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Abstract

We consider tropical hemispaces, defined as tropically convex sets whose comple-
ments are also tropically convex, and tropical semispaces, defined as maximal
tropically convex sets not containing a given point. We characterize tropical
hemispaces by means of generating sets, composed of points and rays, that we
call (P,R)-representations. With each hemispace we associate a matrix with
coefficients in the completed tropical semiring, satisfying an extended rank-one
condition. Our proof techniques are based on homogenization (lifting a convex
set to a cone), and the relation between tropical hemispaces and semispaces.
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1. Introduction

Max-plus algebra refers to the algebraic structure which is obtained when
considering the max-plus semiring Rmax,+. This semiring is defined as the set
R ∪ {−∞} endowed with α ⊕ β := max(α, β) as addition and the usual real
numbers addition α ⊗ β := α + β as multiplication. Thus, in the max-plus
semiring, the neutral elements for addition and multiplication are −∞ and 0
respectively.

The max-plus semiring is algebraically isomorphic to the max-times semir-
ing Rmax,×, which is given by the set R+ = [0,+∞) endowed with α ⊕ β :=
max(α, β) as addition and the usual real numbers product α⊗ β := αβ as mul-
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tiplication. Consequently, in the max-times semiring, 0 is the neutral element
for addition and 1 is the neutral element for multiplication.

In this paper it will be convenient to consider both realizations at the same
time, under the common notation T. In other words, the reader can assume one
of the models from the very beginning. This will be called tropical algebra. We
will use 0 to denote the neutral element for addition, 1 to denote the neutral
element for multiplication, and T+ to denote the set of all invertible elements
with respect to the multiplication, i.e., all the elements of T different from 0.

The space Tn of n-dimensional vectors x = (x1, . . . , xn), endowed naturally
with the component-wise addition (also denoted by⊕) and λx := (λ⊗x1, . . . , λ⊗
xn) as the multiplication of a vector by a scalar, is a semimodule over T. The
element (0, . . . ,0) of Tn is also denoted by 0, and it is the identity for ⊕.

In tropical convexity, one first defines the tropical segment joining the points
x, y ∈ Tn as the set

{αx⊕ βy ∈ Tn | α⊕ β = 1} , (1)

and then calls a set C ⊆ Tn tropically convex if it contains the tropical segment
joining any two of its points (see Figure 1 below for an illustration of tropical
segments in dimension 2).

The interest in tropical convexity (also known as max-plus convexity, B-
convexity) comes from several fields, some of which we next review. Tropically
convex sets were introduced by Zimmermann [36] in order to study discrete
optimization problems. Tropical cones were studied by Maslov, Kolokoltsov,
Litvinov, Shpiz and others as part of the Idempotent Analysis [22, 24, 27], in-
spired by the fact that the solutions of a Hamilton-Jacobi equation associated
with a deterministic optimal control problem belong to structures similar to
convex cones, called idempotent linear spaces or semimodules, of which tropical
cones are a special case. Another motivation to study tropical convexity arises
from the algebraic approach to discrete event systems initiated by Cohen et
al. [9], since the reachable and observable spaces of certain timed discrete event
systems are naturally equipped with structures of tropical cones [12]. Tropi-
cal polyhedra also arise as limits of usual polyhedra when they are “observed”
through logarithmic glasses (a deformation also known as Maslov dequantiza-
tion), see Viro [35]. This is at the origin of the current development of tropical
algebraic geometry (e.g., Itenberg, Mikhalkin, Shustin [19] and Maclagan [25]),
with applications to the analysis of the space of phylogenetic trees [31], and
other fields. In particular, with this motivation, Develin and Sturmfels studied
tropical polytopes and developed a combinatorial approach thinking of them as
classical polyhedral complexes [13].

Many results that are part of classical convexity theory can be carried over to
the tropical setting: separation of convex sets and projection operators (Gaubert
and Sergeev [18]), minimization of distance and description of sets of best ap-
proximation (Akian et al. [1]), discrete convexity results such as Minkowski the-
orem (Gaubert and Katz [15, 16]), Helly, Caratheodory and Radon theorems
(Briec and Horvath [5]), colorful Caratheodory and Tverberg theorems (Gaubert
and Meunier [17]), to quote a few. Tropical polyhedra can be efficiently han-
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dled (Allamigeon et al. [3]) and they often have fewer and cannot have more
extreme points than usual polyhedra [4]. These results have found important
applications in discrete event systems (Katz [21] and Di Loreto et al. [14]), static
analysis (disjunctive invariants) of computer programs (Allamigeon et al. [2])
and other fields.

In this paper we investigate tropical hemispaces, which are tropically con-
vex sets whose complements are also tropically convex. This definition makes
sense in other structures once the notion of convex set is defined. Hemispaces
also appear in the literature under the name of halfspaces, convex halfspaces,
and generalized halfspaces. As general convex sets are quite complicated in
many convexity structures, a simple description of hemispaces is highly desir-
able. Usual hemispaces in Rn are described by Lassak in [23]. Mart́ınez-Legaz
and Singer [26] give several geometric characterization of usual hemispaces in
Rn and several ways of representing them with the aid of linear operators and
lexicographic order in Rn.

Hemispaces play a role in abstract convexity (see Singer [33], Van de Vel [34]),
where they are used in the Kakutani Theorem to separate two convex sets from
each other. The proof of Kakutani Theorem makes use of Zorn’s Lemma (re-
lying on the Pasch axiom, which holds both in tropical and usual convexity).
Briec, Horvath and Rubinov specialized this result to B-convexity (tropical con-
vexity, max-plus convexity) in [5, 7]. A different approach is to start from the
separation of a point from a closed convex set, as investigated in many works
(e.g., Zimmermann [36], Litvinov et al. [24], Cohen et al. [10, 11], Develin and
Sturmfels [13], Briec et al. [7]). This Hahn-Banach type result can be extended
to the separation of several convex sets by an application of non-linear Perron-
Frobenius theory, as Gaubert and Sergeev in [18]. Here the separation does not
rely on Zorn’s Lemma and is more constructive (possibly leading to an algorith-
mic solution in the case of polytopes), but on the cost of losing the generality of
separation of any two or several convex sets, as stated in the Kakutani Theorem
and its extensions [7].

In the Hahn-Banach approach, tropically convex sets are separated by means
of closed tropical halfspaces, defined as sets of vectors x in Tn satisfying an
inequality of the form

⊕
j γjxj ⊕ α ≤

⊕
i βixi ⊕ δ. As shown by Joswig [20],

closed tropical halfspaces are unions of several closed sectors, which are convex
in both tropical and ordinary sense.

Briec and Horvath [6] proved that the topological closure of any tropical
hemispace is a closed tropical halfspace. Hence closed tropical halfspaces, with
respect to general tropical hemispaces, are “almost everything”. However, the
borderline between a tropical hemispace and its complement has a generally
unknown intricate pattern, with some pieces belonging to one hemispace and
the rest to the other. This pattern was not revealed by Briec and Horvath [6],
who were more interested in Hahn-Banach type separation results.

The present paper gives a complete characterization of tropical hemispaces
by means of generating sets. In dimension 2 the borderline is described explicitly
and pictures of all the types of tropical hemispaces that may appear are shown
in Figures 2 and 3. Thus, our result is new and more general than the one
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established in [6] even in dimension 2. In higher dimensions one may use the
characterization of the set of generators to describe the thin structure of the
borderline quite explicitly. It is possible that future study along this line might
help elucidate its intricate combinatorics.

We now would like to emphasize that the basic plan of the proof is natural
and suitable for other classification problems in abstract convexity. The suc-
cessful implementation of this approach is one of the main achievements of the
paper. Let us now explain it in more detail.

First of all, we recall that like in usual convexity, closed tropically convex
sets can be represented by extreme points and recessive rays, following Gaubert
and Katz [15, 16]. As a relaxation of this traditional approach, we suggest
the concept of (P,R)-representation to describe general tropically convex sets.
Homogenization (lifting convex sets to convex cones) is another classical tool
that we exploit throughout the paper, in the tropical setting.

Next, an important feature of tropical convexity (as opposed to usual con-
vexity) is the existence of a finite number of types of semispaces, i.e., maximal
tropically convex sets not containing a given point. These sets were described in
detail by Nitica and Singer [28, 29, 30], who showed that they are precisely the
complements of closed sectors (which constitute closed tropical halfspaces, as
mentioned above). This is closely related to the so-called multiorder principle
of tropical convexity [28, 29, 32].

It follows from abstract convexity that any hemispace is the union of all the
complements of semispaces which it contains. The complements of semispaces
are closed sectors of several types. The tropical convex hull of a union of sectors
of certain type gives a sector of the same type, perhaps with some pieces of the
boundary missing. Some degenerate cases may also appear. As sectors have
a simple representation in terms of generators, the hemispace can be written
as a union of sets for which one has a relatively simple description in terms of
generators. So far the method is quite general and geometric, and for dimension
2 sufficient for classification.

Nevertheless, for higher dimensions the fact that we deal with tropical hemis-
paces becomes relevant. It turns out that a tropical hemispace is generated by
unit vectors and combinations of two unit vectors. Therefore, to describe a
couple of tropical hemispaces by their generating sets we need to understand
how the combinations of two unit vectors are distributed among them. The
proof becomes more algebraic and combinatorial. We introduce the “α-matrix”,
whose entries stem from the borderline between tropical hemispaces on two-
dimensional coordinate planes. We show that it satisfies an extended rank-one
condition, and then we prove that this condition is also sufficient in order for a
generating set to generate a tropical hemispace. This part of the proof is more
technical and it is given in the last third of the paper, starting with Propo-
sition 4.12 and ending with the proof of Theorem 4.10. We use the rank-one
condition to describe the fine structure of the α-matrix, which is an indepen-
dent combinatorial result of interest, and then use this structure to construct
explicitly a complementary tropical hemispace for the tropical hemispace given
by the generating set.
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The paper is organized as follows. Section 2 is occupied with preliminar-
ies on generators and recessive rays of tropically convex sets, and suggests the
concept of (P,R)-representation. In Section 3 we study tropical semispaces, in
order to give a simpler proof of their characterization exploiting homogenization.
Hemispaces appear here as unions of (in general, infinitely many) complements
of semispaces, i.e., closed sectors of [20]. Section 4 contains the main results on
tropical hemispaces. The purpose of Subsection 4.1 is to reduce general tropical
hemispaces to conic hemispaces (i.e., hemispaces being tropical cones). This
aim is finally achieved in Theorem 4.7. Meanwhile we draw all tropical hemis-
paces on the plane, see Figures 2 and 3, and study the recessive rays of general
tropical hemispaces. In view of Theorem 4.7, in Subsection 4.2 we study conic
hemispaces only. There we prove Theorem 4.10 as explained above, which gives
a concise characterization of tropical hemispaces in terms of generating sets.
We find this result new, quite unexpected and (in principle) difficult to prove.
In Subsection 4.3, we obtain a number of corollaries of the previous results.
First we verify that closed tropical hemispaces are closed tropical halfspaces, a
result of [6], see Theorem 4.18 and Corollary 4.20. The (P,R)-representation
of general tropical hemispaces is formulated in Theorem 4.22, obtained as a
combination of Theorems 4.7 and 4.10.

