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The analytic hierarchy process (AHP) is widely used for decision

making involving multiple criteria. Elsner and van den Driessche

(2004, 2010) [10,11] introduced a max-algebraic approach to the

single criterion AHP. We extend this to the multi-criteria AHP, by

considering multi-objective generalisations of the single objective

optimisation problem solved in these earlier papers. We relate the

existence of globally optimal solutions to the commutativity proper-

ties of the associatedmatrices;we relatemin–maxoptimal solutions

to the generalised spectral radius; and we prove that Pareto optimal

solutions are guaranteed to exist.
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1. Introduction

The analytic hierarchy process (AHP) is a method for ranking alternatives in multi-criteria decision

makingproblems. Developedby Saaty [26], it consists of a three layer hierarchical structure: the overall

goal is at the top; the criteria are in the next level; and the alternatives are in the bottom level. The AHP

has been used in many different areas including manufacturing systems, finance, politics, education,
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business and industry; for more details on the method, see the monographs by Saaty-Vargas and

Vaidya-Kumar [27,30].

The essence of the AHP can be described as follows. Given n alternatives we construct a pairwise

comparisonmatrix (PC-matrix),A > 0 foreachcriterion, inwhichaij indicates thestrengthofalternative

i relative to alternative j for that criterion. A PC-matrixwith the property that aijaji = 1 for all i �= j and

aii = 1 for all i is called a symmetrically reciprocalmatrix (SR-matrix) [12]. (Note that this abbreviation

might clash with the strongly regular matrices of Butkovič [5], but not in this paper.)

Once an SR-matrix A is constructed, the next step in the AHP is to derive a vector (w1, . . . ,wn)
of positive weights, which can be used to rank the alternatives, with wi quantifying the weight of

alternative i. As observed by Elsner and vandenDriessche [10], the ideal situation iswhere aij = wi/wj ,

in which case the SR-matrix is transitive. In practice, this will rarely be the case and it is necessary

to approximate A with a transitive matrix T , where tij = wi/wj for some positive weight vector

w = (w1, . . . ,wn). The problem is then how to construct T given A. Several approaches have been

proposed including Saaty’s suggestion to take w to be the Perron vector of A, or the approach of

Farkas et al. [12], which chooses w to minimise the Euclidean error
∑

i,j(aij − wi/wj)
2. Elsner and

van den Driessche [10,11] suggested selecting w to be the max algebraic eigenvector of A. This is

similar in spirit to Saaty’s approach and also generates a transitivematrix that minimises themaximal

relative error maxi,j |aij − wi/wj|/aij . As noted in [11], minimising this functional is equivalent to

minimising

eA(x) = max
1�i,j�n

aijxj/xi. (1)

The different approaches to approximating an SR-matrix A with a transitive matrix T will in general

produce different rankings of the alternatives. The question of how these rankings are affected by the

choice of scheme is considered in the recent paper of Tran [29].

In the classical AHP involving multiple criteria, a set of SR-matrices is constructed: one for each

criterion. One additional SR-matrix is constructed based on comparisons of the different criteria. Once

weight vectors are obtained for each individual criterion, these are then combined using the entries

of the weight vector for the criteria-comparison matrix. As an illustration, we take the following

numerical example from Saaty [26] and show how the Perron vectors of the comparison matrices are

used to construct a weight vector.

Example 1.1. The problem considered is deciding where to go for a one week vacation among the

alternatives: 1. Short trips, 2. Quebec, 3. Denver, 4. California. Five criteria are considered: 1. Cost of the

trip, 2. Sight-seeing opportunities, 3. Entertainment, 4. Means of travel and 5. Dining. The PC-matrix

for the criteria and its Perron vector are given by

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1/5 1/5 1 1/3

5 1 1/5 1/5 1

5 5 1 1/5 1

1 5 5 1 5

3 1 1 1/5 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.179

0.239

0.431

0.818

0.237

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The above matrix C describes the pairwise comparisons between the different criteria. For instance,

as c21 = 5, criterion 2 is rated more important than criterion 1; c32 = 5 indicates that criterion 3 is

rated more important than criterion 2 and so on. The vector c contains the weights of the criteria; in

this method, criterion 4 is given most weight, followed by criterion 3 and so on.

The SR-matrices, A1, . . . , A5, for each of the 5 criteria, their Perron vectors and corresponding

ranking schemes are given below. For instance, for criterion 1, the first alternative is preferred to the

second as the (1, 2) entry of A1 is 3. Similarly, for criterion 3, the 4th alternative is preferred to the 1st

as the (4, 1) entry of A3 is 2.
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For the cost of the trip:

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 3 7 9

1/3 1 6 7

1/7 1/6 1 3

1/9 1/7 1/3 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, v(1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.877

0.46

0.123

0.064

⎤
⎥⎥⎥⎥⎥⎥⎦
, 1 > 2 > 3 > 4

For the sight-seeing opportunities:

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1/5 1/6 1/4

5 1 2 4

6 1/2 1 6

4 1/4 1/6 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, v(2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.091

0.748

0.628

0.196

⎤
⎥⎥⎥⎥⎥⎥⎦
, 2 > 3 > 4 > 1

For the entertainment:

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 7 7 1/2

1/7 1 1 1/7

1/7 1 1 1/7

2 7 7 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, v(3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.57

0.096

0.096

0.81

⎤
⎥⎥⎥⎥⎥⎥⎦
, 4 > 1 > 2 = 3

For the means of travel:

A4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 4 1/4 1/3

1/4 1 1/2 3

4 2 1 3

3 1/3 1/3 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, v(4) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.396

0.355

0.768

0.357

⎤
⎥⎥⎥⎥⎥⎥⎦
, 3 > 1 > 4 > 2

For the dining:

A5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 7 4

1 1 6 3

1/7 1/6 1 1/4

1/4 1/3 4 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, v(5) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.723

