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Abstract

The max-Łukasiewicz semiring is defined as the unit interval [0, 1] equipped with the arithmetics “a + b” = max(a, b) and 
“ab” = max(0, a + b − 1). Linear algebra over this semiring can be developed in the usual way. We observe that any problem of 
the max-Łukasiewicz linear algebra can be equivalently formulated as a problem of the tropical (max-plus) linear algebra. Based 
on this equivalence, we develop a theory of the matrix powers and the eigenproblem over the max-Łukasiewicz semiring.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/).

Keywords: Tropical; Max-plus; Łukasiewicz; Eigenvector; Matrix power

1. Introduction

The max-Łukasiewicz semiring is defined over the interval [0, 1] equipped with the operations of addition a ⊕ b =
max(a, b) and multiplication a ⊗L b = max(0, a + b − 1). These operations are extended to matrices and vectors in 
the usual way: (A ⊕ B)ij = aij ⊕ bij and (A ⊗L B)ik = ⊕

j aij ⊗L bjk . We consider the max-Łukasiewicz powers 

of matrices A⊗Lk :=
k︷ ︸︸ ︷

A ⊗L · · · ⊗L A, and the spectral problem over max-Łukasiewicz semiring: given λ ∈ [0, 1], find 
x ∈ [0, 1]n with not all components 0 such that A ⊗L x = λ ⊗L x.

Our study of max-Łukasiewicz semiring is motivated by the recent success of tropical linear algebra, developed 
over the max-plus semiring Rmax = R ∪ {−∞} equipped with operations of “addition” a ⊕ b = max(a, b) and “mul-
tiplication” a ⊗ b = a + b. We convert the problems of max-Łukasiewicz linear algebra, i.e., the linear algebra over 
max-Łukasiewicz semiring, to the problems of tropical (max-plus) linear algebra. Then we can take advantage of the 
well-developed theory and algorithms of the latter, see [2,4,5,8,14,24,25], to mention only a few possible sources. Our 
main ingredients are the theory of spectral problem A ⊗ x = λ ⊗ x, Bellman equations or Z-equations x = A ⊗ x ⊕ b, 
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one-sided systems A ⊗ x = b and, occasionally, the tropical linear programming. Recall that the basic theory of one-
sided systems A ⊗ x = b involves residuation theory [15] as well as set coverings [5]. Also see Rashid et al. [36] for 
a preliminary work on the max-Łukasiewicz linear algebra exploring details of the three-dimensional case.

A basic idea behind this paper is that each fuzzy triangular norm (t-norm) as described, for instance, in Klement, 
Mesiar and Pap [31], leads to an idempotent semiring, which we call a max-t semiring. There are directions of abstract 
fuzzy sets theory which are related to the present work. Some connections of multivalued logic and fuzzy algebra 
with idempotent mathematics have been developed by Di Nola et al. [18–21]. These works develop certain aspects of 
algebra over semirings arising from fuzzy logic (MV-algebras, Łukasiewicz transform), which currently seem most 
interesting and useful for the fuzzy sets theory.

However, neither general MV-algebras [19] nor even the special case of Łukasiewicz MV-algebra are considered in 
this paper. We are rather motivated by the basic problems of the tropical linear algebra, which we are going to consider 
here in the context of max-Łukasiewicz semiring. We also remark that max-Łukasiewicz semiring can be seen as a 
special case of incline algebras of Cao, Kim and Roush [9], see also, e.g., Han–Li [28] and Tan [40]. One of the main 
problems considered in that algebra is to study the periodicity of matrix powers over a larger class of semirings, using 
lattice theory, lattice ordered groups and residuations. Let us also recall the distributive lattices as another special case 
of incline algebras, although this special case does not include the max-Łukasiewicz semiring. Powers of matrices 
over distributive lattices are studied, e.g., by Cechlárová [11].

The approach which we develop here, does not apply to incline algebras in general (or to distributive lattices in 
particular), but it allows to study the linear-algebraic problems over max-Łukasiewicz algebra in much more detail.