2. Preliminaries

2.1. Tropically convex sets: generation and homogenization

We start describing some relations between tropically convex sets and trop-
ical cones.

In what follows, for any m,n ∈ Z with m ≤ n, we denote the set {m,m +
1, . . . , n} by [m,n], or simply by [n] when m = 1. Moreover, the multiplicative
inverse of λ ∈ T+ will be denoted by λ−1. For x ∈ Tn we define the support of
x by

supp(x) := {i ∈ [n] | xi 6= 0}.

The set of the vectors {ei | i ∈ [n]} ⊆ Tn defined by

eij =

{
1 if i = j

0 if i 6= j

form the standard basis in Tn. We will refer to these vectors as the unit vectors.

Definition 2.1. A set V ⊆ Tn is called a tropical cone if it is closed under
(tropical) addition and multiplication by scalars.

For P,R ⊆ Tn, we define

conv(P ) :=

⊕
y∈P

λyy | λy ∈ T for y ∈ P and
⊕
y∈P

λy = 1


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and

span(R) :=

⊕
y∈R

λyy | λy ∈ T for y ∈ R

 ,

where in both cases only a finite number of the scalars λy is not equal to 0.

Definition 2.2. Let P,R ⊆ Tn. We say that a tropically convex set C ⊆ Tn is
generated by the pair (P,R) if

C = conv(P )⊕ span(R). (2)

For each tropically convex set C ⊆ Tn at least one representation of the
form (2) exists: just take P = C and R = ∅. A canonical representation of
the form (2) can be written for closed tropically convex sets, by the tropical
analogue of Minkowski theorem, due to Gaubert and Katz [15, 16].

Definition 2.3. For C ⊆ Tn, the set

VC = {(λ, λx1, . . . , λxn) | (x1, . . . , xn) ∈ C, λ ∈ T} ⊂ Tn+1 (3)

is called the homogenization of C.

Remark 2.4. If C ⊆ Tn is a tropically convex set, then its homogenization VC ⊆
Tn+1 is a tropical cone. The coordinates in the homogenization are denoted by
(x0, x1, . . . , xn).

Reversing the homogenization means taking a section of a tropical cone by a
coordinate plane. Below we take only sections by x0 = α (mostly with α = 1),
and not by xi = α with i ∈ [n]. Hence we do not indicate the coordinate in the
notation.

Definition 2.5. For V ⊆ Tn+1 and α ∈ T, the set

CαV = {x ∈ Tn | (α, x) ∈ V } (4)

is called a coordinate section of V .

Proposition 2.6. If V ⊆ Tn+1 is expressed as span(X) and its coordinate
section C1

V is nonempty, then C1
V = conv(PX)⊕ span(RX) where

PX := {y ∈ Tn | ∃λ 6= 0, (λ, λy) ∈ X}, RX := {z ∈ Tn | (0, z) ∈ X}. (5)

Proof. If x ∈ C1
V then

(1, x) =
⊕

(µy,µyy)∈X

λy(1, y)⊕
⊕

(0,z)∈X

λz(0, z) (6)

for some λy, λz ∈ T and µy ∈ T, with µy 6= 0 and a finite number of λy, λz not
equal to 0. As

⊕
λy = 1, it follows that x ∈ conv(PX)⊕ span(RX). Conversely,

if x ∈ conv(PX) ⊕ span(RX) then (1, x) can be represented as in (6), hence
(1, x) ∈ V and x ∈ C1

V .
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2.2. Recessive rays

We will use the following notions of recessive rays of a tropically convex set:

Definition 2.7. Let C ⊆ Tn be a tropically convex set.

(i) Given x ∈ C, the set of recessive rays at x, or locally recessive rays at x,
is defined as

recx C := {z ∈ Tn | x⊕ λz ∈ C for all λ ∈ T}.

(ii) The set of globally recessive rays of C, denoted by rec C, consists of the
rays that are recessive at each point of C.

(iii) Given i ∈ [n], the set of i-recessive rays of C is defined as

reci C := {z ∈ Tn | i ∈ supp(z) and ∃α 6= 0, αei ∈ C and z ∈ recαei C}.

Note that if C = conv(P )⊕ span(R) as in (2), then R ⊆ rec C.
The following lemma gives a general relation between recessive rays at dif-

ferent points of a tropically convex set C.

Lemma 2.8. Let C ⊆ Tn be a tropically convex set and x, y ∈ C.

(i) If supp(x) ⊆ supp(y) and z ∈ recx C, then z ∈ recy C. In particular,
rec0 C ⊆ rec C.

(ii) If supp(y) ⊆ supp(z) and z ∈ recy C, then λz ∈ C for all large enough λ,
and z ∈ rec C.

Proof. (i) We need to prove that y ⊕ λz ∈ C for all λ ∈ T. Since supp(x) ⊆
supp(y) we have βx ≤ y for small enough β which we assume to satisfy 0 < β ≤
1. Then, given λ ∈ T, we conclude that

y ⊕ β(x⊕ β−1λz) = y ⊕ λz ∈ C

because z ∈ recx C, and so the left hand side is a convex combination of two
points in C.

(ii) We have both y⊕λz ∈ C for all λ ∈ T, since z ∈ recy C, and y⊕λz = λz
for all large enough λ, since supp(y) ⊆ supp(z). Hence, λz ∈ C for all large
enough λ. In particular, given any β ∈ T, there exists λ > β such that λz ∈ C.
Then, for any x ∈ C, we have x ⊕ βz = x ⊕ βλ−1λz ∈ C because βλ−1 ≤ 1.
Thus, we conclude that z ∈ rec C.

Corollary 2.9. If C ⊆ Tn is a tropically convex set, then reci C ⊆ rec C for all
i ∈ [n].

Proof. Apply Lemma 2.8 part (ii) with y = αei, for some α 6= 0 and i ∈ supp(z)
such that z ∈ recαei C.
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Observe that z ∈ Tn can be globally recessive in C but not i-recessive for
any i ∈ [n]: in this case, C does not contain any point of the form αei for α 6= 0
and i ∈ supp(z).

To introduce a topology we need to specialize T to one of the models.
Namely, if T = Rmax,× then we use the topology induced in Rn+ by the usual Eu-
clidean topology in the real space. If T = Rmax,+, then our topology is induced
by the metric d∞(x, y) = maxi∈[n] |exi − eyi |.

For closed tropically convex sets, every locally recessive ray is globally re-
cessive.

Proposition 2.10 (Gaubert and Katz [16]). If a tropically convex set C is
closed, then recx C ⊆ rec C for all x ∈ C.

Theorem 2.11. Let {C`} be a family of tropically convex sets in Tn generated
by the pairs (P`, R`):

C` = conv(P`)⊕ span(R`),

and let C := conv(∪`C`). Then,

C = conv(∪`P`)⊕ span(∪`R`) (7)

if any of the following conditions hold:

(i) R` ⊆ rec C for all `;
(ii) C is closed;
(iii) For any z ∈ R` there exists y ∈ conv(P`) such that supp(y) ⊆ supp(z);
(iv) All points in P` have the same support for all `.

Proof. It can be shown that in general we have

C ⊆ conv(∪`P`)⊕ span(∪`R`).

(i) In this case C⊕span(∪`R`) ⊆ C, hence we also have the opposite inclusion

conv(∪`P`)⊕ span(∪`R`) ⊆ C.

Let us now prove that R` ⊆ rec C holds for cases (ii)-(iv).
(ii) Each z ∈ R` is recessive at all y ∈ P`, hence by Proposition 2.10 it is

globally recessive.
(iii) In this case any z ∈ R` satisfies the condition of Lemma 2.8 part (ii) for

some point y ∈ P`, hence it belongs to rec C.
(iv) In this case points in P` have the minimal support in C, and as the rays

of R` are recessive at the points of P`, by Lemma 2.8 part (i) they are recessive
at all points of C.

3. Semispaces

In this section we aim to give a simpler proof for the structure of tropical
semispaces, originally described by Nitica and Singer [28, 29], and to introduce
tropical hemispaces with some preliminary results on their relation with semis-
paces.
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3.1. Conic semispaces and sectors

We begin by recalling the definition of conic hemispaces.

Definition 3.1. A pair of tropical cones H1,H2 ⊆ Tn is called a couple of conic
hemispaces if H1 ∩H2 = {0} and H1 ∪H2 = Tn.

For any y ∈ Tn and i ∈ supp(y), define the following sets:

Wi(y) :=

x ∈ Tn |
⊕

j∈supp(y)

xjy
−1
j ≤ xiy−1i , and xj = 0 for all j /∈ supp y

 ,

(8)
which will be referred to as conic sectors of type i. Since the complement of
Wi(y)

{Wi(y) =

x ∈ Tn |
⊕

j∈supp(y)

xjy
−1
j > xiy

−1
i , or xj > 0 for some j /∈ supp y

 ,

(9)
it follows that Wi(y) and {Wi(y) ∪ {0} are both tropical cones, so they form a
couple of conic hemispaces. Also note that y ∈ Wi(y) for all i ∈ supp(y).

The following result appears in several places ([8, 13, 20, 16, 32]).

Theorem 3.2. Let V ⊆ Tn be a tropical cone and take y 6= 0 in Tn. Then y ∈ V
if and only if the set Wi(y) \ {0} contains a point from V for each i ∈ supp(y).

Proof. Note first that if y ∈ V, then y ∈ Wi(y) for all i ∈ supp(y).
Assume now that xi 6= 0 is in Wi(y) ∩ V, for i ∈ supp(y). Since xi ∈ Wi(y)

and xi 6= 0, we have xii 6= 0 and yix
i
j ≤ yjx

i
i for all j ∈ [n]. Then, y can be

written as a tropical linear combination of the xi’s:

y =
⊕

i∈supp(y)

λix
i,

where λi = yi(x
i
i)
−1, therefore y ∈ V.

Restating Theorem 3.2 we get the following.

Theorem 3.3. Let V ⊆ Tn be a tropical cone and take y 6= 0 in Tn. Then
y /∈ V if and only if V ⊆ {Wi(y) ∪ {0} for some i ∈ supp(y).

We are also interested in the following object.

Definition 3.4. A tropical cone in Tn is called a conic semispace at point y 6= 0
in Tn if it is a maximal tropical cone not containing y.

Corollary 3.5. There are exactly the cardinality of supp(y) conic semispaces
at the point y 6= 0 of Tn. These are given by the tropical cones {Wi(y) ∪ {0}
for i ∈ supp(y).
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Proof. Suppose that V is a conic semispace at y. Since it is a tropical cone not
containing y, Theorem 3.3 implies that it is contained in {Wi(y)∪{0} for some
i ∈ supp(y). By maximality, it follows that it coincides with {Wi(y) ∪ {0}.

