Uk ¼ A	kgkukþ1hT
k A	k � A	k :

ð12Þ

An algorithm based on (12) can be written as follows.

In full analogy with its linear algebraic prototype, the

algorithm requires n3 ? O(n2) operations of addition

�; n3 þ Oðn2Þ operations of multiplication �; and n oper-

ations of taking algebraic closure. The linear-algebraic

prototype of the method written above is also called the

bordering method in the literature (Carré 1971; Faddeev

and Faddeeva 2002).

Alternatively, we can obtain a solution of X ¼ AX � B

as a result of elimination process, whose informal expla-

nation is given below. If A* is defined as a
i
 0

Ai

(including the scalar case), then A*B is the least solution of

X ¼ AX � B for all A and B of appropriate sizes. In this

case, the solution found by the elimination process given

below coincides with A*B.

For matrix A = (aij) and column vectors x = (xi) and

b = (bi) (restricting without loss of generality to the

column vectors), the Bellman equation x ¼ Ax� b can be

written as

x1

x2

..

.

xn

0

B

B

B

@

1

C

C

C

A

¼

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. . .

. ..
.

an1 an2 . . . ann

0

B

B

B

@

1

C

C

C

A

x1

x2

..

.

xn

0

B

B

B

@

1

C

C

C

A

�

1 0 . . . 0
0 1 . . . 0
..
. ..

. . .
. ..

.

0 0 . . . 1

0

B

B

@

1

C

C

A

b1

b2

..

.

bn

0

B

B

B

@

1

C

C

C

A

:

After expressing x1 in terms of x2; . . .; xn from the first

equation and substituting this expression for x1 in all other

equations from the second to the nth we obtain

x1

x2

..

.

xn

0

B

B

B

@

1

C

C

C

A

¼

0 ða11Þ	a12 . . . ða11Þ	a1n

0 a22 � ða21ða11Þ	a12Þ . . . a2n � ða21ða11Þ	a1nÞ
..
. ..

. . .
. ..

.

0 an2 � ðan1ða11Þ	a12Þ . . . ann � ðan1ða11Þ	a1nÞ

0

B

B

B

@

1

C

C

C

A

x1

x2

..

.

xn

0

B

B

B

@

1

C

C

C

A

�

ða11Þ	 0 . . . 0
a21ða11Þ	 1 . . . 0

..

. ..
. . .

. ..
.

an1ða11Þ	 0 . . . 1

0

B

B

B

@

1

C

C

C

A

b1

b2

..

.

bn

0

B

B

B

@

1

C

C

C

A

ð14Þ

Note that nontrivial entries in both matrices occupy

complementary places, so during computations both

matrices can be stored in the same square array C(k).

Denote its elements by cij
(c) where k is the number of

eliminated variables. After l - 1 eliminations we have

xl ¼ c
ðl�1Þ
ll

� �	
bl;

c
ðlÞ
il ¼ c

ðl�1Þ
il c

ðl�1Þ
ll

� �	
; i ¼ 1; . . .; l� 1; lþ 1; . . .; n

c
ðlÞ
ij ¼ c

ðl�1Þ
ij � c

ðl�1Þ
il c

ðl�1Þ
ll

� �	
c
ðl�1Þ
lj ;

i; j ¼ 1; . . .; l� 1; lþ 1; . . .; n

c
ðlÞ
li ¼ c

ðl�1Þ
ll

� �	
c
ðl�1Þ
li ; i ¼ 1; . . .; l� 1; lþ 1; . . .; n

ð15Þ

After n eliminations we get x = C(n)b. Taking as b any

vector with one coordinate equal to 1 and the rest equal to

0; we obtain C(n) = A*. We write out the following algo-

rithm based on recursion (15).

Universal algorithms for solving the matrix

123

Author's personal copy

Remark 1 Algorithm 2 can be regarded as a ‘‘universal

Floyd–Warshall algorithm’’ generalizing the well-known

algorithms of Warshall and Floyd for computing the tran-

sitive closure of a graph and all optimal paths on a graph.

See, for instance, Sedgewick (2002). for the description of

these classical methods of discrete mathematics. In turn,

these methods can be regarded as specifications of Algo-

rithm 2 to the cases of max-plus and Boolean semiring.

Remark 2 Algorithm 2 is also close to Yershov’s

‘‘refilling’’ method for inverting matrices and solving sys-

tems Ax = b in the classical linear algebra, see Faddeev

and Faddeeva (2002) Chapter 2 for details.

3.2 Toeplitz systems

We start by considering the escalator method for finding

the solution x = A*b to x ¼ Ax� b; where x and b are

column vectors. Firstly, we have x(1) = A1
*b1. Let x(k) be

the vector found after (k - 1) steps, and let us write

xðkþ1Þ ¼ z
xkþ1

� �

:

Using (12) we obtain that

xkþ1 ¼ ukþ1ðhT
k xðkÞ � bkþ1Þ;

z ¼ xðkÞ � A	kgkxkþ1:
ð16Þ

We have to compute Ak
* gk. In general, we would have to

use Algorithm 1. Next we show that this calculation can be

done very efficiently when A is symmetric Toeplitz.

Formally, a matrix A 2 MatnnðSÞ is called Toeplitz if

there exist scalars r�nþ1; . . .; r0; . . .; rn�1 such that

Aij = rj-i for all i and j. Informally, Toeplitz matrices are

such that their entries are constant along any line parallel

to the main diagonal (and along the main diagonal itself).

For example,

A ¼

r0 r1 r2 r3

r�1 r0 r1 r2

r�2 r�1 r0 r1

r�3 r�2 r�1 r0

0

B

B

@

1

C

C

A

is Toeplitz. Such matrices are not necessarily symmetric.