0.642

0.088

0.242

⎤
⎥⎥⎥⎥⎥⎥⎦
, 1 > 2 > 4 > 3

To obtain the overall weight vector, we compute the weighted sum
∑5

i=1 civ
(i). This gives

w =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.919

0.745

0.862

0.757

⎤
⎥⎥⎥⎥⎥⎥⎦

with the associated ranking: 1 > 3 > 4 > 2.
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Our work here is inspired by the max-algebraic approach to the AHP introduced by Elsner and

van den Driessche [10,11] and extends it in the following manner. In [10,11], the max eigenvector is

used as aweight vector for a single criterion and it is shown to be optimal in the sense ofminimising the

maximal relative error as discussed above. This work naturally raises the question of how to treatmul-

tiple criteria within the max-algebraic framework. We address this question here by considering the

multi-criteria AHP as a multi-objective optimisation problem, in which we have an objective function

of the form (1) for each criterion (and associated SR-matrix). Rather than combining individual weight

vectors as in Example 1.1, we consider three approacheswithin the framework ofmulti-objective opti-

misation, and use the optimal solution as a weight vector in each case. The advantage of this approach

is that the weight vector can be interpreted in terms of the maximal relative error functions (1) as-

sociated with the SR-matrices given as data for the problem. The optimisation problems we consider

are the following. First, we investigate the existence of a single transitive matrix with a minimum

distance to all matrices in the set simultaneously. We remark that this amounts to finding a common

subeigenvector of the given matrices. Clearly, this will not in general be possible. The second problem

we consider is to obtain a transitive matrix that minimises the maximal distance to any of the given

SR-matrices. The third problem concerns the existence of a transitive matrix that is Pareto optimal for

the given set of matrices. To illustrate our results, we revisit Example 1.1 towards the end of the paper.

2. Notation and mathematical background

The set of all nonnegative real numbers is denoted byR+; the set of all n-tuples of nonnegative real

numbers is denoted by R
n+ and the set of all n × n matrices with nonnegative real entries is denoted

by R
n×n+ . We denote the set of all n-tuples of positive real numbers by int(Rn+). For A ∈ R

n×n+ and

1 ≤ i, j ≤ n, aij refers to the (i, j)th entry of A. The matrix A = [aij] is nonnegative (positive) if aij ≥ 0

(aij > 0) for 1 ≤ i, j ≤ n. This is denoted by A ∈ R
n×n+ (A > 0).

The weighted directed graph of A is denoted by D(A). It is an ordered pair (N(A), E(A))where N(A)
is a finite set of nodes {1, 2, . . . , n} and E(A) is a set of directed edges, with an edge (i, j) from i to

j if and only if aij > 0. A path is a sequence of distinct nodes i1, i2, . . . , ik of length k − 1 with the

weight ai1i2ai2i3 · · · aik−1ik , where (ip, ip+1) is an edge in D(A) for p = 1, . . . , k − 1. It is standard that

A is an irreducible matrix if and only if there is a directed path between any two nodes in D(A). A cycle

� of length k is a closed path of the form i1, i2, . . . , ik, i1. The kth root of its weight is called its cycle

geometric mean. For a matrix A ∈ R
n×n+ , the maximal cycle geometric mean over all possible cycles

in D(A) is denoted byμ(A). A cycle with the maximum cycle geometric mean is called a critical cycle.

Nodes that lie on some critical cycle are known as critical nodes and denoted by NC(A). The set of

edges belonging to critical cycles are said to be critical edges and denoted by EC(A). The critical matrix

of A [8,9], AC , is formed from the submatrix of A consisting of the rows and columns corresponding to

critical nodes as follows. Set aCij = aij if (i, j) lies on a critical cycle and aCij = 0 otherwise. We use the

notation DC(A) for the critical graph where DC(A) = D(AC) = (NC(A), EC(A)).
Themax algebra consists of the set of nonnegative numbers together with the two basic operations

a ⊕ b = max(a, b) and a ⊗ b = ab. This is isomorphic to the max-plus algebra [1,5] via the natural

isomorphism x → log(x). These operations extend to nonnegativematrices and vectors in the obvious

manner [1,2,7]. For A in R
n×n+ , the eigenequation in the max algebra is given by A ⊗ x = λx, x �

0, λ � 0. μ(A) is the largest max eigenvalue of A [5]. If A is irreducible, then it is the unique max

eigenvalue of A and there is a positive max eigenvector x ∈ int(Rn+) corresponding to it [1,2]. The

eigenvector v is unique up to a scalar multiple if and only if AC is irreducible.

Observe that an SR-matrix A is irreducible and μ(A) ≥ 1 [10]. Although our primary interest is in

SR-matrices, it is noteworthy that many of our results also hold true for non-zero reducible matrices.

For A ∈ R
n×n+ withμ(A) ≤ 1, I⊕A⊕A2⊗ ⊕· · · converges to a finitematrix called the Kleene star of

A given by A∗ = I⊕A⊕A2⊗ ⊕· · ·⊕A
n−1⊗ whereμ(A∗) = 1 [1,7,28]. Here, a∗

ij is themaximumweight

of a path from i to j of any length [16] (if i �= j), and Ak⊗ denotes the kthmax-algebraic power of A. Note

that for each A ∈ R
n×n+ , if A∗ is finite then themax-algebraic sum of all of the columns of A∗ is positive.
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For A ∈ R
n×n+ , the set of subeigenvectors of A associated with μ(A) is called a subeigencone of A and

denoted by V∗(A) = {y ∈ R
n+ | A⊗ y ≤ μ(A)y} [28] . It was shown in Proposition 2.5 of [28] that for

A ∈ R
n×n+ with μ(A) = 1, V∗(A) = V(A∗) = span⊕(A∗) where V(A∗) denotes the eigencone of A∗

consisting of its max eigenvectors. Note that the above-mentioned max-algebraic sum of all columns

of A∗ is in V∗(A) [28], so V∗(A) contains positive vectors. Note that if μ(A) > 0, we can normalise A

by μ(A) and V∗ (
A

μ(A)

)
= V∗(A).

To the authors’ knowledge, max-algebraic subeigenvectors appeared in the works of Gaubert [13,

15]. However, they can be traced back to earlier works on nonnegative matrix scaling, see references

in Butkovič–Schneider [6].