This statement shows that Theorem 3.3 is an instance of a separation theo-
rem in abstract convexity. In particular, we obtain the following result.

Corollary 3.6. Each nontrivial tropical cone V can be represented as the in-
tersection of the conic semispaces {Wi(y)∪ {0} containing it (where y /∈ V and
i ∈ supp(y)), and for each complement F of a tropical cone, F ∪ {0} can be
represented as the union of the conic sectors Wi(y) contained in F ∪{0} (where
y ∈ F and i ∈ supp(y)).

Lemma 3.7. Assume that x, y ∈ Tn satisfy supp(x) ∩ supp(y) 6= ∅. Then, for
any i ∈ supp(x) ∩ supp(y), the nonzero point z with coordinates

zj := min
{
x−1i xj , y

−1
i yj

}
(10)

belongs to both Wi(x) and Wi(y).

Proof. Note that zj = 0 for j 6∈ supp(x) ∩ supp(y). Moreover, since zi = 1, we
have zjx

−1
j ≤ x−1i ≤ zix

−1
i for all j ∈ [n]. Then, we conclude that z ∈ Wi(x).

Similarly, it can be shown that z ∈ Wi(y).

Corollary 3.6 and Lemma 3.7 imply the following (preliminary) result on
conic hemispaces.

Theorem 3.8. For any couple of conic hemispaces H1 and H2 there exist dis-
joint subsets I, J ⊆ [n] and a set Y ⊆ Tn such that

H1 = span{∪Wi(y) | Wi(y) ⊆ H1, i ∈ I, y ∈ Y ∩H1},
H2 = span{∪Wj(y) | Wj(y) ⊆ H2, j ∈ J, y ∈ Y ∩H2}.

(11)

Proof. As H1 and H2 are complements of tropical cones, Corollary 3.6 yields
that they are unions of the conic sectors contained in them. Since they are
cones, these unions coincide with their conic hulls (i.e., spans). By Lemma 3.7,
the sectors in H1 and H2 should be of different type, otherwise H1 and H2 have
a nontrivial common point.

3.2. General semispaces and sectors

We now turn to tropically convex sets using the homogenization technique.
Below we will be interested in the following objects.

Definition 3.9. A pair of tropically convex sets H1,H2 ⊆ Tn is called a couple
of hemispaces if H1 ∩H2 = ∅ and H1 ∪H2 = Tn.
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If Tn is viewed as the coordinate section of Tn+1 by x0 = 1, then the
coordinate sections ofWi(1, y) and {Wi(1, y) for y ∈ Tn and i ∈ supp(y)∪{0} ⊆
[0, n] are

S0(y) := C1
W0(1,y) =x ∈ Tn |

⊕
j∈supp(y)

xjy
−1
j ≤ 1 and xj = 0 for all j /∈ supp(y)


Si(y) := C1

Wi(1,y) =x ∈ Tn | 1⊕
⊕

j∈supp(y)

xjy
−1
j ≤ xiy−1i and xj = 0 for all j /∈ supp(y)

 ,

and

{S0(y) = C1
{W0(1,y)

=x ∈ Tn |
⊕

j∈supp(y)

xjy
−1
j > 1 or xj > 0 for some j /∈ supp(y)


{Si(y) = C1

{Wi(1,y)
=x ∈ Tn | 1⊕

⊕
j∈supp(y)

xjy
−1
j > xiy

−1
i or xj > 0 for some j /∈ supp(y)

 .

The sets Si(y) will be called sectors of type i (see Figure 1 below for an il-
lustration of sectors in dimension 2). Observe that both Si(y) and {Si(y) are
tropically convex sets and complements of each other, hence they are hemis-
paces.

Remark 3.10. We observe that the notation for sectors and semispaces is re-
versed as compared to the notation in Nitica and Singer [28, 29, 30].

Theorem 3.11. Let y ∈ Tn and let C ⊆ Tn be tropically convex. Then y ∈ C if
and only if Si(y) contains a point in C for i = 0 and for each i ∈ supp(y).

Proof. Consider the homogenization VC of C, where each point y ∈ Tn is lifted
to (1, y) ∈ Tn+1. In particular, each point z ∈ VC \ {0} has z0 6= 0.

If the condition of the theorem is satisfied for some y ∈ Tn, i.e. if for
i = 0 and each i ∈ supp(y) there exist xi ∈ Si(y) ∩ C, then the condition of
Theorem 3.2 is satisfied for (1, y) with (1, xi) ∈ Wi(y) ∩ VC . It follows that
(1, y) ∈ VC and y ∈ C.

Conversely, y ∈ C implies z := (1, y) ∈ VC , hence we can find zi ∈ (Wi(z) \
{0}) ∩ VC for all i ∈ supp(y) and i = 0. Since zi0 6= 0 and the conic sectors
Wi(z) are tropical cones, we can assume that zi0 = 1 so that zi = (1, xi), where
xi ∈ Si(y) ∩ C. It follows that each Si(y) ∩ C contains a point.

Theorem 3.11 is equivalent to the following.
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Theorem 3.12. Let y ∈ Tn, and let C ⊆ Tn be a tropically convex set. Then
y /∈ C if and only if C ⊆ {Si(y) for i = 0 or some i ∈ supp(y).

Definition 3.13. A tropically convex set in Tn is called a semispace at point
y ∈ Tn if it is a maximal tropically convex set not containing y.

Corollary 3.14. There are exactly the cardinality of supp(y) plus one semis-
paces at the point y ∈ Tn. These are given by the tropically convex sets {Si(y)
for i = 0 and i ∈ supp(y).

Proof. By analogy with Corollary 3.5.

We also have the following version of Corollary 3.6.

Corollary 3.15. Each tropically convex set C can be represented as the in-
tersection of the semispaces {Si(y) containing it (where y /∈ C and i = 0 or
i ∈ supp(y)), and each complement F of a tropically convex set can be repre-
sented as the union of the sectors Si(y) contained in F (where y ∈ F and i = 0
or i ∈ supp(y)).

Lemma 3.16. For any two points x, y ∈ Tn and i = 0 or i ∈ supp(x)∩ supp(y)
the intersection Si(x) ∩ Si(y) is non-empty.

Proof. Consider the points (1, x) and (1, y) and observe that for V :=Wi(1, x)∩
Wi(1, y), the section C1

V is precisely Si(x) ∩ Si(y). For i = 0 or i ∈ supp(x) ∩
supp(y) a nontrivial point z ∈ V can be constructed using (10). Note that
z0 = min{x−1i , y−1i } 6= 0 and hence this point can be translated to a point in
C1
V .

Corollary 3.15 and Lemma 3.16 imply the following (preliminary) result on
general hemispaces.

Theorem 3.17. For any couple of hemispaces H1 and H2 there exist disjoint
subsets I, J ⊆ [0, n] and Y ⊆ Tn such that

H1 = conv ({∪Si(y) | Si(y) ⊆ H1, i ∈ I, y ∈ Y ∩H1}) ,
H2 = conv ({∪Sj(y) | Sj(y) ⊆ H2, j ∈ J, y ∈ Y ∩H2}) .

(12)

Proof. By analogy with Theorem 3.8, using Corollary 3.15 and Lemma 3.16
instead of their conic versions.

4. Hemispaces

4.1. Generating sets and homogenization.

Theorem 3.17 is suggesting to unite the generating sets of all the sectors
Si(y) contained in a hemispace H. However, this can be legitimately done only
in the situations described by Theorem 2.11.

12



Lemma 4.1. The sectors S0(y), Si(y), and Wi(y) for i ∈ supp(y) can be rep-
resented as

S0(y) = conv
({

0, yje
j | j ∈ supp(y)

})
,

Si(y) =
{
yie

i
}
⊕ span

({
ei ⊕ yjy−1i ej | j ∈ supp(y)

})
,

Wi(y) = span
({

ei ⊕ yjy−1i ej | j ∈ supp(y)
})
.

(13)

Proof. Observe thatWi(y) consists of the vectors x ∈ Tn satisfying yiy
−1
j xj ≤ xi

for all j ∈ supp(y) and xj = 0 otherwise. Thus, if x ∈ Wi(y), we have x =⊕
j∈supp(y) yiy

−1
j xj(e

i ⊕ yjy−1i ej) since i ∈ supp(y). It follows that Wi(y) ⊆
span

({
ei ⊕ yjy−1i ej | j ∈ supp(y)

})
. Moreover, since the vector ei ⊕ yjy

−1
i ej

belongs to Wi(y) for any j ∈ supp(y), span
({

ei ⊕ yjy−1i ej | j ∈ supp(y)
})
⊆

Wi(y).
Note that the (P,R)-representations for S0(y) and Si(y) can be obtained as

those of sections ofWi(y) by coordinate planes, i.e., by means of Proposition 2.6.

By Theorem 2.11 part (iv), to obtain convex hulls of sectors of the same
type, based at the points y of some set Y ⊆ Tn, for i = 0 or i ∈ [n], we can
gather the generators and recessive rays of (13) as follows:

conv (∪y∈Y S0(y)) = conv
(
∪y∈Y,j∈[n]

{
0, yje

j
})
,

conv (∪y∈Y Si(y)) = conv
(
∪y∈Y

{
yie

i
})
⊕ span

(
∪y∈Y,j∈[n]

{
ei ⊕ yjy−1i ej

})
,

conv (∪y∈YWi(y)) = span
(
∪y∈Y,j∈[n]

{
ei ⊕ yjy−1i ej

})
.

(14)

These representations already yield all tropical hemispaces on the plane.
Indeed, in the case n = 2, applying Theorems 3.8 and 3.17 we see that at
least one of the sets I or J consists of only one index, and we get a (P,R)-
representation of the corresponding hemispace exactly as in (14). By careful
inspection of all possible cases we obtain the sets shown on the diagrams of
Figures 2 and 3. Using the form of typical tropical segments on the plane,
shown on the left-hand side of Figure 1, it is easy to check graphically that all
these sets and their complements are indeed tropically convex sets (and hence,
indeed, hemispaces). All figures are done in the max-times semiring Rmax,×.

Theorem 4.2. For any hemispace H ⊂ Tn, a (P,R)-representation can be
obtained by uniting the (P,R)-representations (13) of all Si(y) ⊆ H, orWi(y) ⊆
H if H is conic. In the resulting (P,R)-representation, P consists of multiples
of unit vectors and possibly 0 (containing only 0 if H is conic), while R consists
of unit vectors and combinations of two unit vectors.

Proof. By Theorem 3.17 any hemispace H can be represented as the tropical
convex hull of all the sectors Si(y) contained in H. By Lemma 4.1, the sectors
Si(y) have (P,R)-representations with P = {yiei} and R consisting of ei and
combinations of two unit vectors. Observe that these (P,R)-representations

13



y

S1(y)
S0(y)

S2(y)

Figure 1: Tropical (max-times) segments (on the left) and sectors based at a point y with full
support (on the right) in dimension 2.

satisfy the condition of Theorem 2.11 part (iii), hence the claim. (Note that
in the case of conic hemispaces gathering recessive rays of Wi(y) is straightfor-
ward.)