However, they are always persymmetric, that is, symmetric

with respect to the inverse diagonal. This property is

algebraically expressed as A = EnATEn, where En ¼
½en; . . .; e1�: By ei we denote the column whose ith entry

is 1 and other entries are O. The property En
2 = In (where In

is the n 9 n identity matrix) implies that the product of two

persymmetric matrices is persymmetric. Hence any degree

of a persymmetric matrix is persymmetric, and so is the

closure of a persymmetric matrix. Thus, if A is

persymmetric, then

EnA	 ¼ ðA	ÞT En: ð17Þ

Further we deal only with symmetric Toeplitz matrices.

Consider the equation y ¼ Tny� rðnÞ; where rðnÞ ¼
ðr1; . . .; rnÞT ; and Tn is defined by the scalars

r0; r1; . . .; rn�1 so that Tij = r|j-i| for all i and j. This is a

generalization of the Yule-Walker problem (Golub and van

Loan 1989). Assume that we have obtained the least

solution y(k) to the system y ¼ Tky� rðkÞ for some k such

that 1 B k B n - 1, where Tk is the main k 9 k submatrix

of Tn. We write Tk?1 as

Tkþ1 ¼ Tk EkrðkÞ

rðkÞT Ek r0

� �

:

We also write y(k?1) and r(k?1) as

yðkþ1Þ ¼ z
ak

� �

; rðkþ1Þ ¼ rðkÞ

rkþ1

� �

:

Using (16, 17) and the identity Tk
*r(k) = y(k), we obtain

that

ak ¼ ðr0 � rðkÞT yðkÞÞ	ðrðkÞT EkyðkÞ � rkþ1Þ;
z ¼ EkyðkÞak � yðkÞ:

Denote bk ¼ r0 � rðkÞT yðkÞ: The following argument

shows that bk can be found recursively if (bk-1
*)-1 exists.

G. L. Litvinov et al.

123

Author's personal copy

bk ¼ r0 � ½rðk�1ÞT rk�
Ek�1yðk�1Þak�1 � yðk�1Þ

ak�1

 !

¼ r0 � rðk�1ÞTyðk�1Þ � ðrðk�1ÞT Ek�1yðk�1Þ � rkÞak�1

¼ bk�1 � ðb	k�1Þ
�1 � a2

k�1: ð18Þ

Existence of (bk-1
*)-1 is not universal, and this will

make us write two versions of our algorithm, the first one

involving (18), and the second one not involving it. We

will write these two versions in one program and mark the

expressions which refer only to the first version or to the

second one by the MATLAB-style comments % 1 and

% 2, respectively. Collecting the expressions for bk, ak and

z we obtain the following recursive expression for y(k):

bk ¼ r0 � rðkÞT yðkÞ; %2

bk ¼ bk�1 � ðb	k�1Þ
�1 � a2

k�1; %1

ak ¼ ðbkÞ	 � ðrðkÞT EkyðkÞ � rkþ1Þ;

yðkþ1Þ ¼ EkyðkÞak � yðkÞ

ak

 !

:

ð19Þ

Recursive expression (19) is a generalized version of the

Durbin method for the Yule-Walker problem, see Golub

and van Loan (1989) Algorithm 4.7.1 for a prototype.

In the general case, the algorithm requires 3/2

n2 ? O(n) operations � and � each, and just n2 ? O(n) of

� and � if inversions of algebraic closures are allowed (as

usual, just n such closures are required in both cases).

Now we consider the problem of finding x(n) = Tn
*b(n)

where Tn is as above and bðnÞ ¼ ðb1; . . .; bnÞ is arbitrary.

We also introduce the column vectors y(k) which solve the

Yule-Walker problem: y(k) = Tk
*r(k). The main idea is to

find the expression for x(k?1) = Tk?1
* b(k?1) involving x(k)

and y(k). We write x(k?1) and b(k?1) as

xðkþ1Þ ¼ v
lk

� �

; bðkþ1Þ ¼ bðkÞ

bkþ1

� �

:

Making use of the persymmetry of Tk
* and of the

identities Tk
*bk = x(k) and Tk

*rk = y(k), we specialize

expressions (16) and obtain that

lk ¼ ðr0 � rðkÞT yðkÞÞ	 � ðrðkÞT EkxðkÞ � bkþ1Þ;
v ¼ EkyðkÞlk � xðkÞ:

The coefficient r0 � rðkÞT yðkÞ ¼ bk can be expressed

again as bk ¼ bk�1 � ðb	k�1Þ
�1 � ðak�1Þ2; if the closure

(bk-1)* is invertible. Using this we obtain the following

recursive expression:

bk ¼ r0 � rðkÞT yðkÞ; %2

bk ¼ bk�1 � ðb	k�1Þ
�1 � a2

k�1; %1

lk ¼ b	k � ðrðkÞT EkxðkÞ � bkþ1Þ;

xðkþ1Þ ¼ EkyðkÞlk � xðkÞ

lk

 !

:

ð20Þ

Universal algorithms for solving the matrix

123

Author's personal copy

Expressions (19) and (20) yield the following

generalized version of the Levinson algorithm for solving

linear symmetric Toeplitz systems, see Golub and van

Loan (1989) Algorithm 4.7.2 for a prototype:

In the general case, the algorithm requires 5/2

n2 ? O(n) operations � and � each, and just

2n2 ? O(n) of � and � if inversions of algebraic closures

are allowed (as usual, just n such closures are required in

both cases).