For A ∈ R
n×n+ we will consider the following set, which was introduced in [11]

CA,r = {x ∈ int(Rn+) | A ⊗ x ≤ rx}. (2)

For the special case of r = μ(A), CA,μ(A) is denoted by CA [11]. Obviously CA is the positive part of V∗(A)
(which is non-empty as we argued above), and it coincides with V∗(A) when A is irreducible. To be

consistent with the notation of [11], we recall the definition of the normalised set

DA,r = {x ∈ CA,r | x1 = 1}. (3)

As above, DA is used to denote the special case where r = μ(A).
The relations between the sets CA,r , the error function (1) and μ(A) were clarified by Elsner and

van den Driessche [11] and are recalled in the following propositions, which we easily extend (based

on [5,6,28]) to the general reducible case.

Proposition 2.1 (cf. [11] Lemma 2). Let A ∈ R
n×n+ be nonzero. Then:

(i) CA,r �= ∅ ⇐⇒ r > 0, r ≥ μ(A);
(ii) x ∈ CA,r ⇐⇒ x ∈ int(Rn+), eA(x) ≤ r.

Proof. To prove(i), exploit [5] Theorem 1.6.29 stating that

μ(A) = min{λ | A ⊗ x � λx, x ∈ int(Rn+), }, (4)

whenμ(A) > 0 (based on Butkovič-Schneider [6] Theorem 2.6). In the trivial case r = μ(A) = 0, we

have V∗(A) = {x | A ⊗ x = 0}, which consists of all vectors x such that xi �= 0 if and only if the ith

column of A is zero. In this case CA,r = DA,r = ∅, unless A = 0 (which we exclude).

The result of (ii) follows from the definitions of eA(x) and CA,r given in (1) and (2). �

See also Gaubert [13] Ch. IV Lemma 1.3.8, Krivulin [20] Lemma 1, and Nussbaum [24] Theorem 3.1

(in a more general nonlinear context) for closely related statements.

Proposition 2.2 (cf. [11], Theorem 1 part 6). Let A ∈ R
n×n+ . Then x ∈ DA is unique if and only if AC is

irreducible and NC(A) = N(A).

Proof. Proposition 2.1(i) implies that we have DA = CA = ∅ when μ(A) = 0, so we can assume

μ(A) > 0 and, further, μ(A) = 1. According to [28] Theorem 2.8,

V∗(A) = V(A∗) =
⎧⎨
⎩

⊕
i∈M(A)

λig
i ⊕ ⊕

i/∈NC (A)

λjg
j | λi, λj ∈ R+

⎫⎬
⎭ . (5)

Here gi is the ith column of A∗. The subset M(A) ⊂ {1, . . . , n} is such that for each (maximal) irre-

ducible submatrix of AC there is a unique index of that submatrix inM(A). By the same theoremof [28],
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based on the classical results in [1,7], columns of A∗ with indices in the same irreducible submatrix

of AC are proportional to each other, and there is no proportionality between different gi appearing

in (5) (moreover, these gi are strongly linearly independent [5]).

“If”: As AC is irreducible and all nodes are critical, all columns of A∗ are proportional to each other,

and (5) shows that V∗(A) is just one ray. A � AC is irreducible as well, so V∗(A) = CA and DA is the

unique vector on that ray with x1 = 1.

“Only if”: Let AC be reducible, or let NC(A) �= N(A). The vector z = ⊕n
i=1 g

i is positive. Consider

gi ⊕ εz for all i, taking small enough ε so that all entries of εz are less than any nonzero entry of A∗. In
this case the positive entries of gi do not change, and if gi and gj are not proportional then neither are

gi ⊕ εz and gj ⊕ εz. After suitably normalising these vectors, we obtain two different vectors inDA. �

Next, let� ⊂ R
n×n+ be a finite set of nonnegative matrices given by

� = {A1, A2, . . . , Am}, ∃i : Ai �= 0 (6)

Given � , let �
p
⊗ denote the set of all products of matrices from � of length p ≥ 1. Formally,

�
p
⊗ = {Aj1 ⊗ · · · ⊗ Ajp : 1 � jk � m for 1 � k � p}. Using this, the max version of the generalised

spectral radius [21,25] is defined by

μ̂(�) = lim sup
p→∞ ( max

ψ∈�p
⊗
μ(ψ))

1
p . (7)

Before stating the next theorem, let S be the matrix given by

S = ⊕
A∈�

A = A1 ⊕ A2 ⊕ · · · ⊕ Am. (8)

Note that S > 0 if at least one Ai > 0. Moreover, μ(S) > 0 if at least one μ(Ai) > 0 and S is

irreducible if at least one Ai is irreducible: these represent the main cases in which we are interested.

Theorem2.1. Let� be givenby (6) and S be givenby (8). Then, μ̂(�) = μ(S). (Gaubert [14], BenekGursoy
and Mason [3])

Inspired by the approach to the single criterion AHP adopted in [11], we associate a set C�,r with

the set � of nonnegative matrices and show how the geometric properties of CA,r discussed in [11]

extend to this new setting.

Define

C�,r = {x ∈ int(Rn+) | eAi(x) ≤ r for all Ai ∈ �} =
m⋂
i=1

CAi,r . (9)

We also consider the set of normalised vectors:

D�,r = {x ∈ C�,r | x1 = 1}. (10)

We will use the notations C� for C�,μ̂(�) and D� for D�,μ̂(�). The following result shows that the set

C�,r and the set CS,r are equal. This will allow us to readily extend properties of CA,r established in [11]

to sets of matrices.

Theorem 2.2. Consider the set� ⊂ R
n×n+ given by (6), and let S be given by (8). Then:

C�,r = CS,r .
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Proof. (i): Let x in C�,r be given. Then, eAi(x) � r which implies Ai ⊗ x � rx for each Ai ∈ � from (ii)

in Proposition 2.1. Taking the maximum of both sides from 1 to m, we see that S ⊗ x � rx. It follows

that x ∈ CS,r . Thus, C�,r ⊂ CS,r .
Now choose some x ∈ CS,r . Then eS(x) � r from (ii) in Proposition 2.1. Since eAi(x) � eS(x) � r

for all 1 � i � m, we obtain x ∈ C�,r . Thus, CS,r ⊂ C�,r . Hence C�,r = CS,r . �

The following corollary extends Proposition 2.1 to a set of nonnegative matrices� . Since μ̂(�) =
μ(S) by Theorem 2.1 (ii), the corollary is an immediate consequence of Theorem 2.2.