Aggressive network. Let us also recall the basic network motivation to study tropical (max-plus) linear algebra 
and, more generally, linear algebra over semirings (Gondran–Minoux [26], see also Litvinov–Maslov [34]). This 
motivation suggests a directed graph D with nodes N = {1, . . . , n} and edges E = {(i, j): i, j ∈ N}, where each edge 
(i, j) is weighted by aij . Sarah is an agent travelling in the network. She is given 1 unit of money before entering it 
at node i (say, 1 thousand of GBP), and aij expresses the amount of money left on her bank account after she moves 
from i to j . The quantity cij := 1 − aij expresses the cost of moving from i to j . More generally, if Sarah is given 
xi units of money, with 0 ≤ xi ≤ 1, then there are two cases: when xi − cij ≥ 0 and when xi − cij < 0. In the first 
case, xi − cij = xi + aij − 1 will be the money left on her account after she moves from i to j . In the second case, 
Sarah’s account will be frozen, in other words, her balance will be set to 0 forever and with no excuse. In any case, 
xi ⊗L aij expresses the amount of money left on Sarah’s account if she goes from i to j . More generally, if Sarah 
is given 1 unit of money and follows a walk P = (i1, . . . , ik) on D, then the Łukasiewicz weight of P computed as 
wL(P ) = ai1i2 ⊗L · · · ⊗L aik−1ik

will show how much money will remain on her bank account. Computing matrix 
powers over Łukasiewicz semiring, it can be seen that the entry (A⊗Lt )ij shows Sarah’s funds at j if she chooses an 
optimal walk from i to j . Computing the left orbit of a vector, (x ⊗L A⊗Lt )i also shows Sarah’s funds if 1) for each �, 
x� is the amount of money given to her if she enters the network in state �, 2) she chooses an optimal starting node 
and an optimal walk from that node to i, where the Łukasiewicz weight of a walk P = (i1, . . . , ik) is now computed 
as xi1 ⊗L ai1i2 ⊗L · · · ⊗L aik−1ik .

In the context of aggressive network, we can pose the Łukasiewicz spectral problem x ⊗L A = λ ⊗L x if we want 
to control the dynamics of Sarah’s funds, for instance, to know precisely when the game will be over. As (λ ⊗L x)i =
max(λ − 1 + xi, 0), it is also natural to take a partition (K, L) of {1, . . . , n}, that is, the subsets K, L ⊆ {1, . . . , n}
such that K ∪ L = {1, . . . , n} and K ∩ L = ∅, and impose that xi ≤ 1 − λ for i ∈ L and xi ≥ 1 − λ for i ∈ K . 
The Łukasiewicz eigenvectors satisfying these conditions are called (K, L)-Łukasiewicz eigenvectors. As we shall 
see, when K and L are proper subsets of {1, . . . , n}, the existence of (K, L) eigenvectors is equivalent to (K, L)

being a “secure partition” of the network where we subtract λ from each edge, see Definition 3.2. This establishes 
a connection between the Łukasiewicz spectral problem and the combinatorics of weighted digraphs. The network 
sense of (K, L)-eigenvectors is also clear if we require the strict inequalities xi < 1 − λ for i ∈ L and xi > 1 − λ for 
i ∈ K : in this case we know how much Sarah should be given in each state, in order that the game will be over after 
one step if Sarah starts in any node of L, and in order that she has a chance to live longer if she starts in a node of K
and chooses an optimal trajectory.

For convenience, in the paper we will consider right Łukasiewicz eigenvectors and orbits.
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Fig. 1. An example of aggressive network: values of travel costs (left) and account balance after one step (right).

Fig. 1 represents an example of aggressive network. The weights of edges on the left denote Sarah’s debts, or 
payments if she is able to make them, and the weights on the right stand for her balance after moving along the 
corresponding edge.

The rest of the paper is organized as follows. Section 2 is occupied with necessary preliminaries on tropical convex-
ity and tropical linear algebra. Section 3 develops the theory of (K, L)-Łukasiewicz eigenvectors and secure partitions. 
Here we give an explicit description of generating sets of (K, L)-Łukasiewicz eigenspaces, establish the connection 
with the problem of finding secure partitions of weighted digraphs, and provide an algorithm for enumeration of all 
possible secure partitions. In Section 4 we examine the powers and orbits of matrices in Łukasiewicz semiring, whose 
theory is closely related to its well-known tropical (max-plus) counterpart.

2. Basics of the tropical linear algebra

The main idea of this paper is that the max-Łukasiewicz linear algebra is closely related to the tropical (max-plus) 
linear algebra. A key observation relating the Łukasiewicz linear algebra with the tropical linear algebra is that, given 
a matrix A ∈ [0, 1]m×n and a vector x ∈ [0, 1]n, we have

A ⊗L x = A(1) ⊗ x ⊕ 0, (1)

where A(1) denotes the matrix with entries aij − 1, and 0 is the vector with m entries all equal to 0. Note that the 
entries of A(1) belong to [−1, 0], while the entries of x are required to be in [0, 1]n. More generally, we denote by 
A(α) the matrix with entries aij − α.