3.3 LDM decomposition

Factorization of a matrix into the product

A = LDM, where L and M are lower and upper triangular

matrices with a unit diagonal, respectively, and D is a

diagonal matrix, is used for solving matrix equations

AX = B. We construct a similar decomposition for the

Bellman equation X ¼ AX � B:

For the case AX = B, the decomposition A = LDM

induces the following decomposition of the initial

equation:

LZ ¼ B; DY ¼ Z; MX ¼ Y : ð21Þ

Hence, we have

A�1 ¼ M�1D�1L�1; ð22Þ

if A is invertible. In essence, it is sufficient to find the

matrices L, D and M, since the linear system AX = B is

easily solved by a combination of the forward substitution

for Z, the trivial inversion of a diagonal matrix for Y, and

the back substitution for X.

Using the LDM-factorization of AX = B as a prototype,

we can write

Z ¼ LZ � B; Y ¼ DY � Z; X ¼ MX � Y : ð23Þ

Then

A	 ¼ M	D	L	: ð24Þ

A triple (L, D, M) consisting of a lower triangular,

diagonal, and upper triangular matrices is called an

LDM-factorization of a matrix A if relations (23) and (24)

are satisfied. We note that in this case, the principal diagonals

of L and M are zero.

Our universal modification of the LDM-factorization

used in matrix analysis for the equation AX = B is similar

to the LU-factorization of Bellman equation suggested by

Carré (1971, 1979).

If A is a symmetric matrix over a semiring with a

commutative multiplication, the amount of computations

can be halved, since M and L are mapped into each other

under transposition.

We begin with the case of a triangular matrix A = L (or

A = M). Then, finding X is reduced to the forward (or back)

substitution. Note that in this case, equation X ¼ AX � B has

unique solution, which can be found by the obvious algo-

rithms given below. In these algorithms B is a vector

(denoted by b), however they could be modified to the case

when B is a matrix of any appropriate size. We are interested

only in the case of strictly lower-triangular, resp. strictly

upper-triangular matrices, when aij = 0 for i B j, resp.

aij = 0 for i C j.

Both algorithms require n2/2 ? O(n) operations � and

�; and no algebraic closures.

After performing a LDM-decomposition we also need to

compute the closure of a diagonal matrix: this is done

entrywise.

We now proceed with the algorithm of LDM decom-

position itself, that is, computing matrices L, D and

M satisfying (23) and (24). First we give an algorithm, and

then we proceed with its explanation.

G. L. Litvinov et al.

123

Author's personal copy

The algorithm requires n3/3 ? O(n2) operations � and

�; and n - 1 operations of algebraic closure.

The strictly triangular matrix L is written in the lower

triangle, the strictly upper triangular matrix M in the upper

triangle, and the diagonal matrix D on the diagonal of the

matrix computed by Algorithm 7. We now show that

A* = M*D*L*. Our argument is close to that of Backhouse

and Carré (1975).

We begin by representing, in analogy with the escalator

method,

A ¼ a11 hð1Þ

gð1Þ Bð1Þ

� �

ð25Þ

It can be verified that

A	 ¼ 1 hð1Þa	11

On�1�1 In�1

� �

�

a	11 O1�n�1

On�1�1 ðhð1Þa	11gð1Þ �Bð1ÞÞ	
� �

1 O1�n�1

a	11gð1Þ In�1

� � ð26Þ

as the multiplication on the right hand side leads to

expressions fully analogous to (12), where ðhð1Þa	11gð1Þ �
Bð1ÞÞ	 plays the role of uk?1. Here and in the sequel, Ok 9 l

denotes the k 9 l matrix consisting only of zeros, and Il

denotes the identity matrix of size l. This can be also

rewritten as

A	 ¼ M	1D	1ðAð2ÞÞ
	L	1; ð27Þ

where

M1 ¼
O hð1Þa	11

Oðn�1Þ�1 Oðn�1Þ�ðn�1Þ

 !

;

D1 ¼
a11 O1�ðn�1Þ

Oðn�1Þ�1 Oðn�1Þ�ðn�1Þ

 !

;

Að2Þ ¼
O1�1 O1�ðn�1Þ

Oðn�1Þ�1 Rð2Þ

 !

;

L1 ¼
O1�1 O1�ðn�1Þ

a	11gð1Þ Oðn�1Þ�ðn�1Þ

 !

;

Rð2Þ ¼ hð1Þa	11gð1Þ � Bð1Þ:

ð28Þ

Here we used in particular that L1
2 = 0 and M1

2 = 0 and

hence L	1 ¼ I � L1 and M	1 ¼ I �M1: The first step of

Algorithm 7 (k = 1) computes

a11 hð1Þa	11

a	11gð1Þ Rð2Þ

� �

¼ Að2Þ � L1 �M1 � D1; ð29Þ

which contains all relevant information.

We can now continue with the submatrix R(2) of A(2)

factorizing it as in (26) and (27), and so on. Let us now

formally describe the kth step of this construction,

corresponding to the kth step of Algorithm 7. On that

general step we deal with

AðkÞ ¼
Oðk�1Þ�ðk�1Þ Oðk�1Þ�ðn�kþ1Þ

Oðn�kþ1Þ�ðk�1Þ RðkÞ

� �

; ð30Þ

where

RðkÞ ¼ hðk�1Þðaðk�1Þ
k�1;k�1Þ

	gðk�1Þ � Bðk�1Þ

¼ a
ðkÞ
kk hðkÞ

gðkÞ BðkÞ

 !