Corollary 2.1. Consider the set� ⊂ R
n×n+ given by (6), and let S be given by (8). Then:

(i) C�,r �= ∅ ⇐⇒ r > 0, r ≥ μ̂(�);
(ii) x ∈ C�,r ⇐⇒ x ∈ int(Rn+), eS(x) ≤ r.

Theorem 2.2 establishes that C�,r = CS,r . It is immediate that we also have D�,r = DS,r, C� = CS
and D� = DS . Therefore, studying these sets for a collection of nonnegative matrices reduces to

studying the sets associated with the single matrix S. This fact means that the properties of CA,r
discussed in Theorem1 of [11] can be directly extended to C�,r .We state some of these in the following

theorem, noting that property (i) does not require irreducibility.

Theorem 2.3 (cf. [11] Theorem 1). Let� ⊂ R
n×n+ be given in (6), and let S be given by (8). Then:

(i) C�,r and D�,r are convex and max-convex;

(ii) D� consists of only one vector if and only if SC is irreducible and NC(S) = N(S);
(iii) If all matrices in� are irreducible then D�,r is compact.

Proof.

(i) (see [28] Proposition 3.1) C�,r is convex and max-convex, since

C�,r = ⋂
i,j

{x ∈ int(Rn+) | sijxj � rxi}, (11)

where the sets whose intersection is taken are convex and max-convex. D�,r inherits these

properties as a coordinate section of C�,r .
(ii) follows from Proposition 2.2 applied to S;

(iii) follows from [11] Theorem 1 applied to S. �

We remark that sets that are both convex andmax-convex have appeared under various names like

Kleene cones [28], polytropes [18], or zones [23].

3. Globally optimal solutions

Theapplicationof themaxalgebra to theAHP ismotivated in [10,11]by the followingconsiderations.

First, it is observed that, for an SR-matrix A, vectors in the set CA minimise the function (1) and hence

the relative error. Based on this observation, these vectors are used to construct transitive matrices to

obtain an overall ranking of the alternatives in the decision process. In light of the properties of CA, this
is justified by the fact that the transitive matrices constructed in this way are closest to the original

SR-matrix A in the sense of the relative error.

Thus, the approach to construct a ranking vector for a single SR-matrix taken in [10,11] amounts to

solving the following optimisation problem.

min
x∈int(Rn+)

{eA(x)}. (12)
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In this and the following section, we are concerned with extending the above approach to the general

AHP with n alternatives and m criteria.

Formally, we are given m SR-matrices; one for each criterion. Let � in (6) denote the set of these

matrices. For each Ai ∈ � , there is an error function eAi : int(Rn+) → R+ defined as in (1). In contrast

to the approach taken in the classical AHP, we view the construction of a ranking vector for the m

criteria as a multi-objective optimisation problem for the error functions eAi , 1 � i � m.

To beginwith, we seek a vector that simultaneouslyminimizes all of the functions eAi . Such a vector

is said to be a globally optimal solution for the multi-objective optimisation problem.

Note that for each Ai ∈ � , the set of vectors that minimise eAi : int(Rn+) → R+ is precisely CAi
[11]: formally,

CAi = {x ∈ int(Rn+) | eAi(x) = min
w∈int(Rn+)

eAi(w)}, i = 1, 2, . . . ,m. (13)

Hence, the problem of finding a vector x ∈ int(Rn+) that simultaneously minimises all the error

functions eAi amounts to determining when

m⋂
i=1

CAi �= ∅.

Equivalently, x simultaneouslyminimises all the error functions if and only if it is a common subeigen-

vector of Ai for all i ∈ {1, 2, . . . ,m}. The remainder of this section is divided into two parts: we

first consider the existence of common subeigenvectors for arbitrary nonnegativematrices in the next

subsection; we then specialise to sets of SR-matrices and globally optimal solutions.

3.1. Common max-algebraic subeigenvectors of nonnegative matrices

First of all, we consider the general problem of finding a common subeigenvector for a set of non-

negativematrices (not necessarily SR-matrices). Our results are clearly related to thework in [19] con-

cerning the intersection of eigencones of commuting matrices over the max and nonnegative algebra.

In the next result, we adopt the notation Âi = Ai
μ(Ai)

for 1 � i � m and, in an abuse of notation,

Ŝ = m⊕
i=1

Âi.

Theorem 3.1. Consider the set� ⊂ R
n×n+ in (6). The following assertions are equivalent.

(i) μ(Ŝ) = 1;

(ii) There exists some x ∈ int(Rn+) with Ai ⊗ x � μ(Ai)x for all Ai ∈ �;

(iii) μ(Aj1 ⊗ · · · ⊗ Ajp) � μ(Aj1) · · ·μ(Ajp) where 1 � jk � m for 1 � k � p. (We say that μ is

submultiplicative on�).

Proof. (i)⇒(ii): First, assume that μ(Ŝ) = 1. Then, there exists x ∈ int(Rn+) such that Ŝ ⊗ x � x.

Thus, Âi ⊗ x � Ŝ ⊗ x � x for all Ai ∈ � . Hence, Ai ⊗ x � μ(Ai)x for all i.

(ii)⇒(iii): Suppose that there exists some x ∈ int(Rn+) with Ai ⊗ x � μ(Ai)x for all Ai ∈ � . Pick

someψ ∈ �p
⊗ such thatψ = Aj1 ⊗ Aj2 ⊗ · · · ⊗ Ajp where 1 � jk � m for 1 � k � p. Then,

ψ ⊗ x = Aj1 ⊗ Aj2 ⊗ · · · ⊗ Ajp ⊗ x

� μ(Ajp)Aj1 ⊗ Aj2 ⊗ · · · ⊗ Ajp−1
⊗ x

...