Sometimes we will also use the min-plus version of the tropical linear algebra, in particular, the min-plus addition 
a∧b := min(a, b) and the min-plus matrix product (A ⊗′ B)ik = ∧

j aij +bjk . Denoting by A� the matrix with entries 
(−aji), known as Cuninghame-Green inverse, one obtains the following duality law:

A ⊗ x ≤ b ⇔ x ≤ A� ⊗′ b (2)

In the sequel we usually omit the ⊗ sign for tropical matrix multiplication, unlike the ⊗L sign for the max-
Łukasiewicz multiplication. We are only interested in matrices and vectors with real entries, that is, with no −∞
entries.

We note that we only need the special case of tropical (max-plus) semiring here. See, e.g., Gondran and Minoux [26,
27] for more general idempotent algebras (dioïds).

2.1. Elements of tropical convexity

A set C ∈ (R ∪ {−∞})n is called tropically convex if together with any two points x, y ∈ C it contains the whole 
tropical segment

[x, y]⊕ := {λx ⊕ μy:λ ⊕ μ = 0}. (3)

Note that x ⊕ y ∈ [x, y]⊕.
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The tropical convex hull of a set X ⊆ (R ∪ {−∞})n is defined as

tconv(X) :=
{⊕

μ

λμxμ:
⊕
μ

λμ = 0, xμ ∈ X

}
, (4)

where only a finite number of λμ are not −∞. In this case, the tropical Carathéodory theorem states that in (4), we 
can restrict without loss of generality to tropical convex combinations of no more than n + 1 points xμ.

As in the case of the usual convexity, there exists an internal description of tropical convex sets in terms of extremal 
points and recessive rays, and external description as intersection of (tropical) halfspaces. See [3,13,17,24] for some 
of the recent references. Here we will be mostly interested in the internal description of a compact tropical convex set 
C based on extreme points: if represented as a point in a tropical segment of C, such a point should coincide with one 
of its ends.

It follows that the linear equations over max-Łukasiewicz semiring are affine equations over max-plus semiring, 
with the solutions confined in the hypercube [0, 1]n. The solution sets to systems of such equations are compact and 
tropically convex. Moreover, they are tropical polyhedra, i.e. tropical convex hulls of a finite number of points.

A tropical analogue of a theorem of Minkowski was proved in full generality by Gaubert and Katz [24], see also 
Butkovič et al. [7] for a part of this result. Here we are interested in the particular case of compact tropically convex 
sets in Rn.

Theorem 2.1. Let C ⊆R
n be a compact tropical convex set. Further let u(μ) be a (possibly infinite) set of its extreme 

points. Then,

C =
{⊕

μ

λμu(μ), λμ ∈ R∪ {−∞},
⊕
μ

λμ = 0

}
, (5)

where in (5), only a finite number of λμ are not equal to −∞. In words, any compact tropically convex subset of Rn

is generated by its extreme points.

2.2. Cyclicity theorem

Starting from this subsection, all matrices have only finite entries, no −∞. We now consider the sequence of 

max-plus matrix powers Ak =
k︷ ︸︸ ︷

A ⊗ · · · ⊗ A, for A ∈ R
n×n.

The max-algebraic cyclicity theorem states that if the maximum cycle mean of A ∈ R
n×n (to be defined later) 

equals 0, then the sequence of max-plus matrix powers Ak becomes periodic after some finite transient time T (A), 
and that the ultimate period of Ak is equal to the cyclicity of the critical graph. Cohen et al. [12] seem to be the first to 
discover this, see also [2,4,5,14,30]. Generalizations to reducible case, computational complexity issues and important 
special cases of the cyclicity theorem have been extensively studied in [5,16,22,23,35,38].

Below we need this theorem in the form of CSR-representations as in [37,39]. To formulate it precisely we need the 
following concepts and notation. The notions of the associated digraph, the maximum cycle mean, the critical graph 
and the Kleene star are of general importance in the tropical linear algebra.

For a matrix A ∈R
n×n, define the associated weighted digraph D(A) = (N, E), where N = {1, . . . , n}, E = N ×N

and each edge (i, j) ∈ E has weight aij . Conversely, each weighted digraph with real entries on n nodes corresponds 
to an n × n real matrix.