:
ð31Þ

Like on the first step we represent

ðAðkÞÞ	 ¼ M	k D	kðAðkþ1ÞÞ	L	k ; ð32Þ

where

Mk ¼
Oðk�1Þ�ðk�1Þ Oðk�1Þ�1 Oðk�1Þ�ðn�kÞ

O1�ðk�1Þ O1�1 hðkÞðaðkÞkk Þ
	

Oðn�kÞ�ðk�1Þ Oðn�kÞ�1 Oðn�kÞ�ðn�kÞ

0

B

@

1

C

A;

Dk ¼
Oðk�1Þ�ðk�1Þ Oðk�1Þ�1 Oðk�1Þ�ðn�kÞ

O1�ðk�1Þ a
ðkÞ
kk O1�ðn�kÞ

Oðn�kÞ�ðk�1Þ Oðn�kÞ�1 Oðn�kÞ�ðn�kÞ

0

B

@

1

C

A;

Lk ¼
Oðk�1Þ�ðk�1Þ Oðk�1Þ�1 Oðk�1Þ�ðn�kÞ

O1�ðk�1Þ O1�1 O1�ðn�kÞ

Oðn�kÞ�ðk�1Þ ðaðkÞkk Þ
	gðkÞ Oðn�kÞ�ðn�kÞ

0

B

@

1

C

A;

Aðkþ1Þ ¼
Ok�k Ok�ðn�kÞ

Oðn�kÞ�k Rðkþ1Þ

 !

;

Rðkþ1Þ ¼ hðkÞðaðkÞkk Þ
	gðkÞ � BðkÞ: ð33Þ

Note that we have the following recursion for the entries of

A(k):

a
ðkþ1Þ
ij ¼

0; if i� k or j� k;

a
ðkÞ
ij � a

ðkÞ
ik a

ðkÞ
kk

� �	
a
ðkÞ
kj ; otherwise:

(

ð34Þ

This recursion is immediately seen in Algorithm 7.

Moreover it can be shown by induction that the matrix

computed on the kth step of that algorithm equals

Aðkþ1Þ �a
k

i¼1

Li �a
k

i¼1

Mi �a
k

i¼1

Di: ð35Þ

In other words, this matrix is composed from hð1Þa	11;

. . .; hðkÞðaðkÞkk Þ
	

(in the upper triangle), a	11gð1Þ; . . .; ðaðkÞkk Þ
	gðkÞ

(in the lower triangle), a11; . . .; a
ðkÞ
kk (on the diagonal), and

R(k?1) (in the south-eastern corner).

Universal algorithms for solving the matrix

123

Author's personal copy

After assembling and unfolding all expressions (32) for

A(k), where k ¼ 1; . . .; n; we obtain

A	 ¼ M	1D	1 � � �M	nD	nL	n � � � L	1: ð36Þ

(actually, Mn = Ln = 0 and hence Mn
* = Ln

* = I). Noticing

that Di
* and Mj

* commute for i \ j we can rewrite

A	 ¼ M	1 � � �M	nD	1 � � �D	nL	n � � � L	1: ð37Þ

Consider the identities

ðD1 � � � � � DnÞ	 ¼ D	1 � � �D	n;
ðL1 � � � � � LnÞ	 ¼ L	n � � � L	1;
ðM1 � � � � �MnÞ	 ¼ M	1 � � �M	n :

ð38Þ

The first of these identities is evident. For the other two,

observe that Mk
2 = Lk

2 = 0 for all k, hence M	k ¼ I �Mk

and L	k ¼ I � Lk: Further, LiLj = 0 for i [j and MiMj = 0

for i \ j. Using these identities it can be shown that

ðL1�����LnÞ	 ¼a
n�1

i¼0

ðL1�����LnÞi

¼ðI�LnÞ�� �ðI�L1Þ¼L	n� � �L	1;

ðM1�����MnÞ	 ¼a
n�1

i¼0

ðM1�����MnÞi

¼ðI�M1Þ���ðI�MnÞ¼M	1 � � �M	n ;

ð39Þ

which yields the last two identities of (38). Notice that in

(39) we have used the nilpotency of L1 � � � � � Ln and

M1 � � � � �Mn; which allows to apply (7).

It can be seen that the matrices M :¼ M1 � � � � �Mn; L :

¼ L1 � � � � � Ln and D :¼ D1 � � � � � Dn are contained in

the upper triangle, in the lower triangle and, respectively, on

the diagonal of the matrix computed by Algorithm 7. These

matrices satisfy the LDM decomposition A* = M*D*L*.

This concludes the explanation of Algorithm 7.

In terms of matrix computations, Algorithm 7 is a ver-

sion of LDM decomposition with outer product. This

algorithm can be reorganized to make it almost identical

with Golub and van Loan (1989), Algorithm 4.1.1:

This algorithm performs exactly the same operations as

Algorithm 7, computing consecutively one column of the

result after another. Namely, in the first half of the main

loop it computes the entries aij
(i) for i ¼ 1; . . .; j; first under

the guise of the entries of v and finally in the assignment

‘‘aði; jÞ ¼ ðaði; iÞÞ	 � vðiÞ’’. In the second half of the main

loop it computes akj
(j). The complexity of this algorithm is the

same as that of Algorithm 7.

3.4 LDM decomposition with symmetry and band

structure

When matrix A is symmetric, that is, aij = aji for all

i, j, it is natural to expect that LDM decomposition

must be symmetric too, that is, M = LT. Indeed, going

through the reasoning of the previous section, it can be

shown by induction that all intermediate matrices A(k)

are symmetric, hence Mk = Lk
T for all k and M = LT.

We now present two versions of symmetric LDM

decomposition, corresponding to the two versions of

LDM decomposition given in the previous section.

Notice that the amount of computations in these algo-

rithms is nearly halved with respect to their full ver-

sions. In both cases they require n3/6 ? O(n2)

operations � and �(each) and n - 1 operations of

taking algebraic closure.