� μ(Ajp)μ(Ajp−1
) · · ·μ(Aj2)Aj1 ⊗ x

� μ(Ajp)μ(Ajp−1
) · · ·μ(Aj2)μ(Aj1)x.
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Writing r = μ(Aj1)μ(Aj2) · · ·μ(Ajp), we see that x ∈ Cψ,r from the definition (2). Hence, Cψ,r �= ∅.
Point (i) in Proposition 2.1 implies r � μ(ψ). Thus,μ(Aj1)μ(Aj2) · · ·μ(Ajp) � μ(Aj1 ⊗Aj2 ⊗· · ·⊗Ajp).
Note that we essentially used (4).

(iii)⇒(i): Consider the set of normalised matrices

�̂ = {Â1, Â2, . . . , Âm}

where μ(Âi) = 1 for all i ∈ {1, 2, . . . ,m}. Pick some ψ ∈ �̂
p
⊗. As μ is submultiplicative on � , it is

also submultiplicative on �̂ . Thus, we have μ(ψ) � 1. As this is true for anyψ ∈ �̂p
⊗, it follows that

max
ψ∈�̂p

⊗
μ(ψ) � 1.

Taking the pth root and lim sup
p→∞ of both sides, we see that

μ̂(�̂) � 1.

Theorem 2.1(ii) then implies that μ(Ŝ) � 1. Furthermore, since μ(Ŝ) � μ(Âi) = 1 for all i ∈
{1, 2, . . . ,m} we obtain μ(Ŝ) = 1. �

Note that the equivalence (i)⇔(ii) can be regarded as a special case of Hershkowitz-Schneider [17]

Theorem 2.5, see also [6] Theorem 3.5 for an extension. In these works, the problem of simultane-

ous nonnegative matrix scaling is considered; this amounts to finding a diagonal matrix X such that

XAkX
−1 � Bk for k = 1, . . . ,m. For our case, take Bk = 1n×n (the all-ones matrix) and impose

μ(Ak) = 1. However, condition (iii) does not appear in [17] or [6].

In the terminology of Butkovič et al. [5,28], there exists a simultaneous visualisation of all of the

matrices in � , meaning that X−1AiX � μ(Ai) · 1n×n for all i, and in particular (X−1AiX)kl = μ(Ai)
for all i and (k, l) ∈ EC(Ai). The following result for general nonnegative matrices will be useful in

the next subsection to clarify the relationship between commutativity and the existence of globally

optimal solutions for 3 × 3 SR-matrices.

Proposition 3.1. Let A, B ∈ R
n×n+ have μ(A) = μ(B) = 1. If μ(A ⊕ B) = 1, then

(i) aij = bij for all edges (i, j) ∈ EC(A) ∩ EC(B);

(ii) aijbji = 1 for (i, j) ∈ EC(A) and (j, i) ∈ EC(B).

Proof. As,μ(A) = μ(B) = 1, it follows that Â = A and B̂ = B. Thus, Ŝ = A⊕B. From the assumption,

we obtain

μ(Ŝ) = 1.

It now follows from Theorem 3.1 that there exists some x > 0 with A ⊗ x � x, B ⊗ x � x. Let

X = diag(x) and consider the diagonally scaled matrices

X−1AX, X−1BX.

From the choice of X it is immediate that

X−1AX � 1n×n, X−1BX � 1n×n. (14)
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Furthermore, from well-known facts about diagonal scaling (see Proposition 2.10 of [28]), it follows

that

1 = μ(A) = μ(X−1AX), 1 = μ(B) = μ(X−1BX) (15)

and that

EC(A) = EC(X−1AX), EC(B) = EC(X−1BX). (16)

We prove (i): Let (i, j) ∈ EC(A)∩ EC(B) be given. It follows from (16) that (i, j) is also a critical edge

in the digraphs of X−1AX and X−1BX . (14) and (15) now imply that

aijxj

xi
= bijxj

xi
= 1.

Hence

aij = bij = xi

xj

and this completes the proof.

We prove (ii): Let (i, j) ∈ EC(A) and (j, i) ∈ EC(B). It follows from (16) that (i, j) is also a critical

edge in the digraph of X−1AX and (j, i) is a critical edge in the digraph of X−1BX . Then

aijxj

xi
= bjixi

xj
= 1,

and hence

aijbji = aijxj

xi
· bjixi

xj
= 1. �

We next recall the following result, which was established in [19] and shows that commutativity is

a sufficient condition for the existence of a common eigenvector for irreducible matrices.

Proposition 3.2 [19]. Consider the set � ⊂ R
n×n+ in (6). Assume that each Ai ∈ � is irreducible and

moreover that

Ai ⊗ Aj = Aj ⊗ Ai for 1 � i, j � m. (17)

Then there exists some x ∈ int(Rn+) with Ai ⊗ x = μ(Ai)x for 1 � i � m.

The next corollary is an immediate consequence of Proposition 3.2 and the fact, which we recalled

in Section 1, that for an irreducible matrix A, the set CA is the subeigencone V∗(A), which coincides

with the eigencone V(Â∗).

Corollary 3.1. Consider the set � ⊂ R
n×n+ in (6). Assume that each Ai ∈ � is irreducible and moreover

that

Â∗
i ⊗ Â∗

j = Â∗
j ⊗ Â∗

i for 1 � i, j � m. (18)

Then there exists some x ∈ int(Rn+) with Ai ⊗ x � μ(Ai)x for 1 � i � m.

Note that (17) implies (18).
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3.2. SR-matrices and globally optimal solutions

In the remainder of this section, we will only focus on SR-matrices. We first present the following

corollary of Theorem 3.1, which develops the concept of simultaneous visualization for SR-matrices.