Let ρ(A) denote the maximum cycle mean of A, i.e.,

ρ(A) = n
max
k=1

max
i1,...,ik

ai1i2 + . . . + aiki1

k
. (6)

The cycles (i1, . . . , ik) where the maximum cycle mean is attained are called critical. Further, the critical graph, 
denoted by C(A), consists of all nodes and edges belonging to critical cycles. As it will be emphasized later, ρ(A)

also plays the role of the (unique) tropical eigenvalue of A.
The sum of formal series

A∗ := I ⊕ A ⊕ A2 ⊕ . . . (7)
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is called the Kleene star of A ∈ R
n×n. Here I denotes the tropical identity matrix, i.e., the matrix with diagonal 

entries equal to 0 and the off-diagonal entries equal to −∞. Series (7) converges if and only if ρ(A) ≤ 0, in which 
case A∗ = I ⊕ A ⊕ . . . ⊕ An−1. The Kleene star satisfies

A∗ = AA∗ ⊕ I. (8)

Defining the additive weight of a walk P on D(A) as sum of the weights of all edges contained in the walk, 
observe that the following optimal walk interpretation of tropical matrix powers Ak and Kleene star A∗: 1) for each 
pair i, j , the (i, j) entry of Ak is equal to the greatest additive weight of a walk connecting i to j with length k, 2) for 
each pair i, j with i �= j , the (i, j) entry of A∗ is equal to the greatest additive weight of a walk connecting i to j
(with no length restriction).3

We introduce the notation related to CSR-representation. Let C ∈ R
n×c and R ∈ R

c×n be matrices extracted from 
the critical columns (resp. rows) of ((A − ρ(A))γ )∗, where γ is the cyclicity of C(A). To calculate γ by definition, 
one needs to take the g.c.d. of the lengths of all simple cycles in each strongly connected component of C(A), and 
then to take the l.c.m. of these. Without loss of generality we are assuming that C(A) occupies the first c nodes of the 
associated graph.

Let S be defined by

sij =
{

aij − ρ(A), if (i, j) ∈ C(A),

−∞, otherwise.
(9)

By A·i and Ai· we denote the ith column, respectively the ith row of A.

Theorem 2.2. For any matrix A ∈R
n×n there exists a number T (A) such that for all t ≥ T (A)

At = ρt (A)CStR. (10)

Moreover, (At )i· = ρt (A)StRi· and (At )·i = ρt (A)C·iSt for all i = 1, . . . , c.

This CSR form of the Cyclicity Theorem [12] was obtained in [37], see also[39].

2.3. Eigenproblem and Bellman equation

Let A ∈ R
n×n. Vector x ∈ R

n is called a tropical eigenvector of A associated with λ if it satisfies A ⊗ x = λ ⊗ x

for some λ. See [2,4,5,14,26,30] for general references.

Theorem 2.3. Let A ∈R
n×n, then the maximum cycle mean ρ(A) is the unique tropical eigenvalue of A.

The set of all eigenvectors of A with eigenvalue ρ(A) is denoted by V (A, ρ) and called the eigencone of A. It 
can be described in terms of the critical graph, by the following procedure. The critical graph of A(ρ), the matrix 
with entries aij − ρ(A), consists of several strongly connected components, isolated from each other. In each of the 
components, one selects an arbitrary index i and picks the column (A(ρ))∗·i of the Kleene star. It can be shown that 
for any other choice of an index i′ in the same strongly connected component, the column will be “proportional”, i.e. 
(A(ρ))∗·i′ = α ⊗ (A(ρ))∗·i = α + (A(ρ))∗·i . In what follows, by ÑC(A) we denote an index set containing exactly one 
index from each strongly connected component of C(A). The following (standard) description of V (A, ρ) is standard, 
see Krivulin [32,33].

Theorem 2.4. Let A ∈R
n×n. Then V (A, ρ) consists of all vectors (A(ρ))∗z, where z is any vector in Rn

max satisfying

i /∈ ÑC(A,λ) ⇒ zi = −∞ (11)

3 In what follows, by the weight of a walk we mean this additive weight, and not the Łukasiewicz weight defined in Introduction
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The tropical spectral theory can be further applied to the equation

x = Ax ⊕ b, (12)

which has been studied, e.g., in [4,10,34]. It is called Bellman equation due to its relations with dynamic optimization 
on graphs and in particular, the Bellman optimality principle [34]. Its nonnegative analogue is known as Z-matrix 
equation, see [8].

We will make use of the following basic result, formulated only recently in [8,32,33]. The proof is given for the 
reader’s convenience. We consider only the case when A and b have real entries, since this is the only case that we 
will encounter. The solution set of (12) will be denoted by S(A, b).

Theorem 2.5. Let A ∈R
n×n and b ∈ R

n. Eq. (12) has nontrivial solutions if and only if ρ(A) ≤ 0. In this case,

S(A,b) = {
A∗b ⊕ v:Av = v

}
(13)

In particular, A∗b is the only solution if ρ(A) < 0.

Proof. First it can be verified that any vector like on the r.h.s. of (13) satisfies x = Ax ⊕ b, using that A∗ = AA∗ ⊕ I

(8).
Iterating the equation x = Ax ⊕ b we obtain

x = Ax ⊕ b = A(Ax ⊕ b) ⊕ b = . . .