Remark 4.3. A set X ⊆ Tn is called projectively closed if the set {(maxi xi)
−1x |

x ∈ X} is closed. If a (P,R)-representation of a closed hemispace is constructed
as in Theorem 4.2, it may not have R projectively closed. For example, consider
the hemispace {(x1, x2) ∈ T2 | x2 ≥ λ}, where λ ∈ T+. Then, we have P =
{βe2 | β ≥ λ} and R = {e2 ⊕ αe1 | α ∈ T}.

The following three statements about recessive rays of hemispaces will not
be useful in the sequel and can be skipped at a first reading (in this case,
proceed with Theorem 4.7). Namely, we will investigate how recessive rays are
distributed among hemispaces. Observe that if H1,H2 ⊆ Tn is a couple of
hemispaces, then H1 and H2 can have recessive rays in common. For example,
if H1 = {(x1, x2) ∈ T2 | x2 ≥ λ} and H2 = {(x1, x2) ∈ T2 | x2 < λ} for some
λ ∈ T+, then e1 is recessive in both H1 and H2.

Proposition 4.4. Let H1,H2 ⊆ Tn be a couple of hemispaces with 0 ∈ H1.
Each vector z ∈ Tn is either globally recessive in H1, or i-recessive (hence also
globally recessive) in H2 for some i ∈ supp(z).

Proof. Considering a line {λz | λ ∈ T}, we obtain that either the whole line
belongs to H1 in which case z ∈ rec0H1 = recH1, or there exists β such that
{λz | λ ≥ β} ⊆ H2, in which case z is recessive in H2 at βz ∈ H2. For some
i ∈ supp(z) there should be αei ∈ H2, otherwise all vectors with the support of
z belong to H1. Then, for λ ≥ β we have αei ⊕ λz ∈ H2 (as a tropical convex
combination of αei and λy), and for λ < β we obtain

αei ⊕ λz = αei ⊕ λβ−1βz ∈ H2,

14



Figure 2: The tropical hemispaces in dimension 2 which can be obtained as unions of sectors
of the same type based at points with full support.
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Figure 3: The tropical hemispaces in dimension 2 which can be obtained as unions of sectors
of the same type based at points with non-full support.
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as a tropical convex combination of αei and βz.
We have shown that if z is not globally recessive in H1, then it is i-recessive

in H2 for some i ∈ supp(z). On the other hand, if it is i-recessive in H2 then
αei ⊕ λz = λz ∈ H2 for large enough λ, which means that z /∈ recH1 because
0 ∈ H1.

The next results show that if H1 and H2 have a common recessive ray z,
then each ei for i ∈ supp(z) is recessive in H1 and H2.

Proposition 4.5. Let z be a recessive ray of a hemispace H and suppose that
H does not contain multiples of ej for any j ∈ supp(z). Then each ej for
j ∈ supp(z) is a recessive ray of H.

Proof. Take y ∈ H, then supp(y) 6⊆ supp(z), for otherwise H would contain a
multiple of ej for some j ∈ supp(z). Denote by M the set of indices i in supp(y)
such that H contains a multiple of ei. As y ∈ H, the set M is non-empty, and
by the above, M ⊆ supp(y)\ supp(z). Denote by N the complement of M in
supp(y) ∪ supp(z) = supp(y ⊕ z).

Since H does not contain multiples of ej for any j ∈ N , there is a (P,R)-
representation of H as in Theorem 4.2, where ej for j ∈ N are not in P . Hence
for any λ,

y ⊕ λz =
⊕
i∈M

αi(λ)ei ⊕
⊕

i∈M,j∈N
βij(λ)(ei ⊕ γij(λ)ej), (15)

where ei ⊕ γij(λ)ej ∈ R for all i ∈M , j ∈ N and all λ. Also βij(λ) ≤ yi for all
i ∈ M , hence γij(λ) ≥ λzjy

−1
i for all j ∈ supp(z). Then, for any j ∈ supp(z),

the point
y ⊕ yi(ei ⊕ γij(λ)ej) = y ⊕ yiγij(λ)ej ,

where i ∈ M , belongs to H and yiγij(λ) can be made arbitrarily large. Hence,
ej ∈ recyH. As we took an arbitrary y ∈ H, the result follows.

Corollary 4.6. Let H1,H2 ⊆ Tn be a couple of hemispaces. If z ∈ recH1 ∩
recH2, then also any ej, for j ∈ supp(z), belongs to recH1 ∩ recH2.

Proof. If 0 ∈ H1, then Proposition 4.4 implies that z cannot be j-recessive in
H2 for any j ∈ supp(z). Therefore, H2 does not contain a multiple of ej for any
j ∈ supp(z).

By Proposition 4.5 all ej for j ∈ supp(z) are recessive in H2. However, they
are not j-recessive in H2, and hence by Proposition 4.4, they are also recessive
in H1.

We now show that a general hemispace can be obtained as a section of a
conic hemispace.

Theorem 4.7. For any couple of hemispaces H1,H2 ⊆ Tn there exists a couple
of conic hemispaces V1,V2 ⊆ Tn+1 such that H1 = C1

V1 and H2 = C1
V2 . More

precisely, if (P1, R1) and (P2, R2) are respectively the representations of H1 and
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H2 given by Theorem 4.2, then the conic hemispaces V1 and V2 can be defined
as:

V1 := span ({(1, x) | x ∈ P1} ∪ {(0, y) | y ∈ R1})

and
V2 := span ({(1, x) | x ∈ P2} ∪ {(0, y) | y ∈ R2}) .

Proof. In the first place, note that the tropical cones V1 and V2 are equivalently
given by:

V1 = {(λ, λx) | x ∈ H1, λ ∈ T} ∪ span ({(0, x) | x ∈ R1})

and
V2 = {(λ, λx) | x ∈ H2, λ ∈ T} ∪ span ({(0, x) | x ∈ R2}) .

Indeed, with both definitions V1 and V2 satisfy αH1 = CαV1 and αH2 = CαV2 for
any α 6= 0. For α = 0, we have C0

V1 = span (R1) and C0
V2 = span (R2), with

both definitions.
We next show that V1 and V2 are also a couple of conic hemispaces, i.e.

V1 ∩ V2 = {0} and V1 ∪ V2 = Tn+1.
With this aim, it is convenient to recall first that {ei ⊕ yjy

−1
i ej | j ∈

supp(y)} ⊆ R1 (resp. {ei ⊕ yjy
−1
i ej | j ∈ supp(y)} ⊆ R2) and {yiei} ⊆ P1

(resp. {yiei} ⊆ P2) if Si(y) ⊆ H1 (resp. Si(y) ⊆ H2) for some y ∈ Tn and i 6= 0.
Since H1 and H2 are a couple of hemispaces, it readily follows that

{(λ, λx) | x ∈ H1, λ ∈ T}∪{(λ, λx) | x ∈ H2, λ ∈ T} = {z ∈ Tn+1 | z0 6= 0}∪{0}
(16)

and
{(λ, λx) | x ∈ H1, λ ∈ T} ∩ {(λ, λx) | x ∈ H2, λ ∈ T} = {0}. (17)

Take now a vector y ∈ Tn and assume, without loss of generality, that
y ∈ H1. By Theorem 3.12, and since H1 is a union of sectors by Theorem 3.17,
it follows that Si(y) ⊂ H1 for i = 0 or for some i ∈ supp(y). If Si(y) ⊆ H1 for
some i 6= 0, by (13) it follows that (0, y) ∈ span({(0, x) | x ∈ R1}). In the case
when Si(y) 6⊆ H1 for any i 6= 0, we have S0(y) ⊆ H1, and we look at αy for
α 6= 0.

If for some α 6= 0 we have S0(αy) 6⊆ H1 and S0(αy) 6⊆ H2, then Si(αy) ⊆ H1

or Si(αy) ⊆ H2 for some i 6= 0, implying that (0, y) ∈ span({(0, x) | x ∈ R1})
or (0, y) ∈ span({(0, x) | x ∈ R2}).

We are left with the case when S0(αy) ⊆ H1 or S0(αy) ⊆ H2 for each
α. Since the sets S0(αy) are increasing with α, it can be only that either
S0(αy) ⊆ H1 for all α, or S0(αy) ⊆ H2 for all α. Assume the first case.
Then, we obtain that all vectors x with supp(x) ⊆ supp(y) are in H1 and hence
Si(y) ⊆ H1 for all i ∈ supp(y), implying that (0, y) ∈ span({(0, x) | x ∈ R1}).
This shows that

span({(0, x) | x ∈ R1}) ∪ span({(0, x) | x ∈ R2}) = {z ∈ Tn+1 | z0 = 0},

and so V1 ∪ V2 = Tn+1 by (16).
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Finally, assume that (0, y) ∈ span({(0, x) | x ∈ R1}) ∩ span({(0, x) | x ∈
R2}) and y 6= 0. Then, note that (13) implies that there exist x1 ∈ H1 and
x2 ∈ H2 such that supp(x1) ⊂ supp(y) and supp(x2) ⊂ supp(y). Since x1⊕λy =
x2⊕λy = λy for large enough λ and y ∈ span(R1)∩span(R2) ⊆ recH1∩recH2,
we have λy ∈ H1 ∩H2 for large enough λ, a contradiction. Therefore,

span({(0, x) | x ∈ R1}) ∩ span({(0, x) | x ∈ R2}) = {0}.

We conclude that V1 ∩ V2 = {0}, since we also have {(λ, λx) | x ∈ H2, λ ∈
T} ∩ span({(0, x) | x ∈ R1}) = {0}, {(λ, λx) | x ∈ H1, λ ∈ T} ∩ span({(0, x) |
x ∈ R2}) = {0} and (17).

Remark 4.8. The homogenization of a closed hemispace, constructed as in The-
orem 4.7, may not be closed. Consider the example of Remark 4.3. In that case,
V is generated by e0 ⊕ λe2, e2 and e2 ⊕ αe1 for α ∈ T. All multiples of e1 are
limiting points of V, but they are not in V. However, all limiting points x with
nontrivial x0 are in V, and this is true also for general closed hemispaces.

4.2. Generators of conic hemispaces

We know that a conic hemispace, as a conic hull of sectors, is generated
by unit vectors and combinations of two unit vectors. Therefore, to describe a
couple of hemispaces by their generating sets we need to understand how the
combinations of two unit vectors are distributed among them. With this aim,
we first associate with a couple of conic hemispaces H1,H2 ⊆ Tn the index sets

I :=
{
i ∈ [n] | ei ∈ H1

}
and J :=

{
j ∈ [n] | ej ∈ H2

}
. (18)

The following lemma is elementary and will rather serve to define below the
coefficients αij . In what follows, for some purposes it will be convenient to
assume that scalars can also take the value +∞ (the structure which is obtained
defining λ ⊗ (+∞) := +∞ for λ ∈ T+ and 0 ⊗ (+∞) := 0 is usually known
as the completed semiring, see for instance [11]) and to adopt the convention
ei ⊕ λej = ej if λ = +∞.