Before stating the corollary, define the anticritical graph of an SR-matrix to consist of the edges EC(A)
given by:

(i, j) ∈ EC(A) ⇔ (j, i) ∈ EC(A). (19)

Corollary 3.2. Consider the set� ⊂ R
n×n+ in (6). Assume that each Ai ∈ � is an SR-matrix. If any of the

equivalent statements of Theorem 3.1 holds, then there exists some x ∈ int(Rn+) such that for X = diag(x)
we have

μ−1(Ai) · 1n×n � X−1AiX � μ(Ai) · 1n×n (20)

In particular,

(k, l) ∈ EC(Ai) ⇒ (X−1AiX)kl = μ(Ai),

(k, l) ∈ EC(Ai) ⇒ (X−1AiX)kl = μ−1(Ai),
(21)

Proof. The right-hand side inequality of (20) is the same as Theorem 3.1 (ii). For the remaining left-

hand side inequality of (20) we observe that x
−1
i aijxj � μ(A) is equivalent to x

−1
j a

−1
ij xi � μ−1(A).

Then we apply a
−1
ij = aji. �

We next show that two distinct SR-matrices A, B in R
2×2+ cannot have a common subeigenvector.

Let

A =
⎡
⎣ 1 a

1/a 1

⎤
⎦ , B =

⎡
⎣ 1 b

1/b 1

⎤
⎦

and assume that A �= B. Clearly, μ(A) = μ(B) = 1 and Ŝ = A ⊕ B. If a > b, then 1/a < 1/b and

μ(Ŝ) = a/b > 1. If b > a, then 1/b < 1/a and μ(Ŝ) = b/a > 1. In both cases, μ(Ŝ) �= 1. Hence by

Theorem 3.1, A and B do not have a common subeigenvector.

Proposition 3.2 shows that commuting irreducible matrices possess a common max eigenvector.

We now show that for 3 × 3 SR-matrices, commutativity is both necessary and sufficient for the

existence of a common subeigenvector.

Remark 3.1. For an SR-matrix A ∈ R
3×3+ , it is immediate that all cycle products of length one and two

in D(A) are equal to 1. Further, there are two possible cycle products of length 3 in D(A): a12a23a31 and
a13a32a21. As A is an SR-matrix, it follows that

a12a23a31 = 1

a13a32a21

and hence at least one of the above products must be greater than or equal to 1. Since μ(A) � 1, one

of the cycles of length three is critical, and the other cycle is anticritical. Thus, NC(A) = N(A) and AC

is irreducible. Hence, it follows from Proposition 2.2 that A has a unique subeigenvector up to a scalar

multiple in CA which is its max eigenvector. Observe that each edge (i, j) with i �= j belongs either to

the critical or to the anticritical graph.

Our next result characterises when two SR-matrices in R
3×3+ have a common subeigenvector.
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Theorem 3.2. Let a set {A, B} ⊂ R
3×3+ of SR-matrices be given. Write Ŝ = Â ⊕ B̂. The following are

equivalent.

(i) μ(Ŝ) = 1;

(ii) A and B commute;

(iii) There exists a vector x ∈ int(Rn+) with A ⊗ x � μ(A)x, B ⊗ x � μ(B)x.

Proof. The equivalence of (i) and (iii) follows immediately from Theorem 3.1 so we will show that (i)

and (ii) are also equivalent.

(ii) ⇒ (i) follows immediately from Proposition 3.2. We prove (iii)⇒(ii). First note that it follows

fromRemark 3.1 that for distinct i, j, k, the edges (i, j), (j, k) are either both critical or both anti-critical

for A. The same is true of B. Calculating X−1AX and X−1BX where X = diag(x), it follows fromTheorem

3.1, Corollary 3.2 and the identities μ(A)μ(B) = μ(B)μ(A), μ(A)μ−1(B) = μ−1(B)μ(A) that

aijbjk = bijajk (22)

for any distinct i, j, k. It now follows from (22) that for i �= j

(A ⊗ B)ij = aiibij ⊕ aijbjj ⊕ aikbkj

= bij ⊕ aij ⊕ bikakj

= (B ⊗ A)ij

where k �= i, k �= j. Rewriting (22) as ajibik = bjiaik , it follows readily that bikaki = aijbji and

aikbki = bijaji. It now follows that for 1 � i � 3,

(A ⊗ B)ii = aiibii ⊕ aijbji ⊕ aikbki

= biiaii ⊕ bijaji ⊕ bikaki

= (B ⊗ A)ii

Thus, A ⊗ B = B ⊗ A as claimed. �

It is now straightforward to extend the above result to an arbitrary finite set of SR-matrices inR
3×3+ .

Theorem 3.3. Let a set {A1, . . . , Am} ⊂ R
3×3+ of SR-matrices be given. Write Ŝ = Â1 ⊕ · · · ⊕ Âm. The

following are equivalent.

(i) μ(Ŝ) = 1;

(ii) Ai ⊗ Aj = Aj ⊗ Ai for all i, j;
(iii) There exists a vector x ∈ int(Rn+) with Ai ⊗ x � μ(Ai)x for all i.

Proof. As above, the equivalence of (i) and (iii) follows immediately from Theorem 3.1 and (ii) ⇒ (i)

follows immediately from Proposition 3.2. To show that (i) ⇒ (ii), suppose μ(Ŝ) = 1. Then it follows

that for all i, j,

Âi ⊕ Âj � Ŝ

and hence that μ(Âi ⊕ Âj) � 1. As μ(Âi ⊕ Âj) � 1, it is immediate that

μ(Âi ⊕ Âj) = 1

for all i, j in {1, . . . ,m}. It follows immediately from Theorem 3.2 that
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Ai ⊗ Aj = Aj ⊗ Ai

for 1 � i, j � m as claimed. �

We note with the following example that commutativity is not a necessary condition for 4 × 4

SR-matrices to possess a common subeigenvector.

Example 3.1. Consider the SR-matrices given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 8 1/4 7

1/8 1 6 1/4

4 1/6 1 4

1/7 4 1/4 1

⎤
⎥⎥⎥⎥⎥⎥⎦
B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 4 5 9

1/4 1 1/8 9

1/5 8 1 1/8

1/9 1/9 8 1

⎤
⎥⎥⎥⎥⎥⎥⎦

where μ(Ŝ) = 1. Here, x =
[
1 0.721 0.693 0.667

]T
is a common subeigenvector. However, it can

be readily verified that A ⊗ B �= B ⊗ A.