= Akx ⊕ (
Ak−1 ⊕ . . . ⊕ I

)
b = Akx ⊕ A∗b (14)

for all k ≥ n.
This implies x ≥ A∗b. In particular, a solution of (12) exists if and only if A∗ converges, that is, if and only if 

ρ(A) ≤ 0.
Further, x satisfies Ax ≤ x, hence x ≥ Ax ≥ . . . ≥ Akx ≥ . . ..
If ρ(A) < 0, then by the cyclicity theorem, vectors of {Akx}k≥1 start to fall with the constant rate ρ(A), starting 

from some k. This shows that for large enough k, Akx ≤ A∗b and A∗b is the only solution.
If ρ(A) = 0, then the orbit {Akx}k≥1 starts to cycle from some k. But as Ax ≤ x, we have x ≥ Ax ≥ . . . ≥ Akx ≥

. . . , and it is only possible that the sequence {Akx}k≥1 stabilizes starting from some k. That is, starting from some k, 
vector v = Akx satisfies Av = v. The proof is complete. �

We will rather need the following formulation of the above result, implied by Theorem 2.4.

Corollary 2.1. Let A ∈ R
n×n. Vector x solves x = Ax ⊕ b if and only if it can be written x = A∗(b ⊕ z(x)) where 

z(x) is a vector such that

i /∈ ÑC(A,0) ⇒ z(x)i = −∞. (15)

3. Max-Łukasiewicz eigenproblem

The problem is to find λ such that there exist nonzero x solving A ⊗L x = λ ⊗L x. Using (1) we convert this 
problem to the following one:

A(1)x ⊕ 0 = (λ − 1)x ⊕ 0, 0 ≤ xi ≤ 1. (16)

Before developing any general theory, let us look at some two-dimensional examples. Take

A =
(

0.5 0.25

0.25 0.5

)
(17)

Then A ⊗L x = λ ⊗L x is equivalent to

max(−0.5 + x1,−0.75 + x2,0) = max(λ − 1 + x1,0)

max(−0.75 + x1,−0.5 + x2,0) = max(λ − 1 + x2,0) (18)
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Fig. 2. Cases λ = 0.1, λ = 0.5 and λ = 0.8.

Take λ < 0.5. Then the terms with λ can be cancelled, and we obtain the system of inequalities

max(−0.5 + x1,−0.75 + x2) ≤ 0

max(−0.75 + x1,−0.5 + x2) ≤ 0, (19)

which has solution set

{x:x1 ≤ 0.5 ∧ x2 ≤ 0.5}. (20)

This is the Łukasiewicz eigenspace4 associated with any λ < 0.5.
If λ > 0.5, then the diagonal terms on the l.h.s. of (18) can be cancelled and we obtain the system

max(−0.75 + x2,0) = max(λ − 1 + x1,0)

max(−0.75 + x1,0) = max(λ − 1 + x2,0) (21)

The solutions to equations of (21) can be written as{
x: (x2 ≤ 0.75 ∧ x1 ≤ 1 − λ) ∨ (x2 ≥ 0.75 ∧ x1 ≥ 1 − λ ∧ x2 = λ − 0.25 + x1)

}
(22)

and, respectively,{
x: (x1 ≤ 0.75 ∧ x2 ≤ 1 − λ) ∨ (x1 ≥ 0.75 ∧ x2 ≥ 1 − λ ∧ x2 = 0.25 − λ + x1)

}
(23)

Intersecting these sets we obtain the Łukasiewicz eigenspace

{x:x1 ≤ 1 − λ ∧ x2 ≤ 1 − λ}. (24)

If λ = 0.5 then we solve

max(−0.5 + x1,−0.75 + x2,0) = max(−0.5 + x1,0)

max(−0.75 + x1,−0.5 + x2,0) = max(−0.5 + x2,0) (25)

which is equivalent to

−0.75 + x2 ≤ max(−0.5 + x1,0)

−0.75 + x1 ≤ max(−0.5 + x2,0). (26)

The solution set is{
x: (x2 ≤ 0.25 + x1 ∨ x2 ≤ 0.75) ∧ (x2 ≥ −0.25 + x1 ∨ x1 ≤ 0.75)

}
. (27)

Łukasiewicz eigenspaces (20), (24) and (27) for λ = 0.1, λ = 0.5 and λ = 0.8 are displayed on Fig. 2.
The relatively simple structure of the eigenspace in the previous example is influenced by the symmetry of the 

matrix A, which reduces the number of conditions that are to be considered. Now we show another two-dimensional 
example, in which all entries of the matrix have different values

4 In what follows, we omit the prefix “max-” by the abuse of language.
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A =
(

0.2 0.1

0.7 0.4

)
(28)

There are five possible positions of the parameter λ with respect to the diagonal entries 0.2 and 0.4, namely: λ < 0.2, 
λ = 0.2, 0.2 < λ < 0.4, λ = 0.4 and λ > 0.4.