The strictly triangular matrix L is contained in the lower

triangle of the result, and the matrix D is on the diagonal.

The next version generalizes Golub and van Loan

(1989) Algorithm 4.1.2. Like in the prototype, the idea is to

use the symmetry of A precomputing the first j - 1 entries

G. L. Litvinov et al.

123

Author's personal copy

of v inverting the assignment ‘‘aði; jÞ ¼ aði; iÞ	 � vðiÞ’’
for i ¼ 1; . . .; j� 1: This is possible since a(j, i) =

a(i, j) belong to the first j - 1 columns of the result that

have been computed on the previous stages.

Note that this version requires invertibility of the clo-

sures a(i, i)* computed by the algorithm.

Remark 3 In the case of idempotent semiring we have

(D*)2 = D*, hence A* = (M*D*)(D*L*). When A is sym-

metric we can write A* = (G*)TG* where G = D*L. Evi-

dently, this idempotent Cholesky factorization can be

computed by minor modifications of Algorithms 9 and 10.

See also Golub and van Loan (1989), Algorithm 4.2.2.

A = (aij) is called a band matrix with upper bandwidth

q and lower bandwidth p if aij = 0 for all j [i ? q and all

i [j ? p. A band matrix with p = q = 1 is called tridi-

agonal. To generalize a specific LDM decomposition with

band matrices, we need to show that the band parameters of

the matrices Að2Þ; . . .;AðnÞ computed in the process of LDM

decomposition are not greater than the parameters of

A(1) = A. Assume by induction that A ¼ Að1Þ; . . .;AðkÞ have

the required band parameters, and consider an entry aij
(k?1)

for i [j ? p. If i B k or j B k then a
ðkþ1Þ
ij ¼ 0; so we can

assume i [k and j [k. In this case i [k ? p, hence

a
ðkÞ
ik ¼ 0 and

a
ðkþ1Þ
ij ¼ a

ðkÞ
ij � a

ðkÞ
ik a

ðkÞ
kk

� �	
a
ðkÞ
kj ¼ 0:

Thus we have shown that the lower bandwidth of A(k) is not

greater than p. It can be shown analogously that its upper

bandwidth does not exceed q. We use this to construct the

following band version of LDM decomposition, see (Golub

and van Loan 1989) Algorithm 4.3.1 for a prototype.

When p and q are fixed and n [[p, q is variable, it

can be seen that the algorithm performs approximately npq

operations � and � each.

Remark 4 There are important special kinds of band

matrices, for instance, Hessenberg and tridiagonal matri-

ces. Hessenberg matrices are defined as band matrices with

p = 1 and q = n, while in the case of tridiagonal matrices

p = q = 1. It is straightforward to write further adapta-

tions of Algorithm 11 to these cases.

3.5 Iteration schemes

We are not aware of any truly universal scheme, since the

decision when such schemes work and when they should be

stopped depends both on the semiring and on the repre-

sentation of data.

Our first scheme is derived from the following iteration

process:

Xðkþ1Þ ¼ AXðkÞ � B ð40Þ

trying to solve the Bellman equation X ¼ AX � B: Iterating

expressions (40) for all k up to m we obtain

XðmÞ ¼ AmXð0Þ �a
m�1

i¼0

AiB ð41Þ

Thus the result crucially depends on the behaviour of

AmX(0). The algorithm can be written as follows (for the

case when B is a column vector).

Universal algorithms for solving the matrix

123

Author's personal copy

Next we briefly discuss the behaviour of Jacobi iteration

scheme over the usual arithmetic with nonnegative real

numbers, and over semiring Rmax: For simplicity, in both

cases we restrict to the case of irreducible matrix A, that is,

when the associated digraph is strongly connected.

Over the usual arithmetic, it is well known that (in the

irreducible nonnegative case) the Jacobi iterations con-

verge if and only if the greatest eigenvalue of A, denoted

by r(A), is strictly less than 1. This follows from the

behaviour of Amx(0). In general we cannot obtain exact

solution of x = Ax ? b by means of Jacobi iterations.

In the case of Rmax; the situation is determined by the

behaviour of Amx(0) which differs from the case of the usual

nonnegative algebra. However, this behaviour can be also

analysed in terms of r(A), the greatest eigenvalue in terms of

max-plus algebra (that is, with respect to the max-plus ei-

genproblem A� x ¼ k� x). Namely, Amxð0Þ ! 0 and hence

the iterations converge if rðAÞ\1: Moreover A	 ¼ ðI � A�
� � � � An�1Þ and hence the iterations yield exact solution to

Bellman equation after a finite number of steps. To the con-

trary, Amxð0Þ ! þ1 and hence the iterations diverge if

rðAÞ[1: See, for instance, Carré (1971) for more details. On

the boundary r(A) = 1, the powers Am reach a periodic regime

after a finite number of steps. Hence A	b� Amxð0Þ also

becomes periodic, in general. If the period of Amx(0) is one,

that is, if this sequence stabilizes, then the method converges

to a general solution of x ¼ Ax� b described as a superpo-

sition of A*b and an eigenvector of A (Butkovič et al. 2011;

Krivulin 2006). The vector A*b may dominate, in which case

the method converges to A*b as ‘‘expected’’. However, the

period of A	b� Amxð0Þ may be more than one, in which case

the Jacobi iterations do not yield any solution of x ¼ Ax� b:

See Butkovič (2010) for more information on the behaviour of

max-plus matrix powers and the max-plus spectral theory.