4. Min–max optimal points and the generalised spectral radius

In general, it will not be possible to find a single vector x that is globally optimal for the set � of

SR-matrices given by (6). With this in mind, in this short section we consider a different notion of

optimal solution for the multiple objective functions eAi : int(Rn+) → R+, 1 � i � m. In fact, we

consider the following optimisation problem.

min
x∈int(Rn+)

(
max
1�i�m

eAi(x)

)
. (23)

In words, we are seeking a weight vector that minimises the maximal relative error where the maxi-

mum is taken over the m criteria (SR-matrices).

Corollary 2.1 has the following interpretation in terms of the optimisation problem given in (23).

Proposition 4.1. Consider the set� given by (6). Then:

(i) μ̂(�) = min
x∈int(Rn+)

(
max
1�i�m

eAi(x)

)
;

(ii) x solves (23) if and only if x ∈ C� .

Proof. Corollary 2.1 shows that there exists some x ∈ int(Rn+)with

max
1�i�m

eAi(x) � r

if and only if r � μ̂(�). (i) follows from this observation. The result of (ii) is then immediate from the

definition of C� . �

5. Pareto optimality and the AHP

Thus far, we have considered two different approaches to themulti-objective optimisation problem

associated with the AHP. In this section we turn our attention to what is arguably the most common
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framework adopted in multi-objective optimisation: Pareto Optimality [4,22]. As above, we are con-

cerned with the existence of optimal points for the set of objective functions eAi , for 1 � i � m

associated with the set� (6) of SR-matrices. We first recall the notion of weak Pareto optimality.

Definition 5.1 [22]. w ∈ int(Rn+) is said to be a weak Pareto optimal point for the functions eAi :
int(Rn+) → R+(1 � i � m) if there does not exist x ∈ int(Rn+) such that

eAi(x) < eAi(w)

for all i = 1, 2, . . . ,m.

The next lemma shows that every point in the set C� is aweak Pareto optimal point for eA1 , . . . , eAm .

Lemma 5.1. Let� ⊂ R
n×n+ be given by (6). Any w ∈ C� is a weak Pareto optimal point for eA1 , . . . , eAm .

Proof. Let w ∈ C� be given. Then eAi(w) � μ̂(�) for 1 � i � m. If there exists some x ∈ int(Rn+)
such that eAi(x) < eAi(w) for 1 � i � m, then for this x

eAi(x) < μ̂(�)

for 1 � i � m. This contradicts Proposition 4.1. �

We next recall the usual definition of a Pareto optimal point.

Definition 5.2 [22]. w ∈ int(Rn+) is said to be a Pareto optimal point for the functions eAi : int(Rn+) →
R+(1 � i � m) if eAi(x) � eAi(w) for 1 � i � m implies eAi(x) = eAi(w) for all 1 � i � m.

We later show that the multi-objective optimisation problem associated with the AHP always

admits a Pareto optimal point. We first present some simple facts concerning such points.

Theorem 5.1. Let� ⊂ R
n×n+ be given by (6). Then:

(i) If w ∈ C� is unique up to a scalar multiple, then it is a Pareto optimal point for eA1 , . . . , eAm;
(ii) If w ∈ CAi is unique up to a scalar multiple for some i ∈ {1, 2, . . . ,m}, then it is a Pareto optimal

point for eA1 , . . . , eAm .

Proof. Observe that both conditions imply μ̂(�) > 0.

(i) Assume that w ∈ C� is unique up to a scalar multiple. Pick some x ∈ int(Rn+) such that

eAi(x) � eAi(w) for all i. Then, eAi(x) � μ̂(�) for all iwhich implies that x ∈ C� . Thus, x = αw
for some α ∈ R+. Hence, eAi(x) = eAi(w) for all i and w is a Pareto optimal point.

(ii) Assume that for some Ai ∈ � , w ∈ CAi is unique up to a scalar multiple. Suppose x ∈ int(Rn+)
is such that eAj(x) � eAj(w) for all 1 � j � m. In particular, x ∈ CAi , and this implies that

x = αw for some α ∈ R. Further, it is immediate that for any other Aj ∈ � (i �= j), we have

eAj(x) = eAj(w). Thus, w is a Pareto optimal point. �

By Proposition 2.2, condition (i) is equivalent to NC(S) = N(S) and SC to be irreducible, and

condition (ii) is equivalent to NC(Ai) = N(Ai) and AC
i to be irreducible for some i.

Corollary 5.1. Let the set� ⊂ R
n×n+ given by (6) consist of SR-matrices. For n ∈ {2, 3}, anyw ∈ CAi(1 �

i � m) is a Pareto optimal point for eA1 , . . . , eAm .
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Fig. 1. Refer to Example 5.1.

Proof. Notice that from Remark 3.1 for the 3 × 3 case, there exists a unique subeigenvector up to a

scalar multiple in each CAi for 1 � i � m. This is also true for the 2 × 2 case because NC(A) = N(A)

and AC is irreducible. The result directly follows from (ii) in Theorem 5.1. �

The following example demonstrates point (i) in Theorem 5.1.

Example 5.1. Consider the following matrices given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 9 1/4 2

1/9 1 6 3

4 1/6 1 1/4

1/2 1/3 4 1

⎤
⎥⎥⎥⎥⎥⎥⎦
B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1/2 4 1/8

2 1 3 2

1/4 1/3 1 5

8 1/2 1/5 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The S matrix is obtained as follows

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 9 4 2

2 1 6 3

4 1/3 1 5

8 1/2 4 1

⎤
⎥⎥⎥⎥⎥⎥⎦

where NC(S) = N(S) and SC is irreducible. From Proposition 2.2, we have a unique vector (up to a

scalar multiple) in C� : w = [ 1 0.758 0.861 1.174 ]T . Fig. 1 represents the values of eA(x) and eB(x)

at w and some points in CA, CB and int(Rn+). Remark that Pareto optimality is observed at w ∈ C�
where eA(w) = eB(w) = 6.817.