For λ < 0.4, i.e. in the first three cases, the solution set is

{x:x1 ≤ 0.3 ∧ x2 ≤ 0.6}. (29)

In fact, it is the solution set for the second equation, whereas solution sets for the first equation in cases λ < 0.2, 
λ = 0.2 and 0.2 < λ < 0.4 are: {x: x1 ≤ 0.8 ∧ x2 ≤ 0.9}, {x: (x1 ≤ 0.8 ∧ x2 ≤ 0.9) ∨ (x1 > 0.8 ∧ −0.1 + x2 ≤ x1)}
and {x: (x1 ≤ 1 − λ ∧ x2 ≤ 0.9) ∨ (x1 > 1 − λ ∧ 0.1 − λ + x2 = x1)}, respectively. All these sets contain the solution 
set (29), hence the intersection of the solutions for both equations is described by (29).

For λ = 0.4 we obtain the solution sets for the first and the second equation{
x: (x1 ≤ 0.6 ∧ x2 ≤ 0.9) ∨ (x1 > 0.6 ∧ −0.3 + x2 = x1)

}
{
x: (x2 ≤ 0.6 ∧ x1 ≤ 0.3) ∨ (x2 > 0.6 ∧ 0.3 + x1 ≤ x2)

}
(30)

and their intersection is the solution set{
x: (x1 ≤ 0.3 ∧ x2 ≤ 0.6) ∨ (x1 ≤ 0.6 ∧ 0.6 < x2 ≤ 0.9 ∧ 0.3 + x1 ≤ x2)

∨(x1 > 0.6 ∧ x2 > 0.6 ∧ 0.3 + x1 = x2)
}
. (31)

For λ > 0.4 we obtain the solution sets for the equations{
x: (x1 ≤ 1 − λ ∧ x2 ≤ 0.9) ∨ (x1 > 1 − λ ∧ 0.1 − λ + x2 = x1)

}
{
x: (x2 ≤ 1 − λ ∧ x1 ≤ 0.3) ∨ (x2 > 1 − λ ∧ 0.7 − λ + x1 = x2)

}
. (32)

Their intersection (the solution set) for 0.4 < λ < 0.7 has the form{
x: (x1 ≤ 1 − λ ∧ 1 − λ < x2 ≤ 0.9 ∧ 0.7 − λ + x1 = x2) ∨ (x1 ≤ 0.3 ∧ x2 ≤ 1 − λ)

}
, (33)

while for λ ≥ 0.7 the solution set is simply

{x:x1 ≤ 1 − λ ∧ x2 ≤ 1 − λ}. (34)

All described eigenspaces (29), (31), (33) and (34) for λ = 0.35, λ = 0.4, λ = 0.55 and λ = 0.85 are displayed on 
Fig. 3.

We now going to describe certain parts of the Łukasiewicz eigenspace, determined by the pattern of maxima on the 
r.h.s. of (16), whose generating sets (containing no more than n + 1 points) can be written explicitly and computed in 
polynomial time.

3.1. Background eigenvectors

These are the eigenvectors that satisfy xi ≤ 1 − λ for all i. In this case (16) becomes A(1)x ≤ 0, and using (2) we 
obtain that the solutions are given by

xj ≤ min
(

1 − λ,min
i

(1 − aij )
)

(35)

If λ = 1 then there are no nonzero background eigenvectors.
If λ = 0 then all Łukasiewicz eigenvectors are background.
If λ < 1 then nonzero background eigenvectors exist if and only if there is j such that maxi aij < 1. In other words, 

background eigenvectors do not exist if and only if in each column of A there is an entry equal to 1. It can be seen 
that in this case ρ(A) = 1.

In particular, we obtain the following.

Proposition 3.1. A matrix A ∈ [0, 1]n×n with ρ(A) < 1 has nonzero background Łukasiewicz eigenvectors for all 
λ < 1.
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Fig. 3. Cases λ = 0.35, λ = 0.4, λ = 0.55 and λ = 0.85.

3.2. Pure eigenvectors

These are the vectors that satisfy xi ≥ 1 − λ for all i. In this case (16) transforms to

x = A(λ)x ⊕ (1 − λ) ⊗ 0, 1 − λ ≤ xi ≤ 1. (36)

Evidently, the set of vectors satisfying (36) is tropically convex.
We obtain the following description of the pure eigenvectors.