In a more elaborate scheme of Gauss–Seidel iterations

we can also use the previously found coordinates of X(k). In

this case matrix A is written as L� U where L is the strictly

lower triangular part of A, and U is the upper triangular

part with the diagonal. The iterations are written as

XðkÞ ¼ LXðkÞ � UXðk�1Þ � B ¼ L	UXðk�1Þ � L	B ð42Þ

Note that the transformation on the right hand side is

unambiguous since L is strictly lower triangular and L* is

uniquely defined as I � L� � � � � Ln�1 (where n is the

dimension of A). In other words, we just apply the forward

substitution. Iterating expressions (42) for all k up to m we

obtain

XðmÞ ¼ ðL	UÞmXð0Þ �a
m�1

i¼0

ðL	UÞiL	B ð43Þ

The right hand side reminds of the formula ðL� UÞ	 ¼
ðL	UÞ	L	; see (8), so it is natural to expect that these

iterations converge to A*B with a good choice of X(0). The

result crucially depends on the behaviour of (L*U)m X(0).

The algorithm can be written as follows (we assume again

that B is a column vector).

It is plausible to expect that the behaviour of Gauss–

Seidel scheme in the case of max-plus algebra and non-

negative linear algebra is analogous to the case of Jacobi

iterations.

G. L. Litvinov et al.

123

Author's personal copy

3.6 Software implementation of universal algorithms

Software implementations for universal semiring algo-

rithms cannot be as efficient as hardware ones (with respect

to the computation speed) but they are much more flexible.

Program modules can deal with abstract (and variable)

operations and data types. Concrete values for these

operations and data types can be defined by the corre-

sponding input data. In this case concrete operations and

data types are generated by means of additional program

modules. For programs written in this manner it is conve-

nient to use special techniques of the so-called object ori-

ented (and functional) design, see, for instance, Lorenz

(1993), Pohl (1997), Stepanov and Lee (1994). Fortunately,

powerful tools supporting the object-oriented software

design have recently appeared including compilers for real

and convenient programming languages (for instance,

C?? and Java) and modern computer algebra systems.

Recently, this type of programming technique has been

dubbed generic programming (see, for instance, Pohl

1997).

C?? implementation Using templates and objective

oriented programming, Tchourkin and Sergeev (2007)

created a Visual C?? application demonstrating how the

universal algorithms calculate matrix closures A* and solve

Bellman equations x ¼ Ax� b in various semirings. The

program can also compute the usual system Ax = b in the

usual arithmetic by transforming it to the ‘‘Bellman’’ form.

Before pressing ‘‘Solve’’, the user has to choose a semiring,

a problem and an algorithm to use. Then the initial data are

written into the matrix (for the sake of visualization the

dimension of a matrix is no more than 10 9 10). The result

may appear as a matrix or as a vector depending on the

problem to solve. The object-oriented approach allows to

implement various semirings as objects with various defi-

nitions of basic operations, while keeping the algorithm

code unique and concise.

Examples of the semirings. The choice of semiring

determines the object used by the algorithm, that is, the

concrete realization of that algorithm. The following

semirings have been realized:

(1) � ¼ þ and = 9 : the usual arithmetic over reals;

(2) � ¼ max and = ? : max-plus arithmetic over

R [f�1g;
(3) � ¼ min and = ? : min-plus arithmetic over

R [fþ1g;
(4) � ¼ max and = 9 : max-times arithmetic over

nonnegative numbers;

(5) � ¼ max and = min: max-min arithmetic over a

real interval [a, b] (the ends a and b can be chosen by

the user);

(6) � ¼OR and = AND: Boolean logic over the two-

element set {0,1}.

Algorithms. The user can select the following basic

methods:

(1) Gaussian elimination scheme, including the uni-

versal realizations of escalator method (Algorithm 1),

Floyd-Warshall (Algorithm 2, Yershov’s algorithm

(based on a prototype from 11. Ch. 2), and the

universal algorithm of Rote (Rote 1985);

(2) Methods for Toeplitz systems including the uni-

versal realizations of Durbin’s and Levinson’s

schemes (Algorithms 3 and 4);

(3) LDM decomposition (Algorithm 7) and its adapta-

tions to the symmetric case (Algorithm 9), band

matrices (Algorithm 11), Hessenberg and tridiagonal

matrices.

(4) Iteration schemes of Jacobi and Gauss–Seidel. As

mentioned above, these schemes are not truly

universal since the stopping criterion is different for

the usual arithmetics and idempotent semirings.

Types of matrices. The user may choose to work with

general matrices, or with a matrix of special structure, for

instance, symmetric, symmetric Toeplitz, band, Hessen-

berg or tridiagonal.

Visualization. In the case of idempotent semiring, the

matrix can be visualized as a weighted digraph. After

performing the calculations, the user may wish to find an

optimal path between a given pair of nodes, or to display an

optimal paths tree. These problems can be solved using

parental links like in the case of the classical Floyd-War-

shall method computing all optimal paths, see, for instance,

Sedgewick (2002). In our case, the mechanism of parental

links can be implemented directly in the class describing an

idempotent arithmetic.

Other arithmetics and interval extensions. It is also

possible to realize various types of arithmetics as data types

and combine this with the semiring selection. Moreover, all

implemented semirings can be extended to their interval

versions. Such possibilities were not realized in the pro-

gram of Churkin and Sergeev (Tchourkin and Sergeev

2007), being postponed to the next version. The list of such

arithmetics includes integers, and fractional arithmetics

with the use of chain fractions and controlled precision.

MATLAB realization. The whole work (except for

visualization tools) has been duplicated in MATLAB

(Tchourkin and Sergeev 2007), which also allows for a

kind of object-oriented programming. Obviously, the uni-

versal algorithms written in MATLAB are very close to

those described in the present paper.