Lemma 4.9. For any i ∈ I and j ∈ J we have

sup
{
α ∈ T ∪ {+∞} | ei ⊕ αej ∈ H1

}
= inf

{
β ∈ T ∪ {+∞} | ei ⊕ βej ∈ H2

}
.

Proof. Observe that the lemma readily follows from the fact that if ei⊕βej ∈ H2

for some β 6= +∞, then ei ⊕ γej ∈ H2 for any γ > β since ej ∈ H2, and every
combination of two unit vectors should belong either to H1 or to H2.

Henceforth, the matrix whose entries are the coefficients

αij := sup
{
α ∈ T ∪ {+∞} | ei ⊕ αej ∈ H1

}
= inf

{
β ∈ T ∪ {+∞} | ei ⊕ βej ∈ H2

} (19)
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will be referred to as the α-matrix (associated with the couple of conic hemis-
paces H1,H2). Besides, with each coefficient αij we associate the pair of subsets
of T ∪ {+∞} defined by

(α
(−)
ij , α

(+)
ij ) :=


({λ | λ < αij}, {λ | λ ≥ αij}) if αij ∈ T+, e

i ⊕ αijej ∈ H2,

({λ | λ ≤ αij}, {λ | λ > αij}) if αij ∈ T+, e
i ⊕ αijej ∈ H1,

({αij}, {λ | λ > αij}) if αij = 0,

({λ | λ < αij}, {αij}) if αij = +∞.
(20)

Thus, by Lemma 4.9 it follows that{
ei ⊕ λej | λ ∈ α(−)

ij

}
⊂ H1 and

{
ei ⊕ λej | λ ∈ α(+)

ij

}
⊂ H2 (21)

for any i ∈ I and j ∈ J .

Since α
(+)
ij ⊆ T+∪{+∞} and α

(−)
ij ⊆ T+∪{0}, observe that the sets α

(+)
i1j1

and

α
(+)
i2j2

, as well as α
(−)
i1j1

and α
(−)
i2j2

, can be unambiguously multiplied (by definition,
the product of two sets consists of all possible products of an element of one set
by an element of the other set) for any i1, i2 ∈ I and j1, j2 ∈ J .

We now formulate one of the main results of our paper: a characterization of
conic hemispaces in terms of their generating sets. We will immediately prove
that any couple of conic hemispaces fulfills the given conditions. The proof that
these conditions are also sufficient is going to occupy the remaining part of this
section.

In the sequel, we write I1 + · · · + Im = I if Ik for k ∈ [m] and I are index
sets such that I1 ∪ · · · ∪ Im = I and I1, . . . , Im are pairwise disjoint.

Theorem 4.10. The tropical cones H1,H2 ⊆ Tn form a couple of conic hemis-

paces if and only if there exist subsets I, J of [n] and pairs of subsets (α
(−)
ij , α

(+)
ij )

of T ∪ {+∞} of the form (20) for i ∈ I and j ∈ J , such that I + J = [n],

α
(+)
i1j2

α
(+)
i2j1
∩ α(−)

i1j1
α
(−)
i2j2

= ∅ and α
(−)
i1j2

α
(−)
i2j1
∩ α(+)

i1j1
α
(+)
i2j2

= ∅ (22)

for any i1, i2 ∈ I and j1, j2 ∈ J , and

H1 = span
({

ei ⊕ λej | i ∈ I, j ∈ J, λ ∈ α(−)
ij

})
,

H2 = span
({

ei ⊕ λej | i ∈ I, j ∈ J, λ ∈ α(+)
ij

})
.

(23)

Proof of the “only if” part. Given a pair H1,H2 ⊆ Tn of conic hemispaces, let

I and J be the sets defined in (18), and (α
(−)
ij , α

(+)
ij ) be the pairs of subsets of

T ∪ {+∞} defined by (19) and (20).
By Theorem 4.2, both H1 and H2 are generated by unit vectors and combi-

nations of two unit vectors. The distribution of unit vectors is given by I and J .
Observe that (23) conforms to this distribution, since for any i ∈ I, ei belongs to

the generators of H1 as 0 ∈ α(−)
ij , and for any j ∈ J , ej belongs to the generators
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of H2 since +∞ ∈ α(+)
ij . Moreover, this obviously implies that no combination

of ei1 and ei2 with i1, i2 ∈ I (resp. of ej1 and ej2 with j1, j2 ∈ J) is necessary
in (23) to generate H1 (resp. H2). For i ∈ I and j ∈ J , the distribution of the
combinations of ei and ej is given by (21). These observations yield (23).

It remains to prove (22). Assume that

α
(+)
i1j2

α
(+)
i2j1
∩ α(−)

i1j1
α
(−)
i2j2
6= ∅.

Then, there exist βi1j2 ∈ α
(+)
i1j2

, βi2j1 ∈ α
(+)
i2j1

, γi1j1 ∈ α
(−)
i1j1

and γi2j2 ∈ α
(−)
i2j2

such that βi1j2βi2j1 = γi1j1γi2j2 . For this to hold, the products βi1j2βi2j1 and
γi1j1γi2j2 should be in T+, and hence βi1j2 , βi2j1 , γi1j1 and γi2j2 should be in
T+. Then, we make the combination

z = ei1 ⊕ βi1j2ej2 ⊕ λ(ei2 ⊕ βi2j1ej1) ∈ H2,

where λ satisfies λβi2j1 = γi1j1 , hence also λγi2j2 = βi1j2 , and observe that

z = ei1 ⊕ γi1j1ej1 ⊕ λ(ei2 ⊕ γi2j2ej2) ∈ H1.

Thus H1 ∩H2 6= {0}, a contradiction.

Condition 22 will be called the rank-one condition, due to the following
observation.

Corollary 4.11. If αij ∈ T+ for i ∈ {i1, i2} and j ∈ {j1, j2}, then αi1j1αi2j2 =
αi1j2αi2j1 . In particular, if αij ∈ T+ for all i ∈ I and j ∈ J , then the α-matrix
has rank one.

In the rest of this subsection, we assume that H1 is a tropical cone defined

as in (23), where I + J = [n] and the sets α
(−)
ij , which are either of the form

{λ ∈ T | λ ≤ αij} or {λ ∈ T | λ < αij} with αij ∈ T ∪ {+∞}, are such that

the pairs (α
(−)
ij , α

(+)
ij ) satisfy the rank-one condition (22) if we define α

(+)
ij :=

(T ∪ {+∞}) \ α(−)
ij . With the objective of showing that any such cone is a

conic hemispace, we first give a detailed description of the “thin structure” of
the corresponding α-matrix that follows from the rank-one condition (22). This
description can be also seen as one of our main results.

Proposition 4.12. If we define

J<i :={j ∈ J | αij ∈ T+ and αij ∈ α(+)
ij },

J≤i :={j ∈ J | αij ∈ T+ and αij ∈ α(−)
ij },

J0
i :={j ∈ J | αij = 0},

J∞i :={j ∈ J | αij = +∞},

for i ∈ I, by the rank-one condition (22) it follows that:

(i) J≤i + J<i + J∞i + J0
i = J for each i ∈ I;

21



(ii) J∞i1 ⊆ J
∞
i2

or J∞i2 ⊆ J
∞
i1

, and J0
i1
⊆ J0

i2
or J0

i2
⊆ J0

i1
for any i1, i2 ∈ I;

(iii) If (J<i1 ∪ J≤i1 ) ∩ (J<i2 ∪ J≤i2 ) 6= ∅, then J<i1 ∪ J≤i1 = J<i2 ∪ J≤i2 ,
J∞i1 = J∞i2 , J0

i1
= J0

i2
;

(iv) If (J<i1 ∪ J
≤
i1

) ∩ (J<i2 ∪ J
≤
i2

) 6= ∅, then J<i1 ⊆ J
<
i2

or J<i2 ⊆ J
<
i1

;

(v) If (J<i1 ∪ J
≤
i1

) ∩ (J<i2 ∪ J
≤
i2

) 6= ∅, then there exists λ ∈ T+ such that

αi1j = λαi2j for all j ∈ J<i1 ∪ J
≤
i1

= J<i2 ∪ J
≤
i2

.

Proof. In this proof, we will use F , ≥ F and ≤ F to represent an entry of a
matrix which belongs to T+, T+ ∪ {+∞} and T+ ∪ {0} = T, respectively.

(i) This property readily follows from the definition of the sets J<i , J≤i , J0
i ,

and J∞i .
(ii) If these conditions are violated, then the α-matrix has one of the following

2× 2 minors (
0 ≥ F
≥ F 0

)
,

(
+∞ ≤ F
≤ F +∞

)
,

violating (22).
(iii) If this condition is violated, then the α-matrix has one of the following

2× 2 minors (
F F
0 F

)
,

(
F F

+∞ F

)
,

(
+∞ F

0 F

)
,

violating (22). More precisely, one of the first two minors will appear when

(J<i1 ∪ J
≤
i1

) ∩ (J<i2 ∪ J
≤
i2

) 6= ∅ but (J<i1 ∪ J
≤
i1

) 6= (J<i2 ∪ J
≤
i2

). The third one will

appear if (J<i1 ∪ J
≤
i1

) = (J<i2 ∪ J
≤
i2

) 6= ∅ but J∞i1 6= J∞i2 (equivalently, J0
i1
6= J0

i2
).

(iv) If J<i1 ⊆ J<i2 and J<i2 ⊆ J<i1 do not hold for some i1, i2, then there

exist j1 and j2 such that αi1j1 ∈ α
(+)
i1j1

, αi2j2 ∈ α
(+)
i2j2

, αi1j2 ∈ α
(−)
i1j2

, αi2j1 ∈
α
(−)
i2j1

, and αi1j1 , αi1j2 , αi2j1 , αi2,j2 ∈ T+. However, this contradicts the rank-one
condition (22), since αi1j1αi2j2 = αi1j2αi2j1 by Corollary 4.11.

(v) This property follows from Corollary 4.11 and Property (iii).

Remark 4.13. Regarding Property (ii) of Proposition 4.12, observe that condi-

tion “J∞i1 ⊆ J
∞
i2

or J∞i2 ⊆ J
∞
i1

” can be equivalently formulated as “J<i1∪J
≤
i1
∪J0

i1
⊆

J<i2 ∪ J
≤
i2
∪ J0

i2
or J<i2 ∪ J

≤
i2
∪ J0

i2
⊆ J<i1 ∪ J

≤
i1
∪ J0

i1
” for any i1, i2 ∈ I. Sim-

ilarly, condition “J0
i1
⊆ J0

i2
or J0

i2
⊆ J0

i1
” can be equivalently formulated as

“J<i1 ∪ J
≤
i1
∪ J∞i1 ⊆ J<i2 ∪ J

≤
i2
∪ J∞i2 or J<i2 ∪ J

≤
i2
∪ J∞i2 ⊆ J<i1 ∪ J

≤
i1
∪ J∞i1 ” for any

i1, i2 ∈ I.