Theorem 3.1. Matrix A ∈ [0, 1]n×n has a pure eigenvector associated with λ ∈ [0, 1] if and only if ρ(A) ≤ λ and 
max((A(λ))∗0) ≤ λ. Vector x ∈R

n is a pure Łukasiewicz eigenvector associated with λ if and only if it is of the form

x = (
A(λ)

)∗(
(1 − λ) ⊗ 0 ⊕ z(x)

)
(37)

where z(x) is a vector satisfying

z(x) ≤ ((
A(λ)

)∗)� ⊗′ 1,

i /∈ ÑC(A,λ) ⇒ z(x)i = −∞. (38)

In particular, z(x) = −∞ whenever λ �= ρ(A).

Proof. As any pure eigenvector is a solution to (36) we can use Corollary 2.1. We obtain that x ∈ R
n is a pure 

eigenvector if and only if it can be represented as in (37) with z(x) satisfying the second constraint in (38), and has 
all coordinates between 1 −λ and 1. From (37) we conclude that x ≥ (1 − λ) ⊗ (A(λ))∗0 ≥ (1 − λ) ⊗ 0, so xi ≥ 1 − λ

holds for all i. Substituting (37) in x ≤ 1 and using the duality law (2) we obtain the condition max((A(λ))∗0) ≤ λ and 
the first constraint in (38). �
Definition 3.1. For λ > 0, a weighted graph D is called λ-secure if for each node of D and each walk P issuing from 
that node, −λ + w(P ) ≤ 0.

Corollary 3.1. A matrix A ∈ [0, 1]n×n has a pure eigenvector associated with λ ∈ [0, 1] if and only if D(A(λ)) is 
λ-secure.

Proof. By Theorem 3.1, pure Łukasiewicz eigenvector associated with λ exists if and only if 1) ρ(A(λ)) ≤ 0 and 
2) max((A(λ))∗) ≤ λ. The first condition implies that (A(λ))∗ exists, and the second condition implies that D(A(λ))
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is λ-secure, by the walk interpretation (A(λ))∗. Conversely, the λ-security is impossible if D(A(λ)) has a cycle with 
positive weight, and the condition max((A(λ))∗) ≤ λ follows from the optimal walk interpretation of (A(λ))∗. �

We now describe the generating set of pure Łukasiewicz eigenvectors.

Corollary 3.2. The set of pure Łukasiewicz eigenvectors associated with λ ∈ [0, 1] is the tropical convex hull of vectors 
u and v(k) for k ∈ ÑC(A, λ) given by (37) where

1. z(u) = −∞,
2. z(v(k))k = (((A(λ))∗)� ⊗′ 1)k and z(v(k))i = −∞ for i �= k.

Proof. By Theorem 3.1, u and v(k) are pure Łukasiewicz eigenvectors associated with λ, and so is any tropically 
convex combination of them. Further, all z(x) satisfying (38) are tropical convex combinations of z(u) and z(v(k)). 
Using max-linearity of (37), we express any pure Łukasiewicz eigenvector as a tropical convex combination of u
and v(k). �

This result also leads to a description of all Łukasiewicz eigenvectors when λ = 1.

Corollary 3.3. When λ = 1, all nontrivial Łukasiewicz eigenvectors are pure. Further, nontrivial eigenvectors exist 
if and only if ρ(A) = 1. In this case, the Łukasiewicz eigenspace is the tropical convex hull of 0 and the columns of 
1 ⊗ (A(1))∗ with indices in ÑC(A, 1) (i.e., the fundamental eigenvectors of A shifted by one).

Proof. When λ = 1 we have λ + xi − 1 = xi ≥ 0, hence all nontrivial eigenvectors are pure. Next we apply Theo-
rem 3.1 with λ = 1. Vector (1 − λ) ⊗ (A(λ))∗0 becomes (A(1))∗0 = 0, and the condition max(A(λ))∗0 ≤ λ is always 
true. It remains to apply Corollary 3.2 observing that (((A(1))∗)� ⊗′ 1)i = 1 for all i. �

Note that in this case it can be shown that 0 and v(i) for i = 1, . . . , l, are the extreme points of the set of Łukasiewicz 
eigenvectors.

3.3. (K, L) eigenvectors

Now we consider (K, L) Łukasiewicz eigenvectors, i.e., x ∈ [0, 1]n such that A ⊗L x = λ ⊗L x, xi ≥ (1 − λ) for 
i ∈ K and xi ≤ (1 − λ) for i ∈ L, where K, L ⊆ {1, . . . , n} are such that K ∪ L = {1, . . . , n} and K ∩ L = ∅.