Our objective in the remainder of this section is to show that the multi-objective optimisation

problem associatedwith the AHP always admits a Pareto optimal solution.We first recall the following
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general result giving a sufficient condition for the existence of a Pareto optimal point with respect to a

set E ⊂ R
n. Essentially, this is a direct application of the fact that a continuous function on a compact

set always attains its minimum.

Theorem 5.2 [4]. Let E ⊆ R
n be nonempty and compact. Let a set of continuous functions {f1, . . . , fm}

be given where

fi : E → R+

for 1 � i � m. There exists w ∈ E such that x ∈ E, fi(x) � fi(w) for 1 � i � m implies fi(x) = fi(w) for
1 � i � m.

This result follows from elementary real analysis and the observation that if w minimises the

(continuous) weighted sum
∑m

i=1 αifi(x)where αi > 0 for 1 � i � m, thenw must be Pareto optimal

for the functions f1, . . . , fm.
A pointw satisfying the conclusion of the Theorem 5.2 is said to be Pareto optimal for {f1, . . . , fm}

with respect to E. Thus, for any multi-objective optimisation problem with continuous objective func-

tions defined on a compact set, there exists a point that is Pareto optimal with respect to the given

set.

To apply the above result to the AHP, we first note that for a set� of SR-matrices,D� is compact by

Theorem 2.3 (recall that SR-matrices are positive and hence irreducible). We now show that any point

inD� that is Pareto optimal with respect toD� is also Pareto optimal with respect to the set int(Rn+).
Although we don’t specifically use the SR property in the following, we assume � to consist of

SR-matrices as we are primarily interested in the AHP application. Instead, we could just assume that

Ai are irreducible implying that D� is compact and a Pareto optimal point exists.

Lemma 5.2. Consider the set� in (6) and assume that Ai is an SR-matrix for 1 � i � m. Let w be a Pareto

optimal point for {eA1 , . . . , eAm} with respect to D� . Then, w is also Pareto optimal for eA1 , . . . , eAm with

respect to int(Rn+).

Proof. Assume that w ∈ D� is a Pareto optimal point with respect to D� . Suppose x ∈ int(Rn+)\C� .

Then from the definition of C� (9), it follows that

eAi0 (x) > μ̂(�) for some i0. (24)

As w ∈ D� , eAi(w) � μ̂(�) for 1 � i � m. It follows immediately from (24) that for any x /∈ C� , it

cannot happen that eAi(x) � eAi(w) for 1 � i � m.

Let x in C� be such that

eAi(x) � eAi(w) for 1 � i � m.

As eAi(λx) = eAi(x) for all λ > 0, 1 � i � m, and w is Pareto optimal with respect to D� , it follows

that eAi(x) = eAi(w) for 1 � i � m. �

Our next step is to show that there exists a point x ∈ D� that is Pareto optimal with respect toD� .

Proposition 5.1. Consider the set� in (6) and assume that Ai is an SR-matrix for 1 � i � m. There exists

x ∈ D� that is Pareto optimal for eA1 , . . . , eAm with respect to D� .

Proof. First note thatD� �= ∅ since μ̂(�) > 0. Theorem 2.3 shows thatD� is compact. Furthermore,

for any irreducible matrix A, the function eA : D� → R+ is a composition of continuous functions

and hence continuous on a compact set. Theorem 5.2 implies that there exists w in D� that is Pareto

optimal with respect to D� . �
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Combining Proposition 5.1 with Lemma 5.2, we immediately obtain the following result.

Corollary 5.2. Consider the set � in (6) and assume that Ai is an SR-matrix for 1 � i � m. There exists

x ∈ D� that is Pareto optimal for eA1 , . . . , eAm with respect to int(Rn+).

Corollary 5.2 means that there exists a vector x of positive weights that is simultaneously Pareto

optimal and also optimal in themin–max sense of Section 4 for the error functions eAi , 1 � i � m.

Finally, to illustrate the above results, we revisit Example 1.1.

Example 5.2. (Example 1.1 Revisited) Let C, A1, . . . , A5 be as in Example 1.1. Taking αi, 1 � i � 5

to be the ith entry of the max eigenvector of C, normalised so that α1 = 1, we apply Theorem 5.2 to

compute Pareto optimal solutions in the set D� by minimising the weighted sum

m∑
i=1

αieAi(x)

using the MATLAB function fminsearch.

Observe thatμ(Ŝ) = 4.985, so there is no common subeigenvector in this case. Next, we calculate

the max eigenvector of C:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1.495

2.236

3.344

0.897

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We find that there are multiple Pareto optimal points giving at least two possible distinct rankings:

1 > 3 > 4 > 2 and 1 > 3 > 2 > 4. Notice that first ranking scheme is the same as the one obtained

from the classical method used in Example 1.1. The second ranking scheme is also reasonable, since if

we analyse the local rankings associated with the set of SR-matrices in detail, we see that 2 > 4 for

A1, A2 and A5. In particular, 2 is preferred to all other alternatives for A2.

6. Conclusions

Building on the work of Elsner and van den Driessche [10,11], we have considered a max-algebraic

approach to the multi-criteria AHP within the framework of multi-objective optimisation. Papers [10,

11] characterise themax eigenvectors and subeigenvectors of a single SR-matrix as solving an optimisa-

tion problemwith a single objective. We have extended this work to themulti-criteria AHP by directly

considering several natural extensions of this basic optimisation problem to the multiple objective

case. Specifically, we have presented results concerning the existence of: globally optimal solutions;

min–max optimal solutions; Pareto optimal solutions. The principal contribution of the paper is to

draw attention to this max-algebraic perspective on the multi-criteria AHP, with the main results in

this direction being: establishing the connection between the generalised spectral radius and min–

maxoptimal solutions (Proposition4.1); proving the existence of Pareto optimal solutions and showing

that it is possible to simultaneously solve the Pareto andmin–max optimisation problems (Proposition

5.1 and Corollary 5.2). We have also related the existence of globally optimal solutions to the existence

of common subeigenvectors and highlighted connections between this question and commutativity

(Theorem 3.2).
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