Consider the equivalence relation on I defined by

i1 ∼ i2 ⇐⇒ J∞i1 = J∞i2 and J0
i1 = J0

i2 .

By Proposition 4.12 part (ii), the relation

i1 � i2 ⇐⇒

{
J∞i2 ⊂ J

∞
i1

or

J∞i2 = J∞i1 and J0
i1
⊆ J0

i2
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defines a total order on I, which induces a total order (also denoted by �) on
the equivalence classes associated with ∼. Assume that I1, . . . , Ip are these
equivalence classes and that I1 � I2 � · · · � Ip.

By definition, note that there exist subsets L1, . . . , Lp, K1, . . . ,Kp, and
J1, . . . , Jp of J , such that J0

i = Lr, J∞i = Kr and J<i ∪ J
≤
i = Jr for i ∈ Ir.

Thus, by Proposition 4.12 part (i), it follows that

Jr +Kr + Lr = J

for r ∈ [p], and from part (iii) we conclude that the sets J1, . . . , Jp are pairwise
disjoint. Moreover, for r ∈ [2, p] we have

Jr ∪Kr ⊆ Kr−1, (24)

or equivalently
Jr−1 ∪ Lr−1 ⊆ Lr.

Indeed, if i1 ∈ Ir−1 and i2 ∈ Ir, using Remark 4.13 we conclude that either
J<i2 ∪ J

≤
i2
∪ J∞i2 ⊆ J<i1 ∪ J

≤
i1
∪ J∞i1 or J<i1 ∪ J

≤
i1
∪ J∞i1 ⊆ J<i2 ∪ J

≤
i2
∪ J∞i2 . Since

Jr−1 = J<i1 ∪ J
≤
i1

and Jr = J<i2 ∪ J
≤
i2

are disjoint and by Proposition 4.12

part (ii), it follows that either J<i2 ∪ J
≤
i2
∪ J∞i2 ⊆ J∞i1 or J<i1 ∪ J

≤
i1
∪ J∞i1 ⊆ J∞i2 .

In the former case, we have Jr ∪Kr = J<i2 ∪ J
≤
i2
∪ J∞i2 ⊆ J∞i1 = Kr−1. In the

latter case, as i1 � i2, we have J∞i2 ⊆ J∞i1 and so Kr−1 = J∞i1 = J∞i2 = Kr and

Jr−1 = J<i1 ∪ J
≤
i1

= ∅. Thus, Lr−1 = J0
i1
⊆ J0

i2
= Lr because i1 � i2, which

implies Jr ∪Kr = J \ Lr ⊆ J \ Lr−1 = Jr−1 ∪Kr−1 = Kr−1.
Finally, note that by Proposition 4.12 part (iv), we have

J<i1 ⊆ J
<
i2

or J<i2 ⊆ J
<
i1

(25)

for all i1, i2 ∈ Ir and r ∈ [p].
Observe that H1 is also generated by the set⋃

i∈I

({
ei
}
∪
{

ei ⊕ αijej | j ∈ J≤i
}
∪
{

ei ⊕ λej | j ∈ J<i , λ < αij
}

∪
{

ei ⊕ λej | j ∈ J∞i , λ ∈ R
})

,

since any vector of the form ei⊕λej , where j ∈ J≤i and λ < αij , can be expressed
as a (tropical linear) combination of ei ⊕ αijej and ei. Moreover, defining

Ci := span
({

ei
}
∪
{

ei ⊕ αijej | j ∈ J≤i
}
∪
{

ei ⊕ λej | j ∈ J<i , λ < αij
})

,

Di := span
({

ei
}
∪
{

ei ⊕ λej | j ∈ J∞i , λ ∈ T+

})
,

(26)

for i ∈ I, we have H1 =
⊕

i∈I(Ci ⊕Di).

23



Lemma 4.14. There exist βh ∈ T+, for h ∈ I, and γj ∈ T+, for j ∈ ∪i∈I(J≤i ∪
J<i ), such that for each i ∈ I, the set of non-null vectors of the tropical cone Ci
is the set of vectors satisfying γjxj ≤ βixi for all j ∈ J≤i

γjxj < βixi for all j ∈ J<i
xj = 0 for all j ∈ J0

i ∪ J∞i ∪ (I\{i})
(27)

Proof. Proposition 4.12 part (v) implies that there exist βi, γj ∈ T+ such that
αij = γ−1j βi for all αij ∈ T+. Thus, the tropical cone Ci can be equivalently
defined by

Ci = span
({

ei
}
∪
{
γje

i ⊕ βiej | j ∈ J≤i
}
∪
{
γje

i ⊕ λβiej | j ∈ J<i , λ < 1
})

.

Next, any x ∈ Ci can be written as a combination of vectors in the cones

C≤ij := span
({

ei
}
∪
{
γje

i ⊕ βiej | j ∈ J≤i
})

,

C<ij := span
({

ei
}
∪
{
γje

i ⊕ λβiej | j ∈ J<i , λ < 1
})
,

with the same coefficient xi at ei. The generators of C≤ij and C<ij satisfy the
first and second conditions of (27) respectively, hence x also satisfies all these
conditions. Conversely, each non-null vector x satisfying (27) can be written
(using similar ideas to those in the proof of Lemma 4.1) as a combination of the

generators of C≤ij and C<ij , and so it belongs to Ci.

Later we will show that certain Minkowski sums of the tropical cones Ci are
conic hemispaces. To this end, note that we have Ci = {x ∈ Tn | xj = 0 for j 6= i}
if J<i ∪ J

≤
i = ∅, and so⊕

i∈Ĩ

Ci =
{
x ∈ Tn | xj = 0 for all j 6∈ Ĩ

}
(28)

when J<i ∪ J
≤
i = ∅ for all Ĩ ⊆ I and i ∈ Ĩ. Evidently, any set given by (28) is a

conic hemispace.
Since H1 =

⊕
i∈I(Ci⊕Di), observe that the (tropical) null vector is the only

vector x in H1 satisfying xi = 0 for all i ∈ I.

Theorem 4.15. Given x ∈ Tn, if xi 6= 0 for some i ∈ I, let h := min{r ∈
[p] | xt 6= 0 for some t ∈ Ir} and x̂ ∈ Tn be the vector defined by x̂k := 0
if k ∈ (∪r>hIr) ∪ Kh and x̂k := xk otherwise. Then, x ∈ H1 if and only if
x̂ ∈

⊕
i∈Ih Ci.

Proof. The “if” part: Observe that x̂ ∈
⊕

i∈Ih Ci ⊆ H1, ei ∈ H1 for all i ∈ I
and ei ⊕ λej ∈ H1 for all i ∈ Ih, j ∈ Kh and λ ∈ R. Since xt 6= 0 for some
t ∈ Ih, x can be written as a combination of these vectors, so it also belongs to
H1.
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The “only if” part: Let x ∈ H1. As H1 =
⊕

i∈I(Ci ⊕ Di), we have x =⊕
i∈I(y

i ⊕ zi) for some yi ∈ Ci and zi ∈ Di. Note that yi ⊕ zi = 0 for i ∈ Ir
with r < h since yii ⊕ zii = xi = 0 for such vectors. So x =

⊕
i∈∪r≥hIr

(yi ⊕ zi).
We will show that yi can be chosen so that x̂ =

⊕
i∈Ih y

i ∈
⊕

i∈Ih Ci. For

this, observe that for all i ∈ Ih, since ei ∈ Ci, we can assume xi = x̂i = yii , adding
xie

i to yi if necessary. This fixes our choice of yi. Then by (24), for r > h we
have Jr ∪Kr ⊆ Kh, or equivalently, Jh ∪ Lh ⊆ Lr. Recalling that Lr = J0

i for
all i ∈ Ir, we see that the subvector of x or x̂ restricted to Ih∪Jh∪Lh, is equal
to the corresponding subvector of

⊕
i∈Ih y

i, because yi with i ∈ Ir and r > h
do not contribute having supp(yi) ⊆ Ir ∪Kr ∪ Jr = Ir ∪ (J \ Lr). Moreover,
observe that zi for i ∈ Ir and r ≥ h do not contribute either, due to the fact
that supp(zi) ⊆ Kr ∪ {i} ⊆ Kh ∪ {i} and xi = x̂i = yii . Since the subvectors of
x̂ and

⊕
i∈Ih y

i restricted to the complement of Ih ∪ Jh ∪ Lh are 0, the claim
follows.

We now describe
⊕

i∈Ir Ci as set of vectors lying in a halfspace (29) and
satisfying a constraint (30).

Lemma 4.16. If Jr 6= ∅, then the non-null elements of the tropical cone⊕
i∈Ir Ci are the vectors x ∈ Tn that satisfy xi 6= 0 for some i ∈ Ir,⊕

j∈Jr

γjxj ≤
⊕
i∈Ir

βixi and xj = 0 for j /∈ Ir ∪ Jr, (29)

and, in addition,

γjxj =
⊕
i∈Ir

βixi =⇒ ∃k ∈ Ir such that γjxj = βkxk and j ∈ J≤k . (30)

Proof. Assume first that the conditions are satisfied for x ∈ Tn. Given j ∈ Jr,
if γjxj =

⊕
i∈Ir βixi, let k ∈ Ir be such that βkxk =

⊕
i∈Ir βixi and j ∈

J≤k . Then, the vector ykj := ek ⊕ xjx−1k ej belongs to Ck because j ∈ J≤k and
xjx
−1
k = βkγ

−1
j = αkj . Given j ∈ Jr such that γjxj <

⊕
i∈Ir βixi, let k be

any element of Ir such that βkxk attains the maximum in
⊕

i∈Ir βixi. The

vector ykj := ek ⊕ xjx
−1
k ej again belongs to Ck, because j ∈ J≤k ∪ J

<
k and

xjx
−1
k < βkγ

−1
j = αkj so xjx

−1
k < αkj . Since ei ∈ Ci for all i ∈ Ir, it readily

follows that x ∈
⊕

i∈Ir Ci as a sum of xie
i for i ∈ Ir and xky

kj = xkek ⊕ xjej
over all ykj considered above.

Assume now that x ∈
⊕

i∈Ir Ci is non-null. Using (27) we observe that each
vector y in Ci for i ∈ Ir satisfies

⊕
j∈Jr γjyj ≤ βiyi and yh = 0 for all h /∈ Ir∪Jr,

hence it lies in the halfspace (29), and so the same holds for x. Condition (29)
implies that xi 6= 0 for some i ∈ Ir. Represent x =

⊕
i∈Ir y

i where yi ∈ Ci. If

γjxj =
⊕

i∈Ir βixi, let k ∈ Ir be such that xj = ykj . Since yk ∈ Ck, we have

γjy
k
j ≤ βkykk , and it follows that γjxj = γjy

k
j ≤ βkykk ≤ βkxk ≤

⊕
i∈Ir βixi. All

these inequalities turn into the equalities, so we have γjy
k
j = βky

k
k with yk ∈ Ck,

and hence j ∈ J≤k by (27). This shows that the conditions of the lemma are
also necessary.
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Proposition 4.17. For each r ∈ [p] the tropical cone
⊕

i∈Ir Ci is a conic hemis-
pace.