Future prospects. High-level tools, such as STL (Pohl

1997; Stepanov and Lee 1994), possess both obvious

Universal algorithms for solving the matrix

123

Author's personal copy

advantages and some disadvantages and must be used with

caution. It seems that it is natural to obtain an implemen-

tation of the correspondence principle approach to scien-

tific calculations in the form of a powerful software system

based on a collection of universal algorithms. This

approach should ensure a working time reduction for pro-

grammers and users because of the software unification.

The arbitrary necessary accuracy and safety of numeric

calculations can be ensured as well.

The system has to contain several levels (including

programmer and user levels) and many modules.

Roughly speaking, it must be divided into three parts. The

first part contains modules that implement domain modules

(finite representations of basic mathematical objects). The

second part implements universal (invariant) calculation

methods. The third part contains modules implementing

model dependent algorithms. These modules may be used in

user programs written in C??, Java, Maple, Matlab etc.

The system has to contain the following modules:

– Domain modules:

– infinite precision integers;

– rational numbers;

– finite precision rational numbers (see Sergeev

2011);

– finite precision complex rational numbers;

– fixed- and floating-slash rational numbers;

– complex rational numbers;

– arbitrary precision floating-point real numbers;

– arbitrary precision complex numbers;

– p-adic numbers;

– interval numbers;

– ring of polynomials over different rings;

– idempotent semirings;

– interval idempotent semirings;

– and others.

– Algorithms:

– linear algebra;

– numerical integration;

– roots of polynomials;

– spline interpolations and approximations;

– rational and polynomial interpolations and

approximations;

– special functions calculation;

– differential equations;

– optimization and optimal control;

– idempotent functional analysis;

– and others.

This software system may be especially useful for

designers of algorithms, software engineers, students and

mathematicians.

Acknowledgments The authors are grateful to the anonymous ref-

erees for a number of important corrections in the paper.

References

Alefeld G, Herzberger J (1983) Introduction to interval computations.

Academic Press, New York

Baccelli FL, Cohen G, Olsder GJ, Quadrat JP (1992) Synchronization

and linearity: an algebra for discrete event systems. Wiley,

Hoboken

Backhouse RC, Carré BA (1975) Regular algebra applied to path-

finding problems. J Inst Math Appl 15:161–186

Barth W, Nuding E (1974) Optimale Lösung von Intervalgleichung-

systemen. Comput Lett 12:117–125

Butkovič P (2010) Max-linear systems: theory and algorithms.

Springer, Berlin

Butkovič P, Schneider H, Sergeev S (2011) Z-matrix equations in

max algebra, nonnegative linear algebra and other semirings.

http://www.arxiv.org/abs/1110.4564

Carré BA (1971) An algebra for network routing problems. J Inst

Math Appl 7:273–294

Carré BA (1979) Graphs and networks. Oxford University Press,

Oxford

Cechlárová K, Cuninghame-Green RA (2002) Interval systems of

max-separable linear equations. Linear Alg Appl 340(1–3):

215–224

Cuninghame-Green RA (1979) Minimax algebra, volume 166 of

lecture notes in economics and mathematical systems. Springer,

Berlin

Faddeev DK, Faddeeva VN (2002) Computational methods of linear

algebra. Lan’, St. Petersburg. 3rd ed., in Russian

Fiedler M, Nedoma J, Ramı́k J, Rohn J, Zimmermann K (2006)

Linear optimization problems with inexact data. Springer, New

York

Golan J (2000) Semirings and their applications. Kluwer, Dordrecht

Golub GH, van Loan C (1989) Matrix computations. John Hopkins

University Press, Baltimore and London

Gondran M (1975) Path algebra and algorithms. In: Roy B (ed),

Combinatorial programming: methods and applications, Reidel,

Dordrecht, pp 137–148

Gondran M, Minoux M (1979) Graphes et algorithmes. Éditions

Eylrolles, Paris

Gondran M, Minoux M (2010) Graphs, dioids and semirings.

Springer, New York a.o.

Gunawardena J (eds) (1998) Idempotency. Cambridge University

Press, Cambridge

Hardouin L, Cottenceau B, Lhommeau M, Le Corronc E (2009)

Interval systems over idempotent semiring. Linear Alg Appl

431:855–862

Kolokoltsov VN, Maslov VP (1997) Idempotent analysis and its

applications. Kluwer, Dordrecht

Kreinovich V, Lakeev A, Rohn J, Kahl P (1998) Computational

complexity and feasibility of data processing and interval

computations. Kluwer, Dordrecht

Krivulin NK (2006) Solution of generalized linear vector equations in

idempotent linear algebra. Vestnik St.Petersburg Univ Math

39(1):23–36

Lehmann DJ (1977) Algebraic structures for transitive closure. Theor

Comp Sci 4:59–76

Litvinov GL (2007) The Maslov dequantization, idempotent and

tropical mathematics: a brief introduction. J Math Sci

141(4):1417–1428. http://www.arxiv.org/abs/math.GM/0507014

Litvinov GL, Maslov VP (1996) Idempotent mathematics: correspon-

dence principle and applications. Russ Math Surv 51:1210–1211

G. L. Litvinov et al.

123

Author's personal copy

http://www.arxiv.org/abs/1110.4564
http://www.arxiv.org/abs/math.GM/0507014

Litvinov GL, Maslov VP (1998) The correspondence principle for

idempotent calculus and some computer applications. In:

Gunawardena J (ed) Idempotency, Cambridge University Press,

Cambridge, pp 420–443. http://www.arxiv.org/abs/math.GM/

0101021

Litvinov GL, Maslova EV (2000) Universal numerical algorithms and

their software implementation. Progr Comput Softw

26(5):275–280. http://www.arxiv.org/abs/math.SC/0102114Z

Litvinov GL, Sobolevskiı̌ AN (2000) Exact interval solutions of the

discrete bellman equation and polynomial complexity in interval

idempotent linear algebra. Dokl Math 62(2):199–201. http://

www.arxiv.org/abs/math.LA/0101041

Litvinov GL, Sobolevskiı̌ AN (2001) Idempotent interval analysis and

optimization problems. Reliab Comput 7(5):353–377.

http://www.arxiv.org/abs/math.SC/0101080

Litvinov GL, Maslov VP, Rodionov AYa (2000) A unifying approach

to software and hardware design for scientific calculations and

idempotent mathematics. International Sophus Lie Centre,

Moscow. http://www.arxiv.org/abs/math.SC/0101069

Litvinov GL, Maslov VP, Shpiz GB (2001) Idempotent functional

analysis. An algebraic approach. Math Notes 69(5):696–729.

http://www.arxiv.org/abs/math.FA/0009128

Litvinov GL, Rodionov AYa, Tchourkin AV (2008) Approximate

rational arithmetics and arbitrary precision computations for

universal algorithms. Int J Pure Appl Math 45(2):193–204.

http://www.arxiv.org/abs/math.NA/0101152

Litvinov GL, Maslov VP, Rodionov AYa, Sobolevskiı̌ AN (2011)

Universal algorithms, mathematics of semirings and parallel

computations. Lect Notes Comput Sci Eng 75:63–89.

http://www.arxiv.org/abs/1005.1252

Lorenz M (1993) Object oriented software: a practical guide. Prentice

Hall Books, Englewood Cliffs, N.J.

Maslov VP (1987a) A new approach to generalized solutions of

nonlinear systems. Soviet Math Dokl 42(1):29–33

Maslov VP (1987b) On a new superposition principle for optimization

process. Uspekhi Math Nauk [Russian Math Surveys] 42(3):

39–48

Mikhalkin G (2006) Tropical geometry and its applications. In: Proc

ICM 2:827–852. http://www.arxiv.org/abs/math.AG/0601041

Moore RE (1979) Methods and applications of interval analysis.

SIAM Studies in Applied Mathematics. SIAM, Philadelphia

Myškova H (2005) Interval systems of max-separable linear equa-

tions. Linear Alg Appl 403:263–272

Myškova H (2006) Control solvability of interval systems of max-

separable linear equations. Linear Alg Appl 416:215–223

Neumaier A (1990) Interval methods for systems of equations.

Cambridge University Press, Cambridge

Pohl I. (1997) Object-Oriented Programming Using C?? , 2nd ed.

Addison-Wesley, Reading

Rote G (1985) A systolic array algorithm for the algebraic path

problem. Comput Lett 34:191–219

Sedgewick R (2002) Algorithms in C?? . Part 5: graph algorithms,

3rd ed. Addison-Wesley, Reading

Sergeev S (2011) Universal algorithms for generalized discrete matrix

Bellman equations with symmetric Toeplitz matrix. Tambov

University Reports, ser. Natural and Technical Sciences

16(6):1751–1758. http://www.arxiv.org/abs/math/0612309

Simon I (1988) Recognizable sets with multiplicities in the tropical

semiring. Lect Notes Comput Sci 324:107–120

Sobolevskiı̌ AN (1999) Interval arithmetic and linear algebra over

idempotent semirings. Dokl Math 60:431–433

Stepanov A, Lee M (1994) The standard template library. Hewlett-

Packard, Palo Alto

Tchourkin AV, Sergeev SN (2007) Program demonstrating how

universal algorithms solve discrete Bellman equation over

various semirings. In: Litvinov G, Maslov V, Sergeev S (eds)

Idempotent and tropical mathematics and problems of mathe-

matical physics (Volume II), Moscow. French-Russian Labora-

tory J.V. Poncelet. http://www.arxiv.org/abs/0709.4119

Viro O (2001) Dequantization of real algebraic geometry on

logarithmic paper. In: 3rd European Congress of Mathematics:

Barcelona, July 10–14, 2000. Birkhäuser, Basel, pp 135.

http://www.arxiv.org/abs/math/0005163

Viro O (2008) From the sixteenth hilbert problem to tropical

geometry. Jpn J Math 3:1–30

Universal algorithms for solving the matrix

123

Author's personal copy

http://www.arxiv.org/abs/math.GM/0101021
http://www.arxiv.org/abs/math.GM/0101021
http://www.arxiv.org/abs/math.SC/0102114Z
http://www.arxiv.org/abs/math.LA/0101041
http://www.arxiv.org/abs/math.LA/0101041
http://www.arxiv.org/abs/math.SC/0101080
http://www.arxiv.org/abs/math.SC/0101069
http://www.arxiv.org/abs/math.FA/0009128
http://www.arxiv.org/abs/math.NA/0101152
http://www.arxiv.org/abs/1005.1252
http://www.arxiv.org/abs/math.AG/0601041
http://www.arxiv.org/abs/math/0612309
http://www.arxiv.org/abs/0709.4119
http://www.arxiv.org/abs/math/0005163

	Universal algorithms for solving the matrix Bellman equations over semirings
	Abstract
	Introduction
	Mathematics of semirings
	Basic definitions
	Closure operation
	Weighted directed graphs and matrices over semirings
	Interval analysis over positive semirings
	Idempotent correspondence principle

	Some universal algorithms of linear algebra
	Escalator scheme and Gauss--Jordan elimination
	Toeplitz systems
	LDM decomposition
	LDM decomposition with symmetry and band structure
	Iteration schemes
	Software implementation of universal algorithms

	Acknowledgments
	References