Proof. The case when Jr = ∅ was treated in (28), so we can assume Jr 6= ∅. We
have shown that the nontrivial elements of

⊕
i∈Ir Ci are precisely the elements

of Tn that satisfy (29) and (30). In the rest of the proof, we assume that the
complement of Ir ∪ Jr is empty, or equivalently, we will show that

⊕
i∈Ir Ci is

a conic hemispace in the plane {xi = 0 | i /∈ Ir ∪Jr}, from which it follows that⊕
i∈Ir Ci is a conic hemispace in Tn. (For this, verify that the complement of a

cone lying in {xi = 0 | i ∈ Ĩ}, for Ĩ a subset of [n], is a cone, if the restriction of
that complement to {xi = 0 | i ∈ Ĩ} is a cone.) Thus, we assume Ir ∪ Jr = [n].

Let us build a “reflection” of
⊕

i∈Ir Ci, swapping the roles of Ir and Jr, and

the roles of J≤k and J<k in (29) and (30). Namely, we define it as the set C̃
containing all the vectors x ∈ Tn that satisfy⊕

i∈Ir
βixi ≤

⊕
j∈Jr

γjxj (31)

and

βixi =
⊕
j∈Jr

γjxj =⇒ ∃k ∈ Jr such that γkxk = βixi and k ∈ J<i . (32)

We need to show that C̃ is a tropical cone. Evidently, x ∈ C̃ implies λx ∈ C̃ for
all λ ∈ R. If x, y ∈ C̃ and z = x⊕y satisfies (31) with strict inequality, then z ∈ C̃.
If not, let i be such that βizi =

⊕
j∈Jr γjzj , and assume zi = xi. It follows that

βixi =
⊕

j∈Jr γjxj , and then there exists k ∈ Jr such that γkxk = βixi and

k ∈ J<i . Further observe that γkzk ≥ γkxk = βixi = βizi =
⊕

j∈Jr γjzj ≥ γkzk,

and so γkzk = βizi, showing that z satisfies (32) and is in C̃.
Moreover, it can be shown that C̃ =

⊕
j∈Jr C̃j , where C̃j are defined as the

“reflection” of Ci, i.e., tropical cones whose non-null vectors satisfy
βixi ≤ γjxj for all i such that j ∈ J<i
βixi < γjxj for all i such that j ∈ J≤i
xi = 0 for all i ∈ Jr \ {j}

The proof of C̃ =
⊕

j∈Jr C̃j is based on the arguments of Lemmas 4.14 and 4.16.
(This observation is just a valuable remark not used in the current proof.)

We now show that C̃ is the complement of
⊕

i∈Ir Ci, so they form a couple
of conic hemispaces. Building the complement of

⊕
i∈Ir Ci by negating (29)

and (30), we see that it consists of two branches: vectors x satisfying⊕
i∈Ir

βixi <
⊕
j∈Jr

γjxj ,

and those satisfying ⊕
i∈Ir

βixi =
⊕
j∈Jr

γjxj
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and

∃k ∈ Jr such that γkxk =
⊕
i∈Ir

βixi, and k ∈ J<h whenever βhxh = γkxk.

It can be verified that both branches belong to the “reflection” C̃ as defined
by (31) and (32).

We are now left to show that
⊕

i∈Ir Ci and its “reflection” C̃ do not contain
any common non-null vector. We will use (25), i.e., the fact that for each
i1, i2 ∈ Ir either J<i1 ⊆ J<i2 or J<i2 ⊆ J<i1 . This property means that the sets J<i
and J≤i = J\J<i are nested, hence the elements of Ir and Jr can be assumed
to be ordered so that

i1 ≤ i2 ⇔ J≤i2 ⊆ J
≤
i1

and the following properties are satisfied:

j1 ∈ J≤i1 , j2 ∈ J
<
i1

=⇒ j1 < j2 ,

j1 ∈ J<i1 , j1 ∈ J
≤
i2

=⇒ i2 < i1 .
(33)

Assume now x ∈
(⊕

i∈Ir Ci
)
∩ C̃ but x 6= 0. Then, we necessarily have⊕

i∈Ir βixi =
⊕

j∈Jr γjxj 6= 0. Let i1 ∈ Ir be such that βi1xi1 =
⊕

j∈Jr γjxj .

Since x ∈ C̃, there exists j1 ∈ J<i1 such that
⊕

j∈Jr γjxj = γj1xj1 . As x ∈⊕
i∈Ir Ci, there exists i2 ∈ Ir such that βi2xi2 =

⊕
i∈Ir βixi = γj1xj1 and

j1 ∈ J≤i2 , and so i2 < i1 by (33). Again, using the fact that x ∈ C̃ and βi2xi2 =⊕
j∈Jr γjxj , we conclude that there exists j2 ∈ J<i2 such that

⊕
j∈Jr γjxj =

γj2xj2 , and so j1 < j2 by (33). Repeating this argument again and again we
obtain infinite sequences i1 > i2 > i3 > . . . and j1 < j2 < j3 < . . ., which is
impossible. Hence,

⊕
i∈Ir Ci and C̃ form a couple of conic hemispaces.

Proof of the “if” part of Theorem 4.10. We next show that the tropical cone
H1 defined in (23) is a conic hemispace if the rank-one condition (22) is sat-
isfied. Since the generators of H2 in (23) are precisely those unit vectors and
combinations of two unit vectors not belonging to H1 (except the evidently re-
dundant ones), from Theorem 4.2 we conclude that H1 and H2 form a couple
of conic hemispaces.

Let Ci ⊂ Tn, for i ∈ I, be defined by (26) (see also (27), a working equivalent
definition, and Lemma 4.16 for an equivalent definition of

⊕
i∈Ir Ci). Let the

operator x 7→ x̂ be defined as in Theorem 4.15.
Given x ∈ {H1 and λ ∈ T+ (we assume xi 6= 0 for some i ∈ I, otherwise

λx ∈ {H1 is immediate), let h := min{r ∈ [p] | xt 6= 0 for some t ∈ Ir}. Then,
x̂ 6∈

⊕
i∈Ih Ci by Theorem 4.15 because x ∈ {H1. Note that for y := λx we have

min{r ∈ [p] | yt 6= 0 for some t ∈ Ir} = h and ŷ = λx̂. By Theorem 4.15 it
follows that y ∈ {H1 because ŷ = λx̂ 6∈

⊕
i∈Ih Ci.

Let now x, y ∈ {H1 (which in particular means x 6= 0 and y 6= 0) and define
z := x⊕ y.

Assume first that xi = yi = 0 for all i ∈ I. Then, zi = 0 for all i ∈ I, and as
z 6= 0, we conclude z ∈ {H1.
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In the second place, assume xi 6= 0 for some i ∈ I but yt = 0 for all t ∈ I.
Then, note that ẑ = x̂⊕w for some vector w which satisfies supp(w)∩I = ∅. Let
h := min{r ∈ [p] | xt 6= 0 for some t ∈ Ir}, so x̂ 6∈

⊕
i∈Ih Ci by Theorem 4.15.

Since ẑ = x̂ ⊕ w and supp(w) ∩ Ih = ∅, from Lemma 4.16 it follows that
ẑ 6∈

⊕
i∈Ih Ci, and so z ∈ {H1 by Theorem 4.15.

Finally, assume xi 6= 0 and yt 6= 0 for some i, t ∈ I. Let h := min{r ∈
[p] | xt 6= 0 for some t ∈ Ir} and k := min{r ∈ [p] | yt 6= 0 for some t ∈ Ir}.
We first consider the case h 6= k, and so without loss of generality we may
assume h < k. Then, as above, we conclude that z ∈ {H1 because ẑ = x̂ ⊕ w
for some vector w satisfying supp(w) ∩ Ih = ∅. Suppose now h = k. Then,
min{r ∈ [p] | zt 6= 0 for some t ∈ Ir} = h and ẑ = x̂ ⊕ ŷ. From x̂ 6∈

⊕
i∈Ih Ci

and ŷ 6∈
⊕

i∈Ih Ci, it follows that ẑ 6∈
⊕

i∈Ih Ci, because
⊕

i∈Ih Ci is a conic
hemispace by Proposition 4.17. Thus, again by Theorem 4.15, we have z ∈
{H1.

Example 1. Assume that

H1 = span
({

e1
}
∪
{

e1 ⊕ e3
}
∪
{

e1 ⊕ δe4 | δ ∈ T
}
∪
{

e2
}
∪
{

e2 ⊕ e4
})

and

H2 = span
({

e3
}
∪
{

e3 ⊕ αe1 | α < 1
}
∪
{

e3 ⊕ βe2 | β ∈ T
}
∪
{

e4
}

∪
{

e4 ⊕ γe2 | γ < 1
})
.

In the notation of Theorem 4.10, one has I = {1, 2}, J = {3, 4}, (α
(−)
13 , α

(+)
13 ) =

({λ | λ ≤ 1}, {λ | λ > 1}), (α
(−)
14 , α

(+)
14 ) = (T, {+∞}), (α

(−)
23 , α

(+)
23 ) = ({0},T+ ∪

{+∞}) and (α
(−)
24 , α

(+)
24 ) = ({λ | λ ≤ 1}, {λ | λ > 1}).

We first show that H1 ∩ H2 = {0}. Assume x ∈ H1 ∩ H2. Note that we
can always express x as a tropical linear combination of the generators of H1

containing at most one vector of the form e1⊕ δe4. The same observation holds
for the generators of H2 and vectors of the form e3⊕αe1, e3⊕βe2 and e4⊕γe2.
Thus, we have

x = µ1e1 ⊕ µ2(e1 ⊕ e3)⊕ µ3(e1 ⊕ δe4)⊕ µ4e2 ⊕ µ5(e2 ⊕ e4)

for some µ1, µ2, µ3, µ4, µ5 ∈ T since x ∈ H1, and

x = ν1e3 ⊕ ν2(e3 ⊕ αe1)⊕ ν3(e3 ⊕ βe2)⊕ ν4e4 ⊕ ν5(e4 ⊕ γe2)

for some ν1, ν2, ν3, ν4, ν5 ∈ T since x ∈ H2.
Writing the equality on components in these expressions gives:

µ1 ⊕ µ2 ⊕ µ3 = αν2,

µ4 ⊕ µ5 = ν3β ⊕ ν5γ,
µ2 = ν1 ⊕ ν2 ⊕ ν3,

µ3δ ⊕ µ5 = ν4 ⊕ ν5.

(34)
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From the first and third equalities in (34) it follows that

µ2 ≤ µ1 ⊕ µ2 ⊕ µ3 = αν2 ≤ α(ν1 ⊕ ν2 ⊕ ν3) = αµ2,

which, due to α < 1, implies µ1 = µ2 = µ3 = ν1 = ν2 = ν3 = 0. Then, from the
second and fourth equalities in (34) it follows that

µ5 ≤ µ4 ⊕ µ5 = ν5γ ≤ (ν4 ⊕ ν5)γ = µ5γ,

which, due to γ < 1, implies µ4 = µ5 = ν4 = ν5 = 0.
To show that H1∪H2 = T4, let x ∈ T4. It is convenient to consider different

cases.
If x1 = x3 = 0, we have x = x4(e2 ⊕ e4) ⊕ x2e2 ∈ H1 when x2 ≥ x4, and

defining γ = x−14 x2 we have x = x4(e4 ⊕ γe2) ∈ H2 when x2 < x4.
When x1 = 0 and x3 6= 0, defining β = x−13 x2 we have x = x4e4 ⊕ x3(e3 ⊕

βe2) ∈ H2.
When x1 6= 0 and x3 = 0, defining δ = x−11 x4 we have x = x2e2 ⊕ x1(e1 ⊕

δe4) ∈ H1.
If x1 6= 0 and x3 6= 0, defining δ = x−11 x4 we have x = x1e1⊕x2e2⊕x3(e1⊕

e3)⊕ x1(e1 ⊕ δe4) ∈ H1 when x1 ≥ x3, and defining β = x−13 x2 and α = x−13 x1
we have x = x3e3 ⊕ x4e4 ⊕ x3(e3 ⊕ βe2)⊕ x3(e3 ⊕ αe1) ∈ H2 when x1 < x3.

4.3. Closed hemispaces, closed halfspaces and general hemispaces

We now consider the case of closed conic hemispaces, and show that these
are precisely the closed homogeneous halfspaces, i.e., tropical cones of the formx ∈ Tn |

⊕
j∈J

γjxj ≤
⊕
i∈I

βixi and xi = 0 for all i ∈ L

 , (35)

where I, J and L (with I and J , or L, possibly empty) are pairwise disjoint
subsets of [n].

Theorem 4.18 (Briec and Horvath [6]). Closed conic hemispaces = closed
homogeneous halfspaces.

Proof. Closed homogeneous halfspaces are closed conic hemispaces, since the
complement of (35) is given byx ∈ Tn |

⊕
j∈J

γjxj >
⊕
i∈I

βixi or xi 6= 0 for some i ∈ L

 ,

and so it is a tropical cone.
Conversely, if a conic hemispace is closed, then in (19) we have αij ∈ T for

all i ∈ I and j ∈ J , and in (20) the definition of the pairs (α
(−)
ij , α

(+)
ij ) specializes

to

(α
(−)
ij , α

(+)
ij ) =

{
({λ | λ ≤ αij}, {λ | λ > αij}) if αij ∈ T+,

({αij}, {λ | λ > αij}) if αij = 0.
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Equivalently, the sets J<i and J∞i of Proposition 4.12 are empty for all i ∈ I,
and so Kr = ∅ for r ∈ [p]. Observe that this means that Lr = J if Jr = ∅, which
in turn implies p = r. Moreover, we also have H =

⊕
i∈I(Ci ⊕Di) =

⊕
i∈I Ci if

H is a closed conic hemispace, since J∞i = ∅ implies Di ⊆ Ci.
Assume first that p ≥ 2, which implies J1 6= ∅ as mentioned above. Then,

we have J2 ∪K2 ⊆ K1 = ∅ by (24). It follows that J2 = ∅, and so p = 2. Thus,
we have I = I1 ∪ I2 and H =

⊕
i∈I1∪I2 Ci. By Lemma 4.16, the cone

⊕
i∈I1 Ci

can be represented by⊕
j∈J1

γjxj ≤
⊕
i∈I1

βixi and xj = 0 for j ∈ L1 ∪ I2. (36)

Note that this is just condition (29), and condition (30) is always satisfied as

J≤k = J1 for all k ∈ I1. Since J2 = ∅, it follows that
⊕

i∈I2 Ci is generated by
{ei | i ∈ I2}, and then (36) implies that H =

⊕
i∈I1∪I2 Ci is the set of all vectors

satisfying ⊕
j∈J1

γjxj ≤
⊕
i∈I1

βixi and xj = 0 for j ∈ L1, (37)

which is a closed homogeneous halfspace. Note that by Lemma 4.16 we arrive
at the same conclusion if we assume that p = 1 and J1 6= ∅.

Finally, if we assume that p = 1 and J1 = ∅, then H =
⊕

i∈I1 Ci is generated
by {ei | i ∈ I1 = I}, i.e., H = {x ∈ Tn | xj = 0 for j ∈ J} is a closed
homogeneous halfspace.

We now recall an important observation of [6], which will allow us to easily
extend the result of Theorem 4.18 to general hemispaces. For the reader’s
convenience, we give an elementary proof based on tropical segments and their
perturbations.

Lemma 4.19 (Briec and Horvath [6]). Closures of hemispaces = closed hemis-
paces.

In the max-times setting Rmax,×, with usual arithmetics. Consider the closure
of a hemispace H in Rnmax,×. Since the closure of a tropical cone is a closed
tropical cone (e.g., [8]), we only need to show that the complement of this clo-
sure is also a tropical cone. This complement is open, so it consists of all points
x ∈ {H for which there exists an open “ball” Bεx := {u ∈ Rnmax,× | |ui − xi| <
ε for all i ∈ [n]} such that Bεx ⊆ {H. We need to show that if x and y have this
property, then any combination z = λx ⊕ µy with λ ⊕ µ = 1 also does. If we
assume λ = 1, then

zi =

{
µyi, if µyi > xi,

xi, if µyi ≤ xi.

Let us consider ẑ ∈ Rnmax,× defined by ẑi := zi + εi, where ε′i are such that

30



|εi| ≤ ε for all i ∈ [n]. We can write

ẑi =


µyi + εi, if µyi + εi > xi and xi < µyi,

µyi + εi = xi + ε′i, if µyi + εi ≤ xi < µyi,

xi + εi, if µyi ≤ xi + εi and µyi ≤ xi,
xi + εi = µyi + ε′i, if xi + εi < µyi ≤ xi,

where always |ε′i| ≤ |εi| ≤ ε. Thus, defining
ŷi := yi + µ−1εi and x̂i := xi, if µyi + εi > xi and xi < µyi,

ŷi := yi + µ−1εi and x̂i := xi + ε′i, if µyi + εi ≤ xi < µyi,

ŷi := yi and x̂i := xi + εi, if µyi ≤ xi + εi and µyi ≤ xi,
ŷi := yi + µ−1ε′i and x̂i := xi + εi, if xi + εi < µyi ≤ xi,

we have ẑ = µŷ ⊕ x̂, x̂ ∈ Bεx and ŷ ∈ Bε
′′

y , where ε′′ := µ−1ε. Since {H is

tropically convex, it follows that Bεz ⊆ {H if Bε
′′

x ⊆ {H and Bε
′′

y ⊆ {H, proving
the claim.

Corollary 4.20 (Briec and Horvath [6]). Closed hemispaces = closed halfspaces.

Proof. We need to consider the case of a closed halfspace that is not necessarily
homogeneous, and of a closed hemispace that is not necessarily conic. Such a
closed halfspace is a set of the formx ∈ Tn |

⊕
j∈J

γjxj ⊕ α ≤
⊕
i∈I

βixi ⊕ δ and xj = 0 for j ∈ L

 , (38)

where I, J and L are pairwise disjoint subsets of [n]. As in the conic case, it
can be argued that the complement is tropically convex too, so (38) describes a
(not necessarily conic) hemispace.

Conversely, a general closed hemispace in Tn can be lifted by means of
Theorem 4.7 to a conic hemispace V in Tn+1. By Remark 4.8, this hemispace
will be not closed in general, however, if V is its closure, then the section C1

V
still coincides with H. Indeed, for any z = (1, x) ∈ V there exists a sequence
{zk}k∈N of vectors of V such that limk z

k = z. Since z0 = 1, taking into account
the definition of V in Theorem 4.7, we can assume that zk = (λk, λkx

k) for some
λk ∈ T and xk ∈ H. It follows that limk λk = 1 and limk x

k = x. Thus, x ∈ H
because H is closed. Therefore, we conclude that C1

V = C1
V = H.

By Theorem 4.18, V can be expressed as a solution set to⊕
j∈J

γjxj ⊕ αx0 ≤
⊕
i∈I

βixi ⊕ δx0 and xj = 0 for j ∈ L,

for some disjoint subsets I, J and L of [n]. The original hemispace in Tn appears
as a section of this closed homogeneous halfspace by x0 = 1, and so it is of the
form (38).
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Corollary 4.21. Open hemispaces = open halfspaces.

Proof. Open hemispaces and open halfspaces can be obtained as complements
of their closed “partner”.

We now characterize general hemispaces by means of (P,R)-representations,
as foreseen by Theorem 4.7 and Theorem 4.10

Theorem 4.22. Let H1,H2 ⊆ Tn be a couple of hemispaces with 0 ∈ H1.
Then, there exist sets I and J satisfying I + J = [0, n] and 0 ∈ I, and pairs

(α
(−)
ij , α

(+)
ij ) of subsets of T ∪ {+∞} of the form (20) for i ∈ I and j ∈ J

satisfying the rank-one condition (22), such that

H1 = conv
({
λej | j ∈ J, λ ∈ α(−)

0j

})
⊕ span

({
ei ⊕ λej | i ∈ I \ {0}, j ∈ J, λ ∈ α(−)

ij

})
,

H2 = conv
({
λej | j ∈ J, λ 6= +∞, λ ∈ α(+)

0j

})
⊕ span

({
ei ⊕ λej | i ∈ I \ {0}, j ∈ J, λ ∈ α(+)

ij

})
.

(39)

Moreover, if the pairs (α
(−)
ij , α

(+)
ij ) for i ∈ I and j ∈ J satisfy the rank-one

condition (22), then the sets H1 and H2 defined in (39) form a couple of hemis-
paces.

Proof. The “if” part: with H1 and H2 given by (39), consider their “homoge-
nizations”:

V1 = span
({

e0 ⊕ λej | j ∈ J, λ ∈ α(−)
0j

})
⊕ span

({
ei ⊕ λej | i ∈ I \ {0}, j ∈ J, λ ∈ α(−)

ij

})
,

V2 = span
({

e0 ⊕ λej | j ∈ J, λ ∈ α(+)
0j

})
⊕ span

({
ei ⊕ λej | i ∈ I \ {0}, j ∈ J, λ ∈ α(+)

ij

})
.

(40)

By Theorem 4.10 (the “if” part), V1 and V2 form a couple of conic hemispaces.
By Proposition 2.6 we have H1 = C1

V1 and H2 = C1
V2 , which implies that H1

and H2 form a couple of hemispaces.
The “only if” part: If H1 and H2 form a couple of hemispaces, then by

Theorem 4.7 they can be represented as sections of some conic hemispaces V1
and V2. By Theorem 4.10 (the “only if” part), V1 and V2 must be as in (40).
Using Proposition 2.6, we see that H1 = C1

V1 and H2 = C1
V2 have (P,R)-

representations as in (39).
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