We obtain the following description of (K, L)-eigenvectors, which uses the concept of tropical Schur complement, 
introduced by Akian, Bapat and Gaubert [1, Definition 2.13]:

Schur(K,λ,A) = ALL ⊕ ALK

(
A

(λ)
KK

)∗
A

(λ)
KL. (39)

Observe that Schur(1)(K, λ, A) = A
(1)
LL ⊕ A

(1)
LK(A

(λ)
KK)∗A(λ)

KL.

Theorem 3.2. Let λ satisfy 0 < λ < 1, and let (K, L) be a partition of {1, . . . , n} where K and L are proper subsets of 
{1, . . . , n}. Matrix A ∈ [0, 1]n×n has a (K, L) Łukasiewicz eigenvector associated with λ if and only if ρ(AKK) ≤ λ

and A(λ)
LK(A

(λ)
KK)∗0K ≤ 0L. In this case the set of (K, L)-eigenvectors is given by

0L ≤ xL ≤ min
((

Schur(1)(K,λ,A)
)� ⊗′ 0L, (1 − λ) ⊗ 0L

)
, (40)

xK = (
A

(λ)
KK

)∗(
A

(λ)
KLxL ⊕ (1 − λ)0K ⊕ zK(x)

)
, (41)

where zK(x) is any vector with components in K satisfying

zK(x) ≤ (
A

(1)
LK

(
A

(λ)
KK

)∗)� ⊗′ 0L,

i /∈ NC(AKK,λ) ⇒ zK(x)i = −∞, (42)

and xK , resp. xL are restrictions of x to the index set K , resp. to L.
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Proof. By definition, (K, L) Łukasiewicz eigenvectors satisfy the following system

A
(1)
KLxL ⊕ A

(1)
KKxK ⊕ 0K = (λ − 1) ⊗ xK, (43)

A
(1)
LLxL ⊕ A

(1)
LKxK ⊕ 0L = 0L. (44)

We start by writing out the solution of (43). Subtracting (λ − 1) from both sides of this equation we obtain

A
(λ)
KLxL ⊕ A

(λ)
KKxK ⊕ (1 − λ) ⊗ 0K = xK (45)

Eq. (45) has solutions if and only if ρ(AKK) ≤ λ. Let zK be any K-vector (that is, a vector with all components 
in K) such that

i /∈ NC(AKK,λ) ⇒ (zK)i = −∞. (46)

Then vector x satisfies (45) if and only if it satisfies

xK = (
A

(λ)
KK

)∗(
A

(λ)
KLxL ⊕ (1 − λ)0K ⊕ zK

)
. (47)

Observe that if ρ(AKK) < λ then λ is not the (unique) eigenvalue of AKK , and NC(AKK, λ) is empty so that 
zK = −∞.

Eq. (44) can be rewritten as inequality

A
(1)
LLxL ⊕ A

(1)
LKxK ≤ 0L, (48)

and substituting xK from (47) we get(
A

(1)
LL ⊕ A

(1)
LK

(
A

(λ)
KK

)∗
A

(λ)
KL

)
xL ⊕ A

(λ)
LK

(
A

(λ)
KK

)∗0K ⊕ A
(1)
LK

(
A

(λ)
KK

)∗
zK ≤ 0L (49)

Expression in the brackets equals Schur(1)(K, λ, A). The inequality (49) is equivalent to the following three inequali-
ties:

xL ≤ (
Schur(1)(K,λ,A)

)� ⊗′ 0L, A
(λ)
LK

(
A

(λ)
KK

)∗0K ≤ 0L,

zK ≤ (
A

(1)
LK

(
A

(λ)
KK

)∗)� ⊗′ 0L (50)

We also must require that (1 − λ) ⊗ 0K ≤ xK ≤ 1K and 0L ≤ xL ≤ (1 − λ) ⊗ 0L.
However, from (47) we conclude that xK ≥ (1 −λ)(A

(λ)
KK)∗0K ≥ (1 −λ) ⊗0K , so the inequality xK ≥ (1 −λ) ⊗0K

is automatically fulfilled. In particular, this implies the existence of a nontrivial (K, L) eigenvector associated with 
λ < 1, provided that ρ(A

(λ)
KK) ≤ 0 and A(λ)

LK(A
(λ)
KK)∗0K ≤ 0L.

If xK and xL satisfy (47) and (50) then in particular we have (48), and hence xK ≤ (A(1))
�
KL ⊗′ 0L ≤ 1K . Thus 

(1 − λ) ⊗ 0K ≤ xK ≤ 1K is satisfied automatically, and the claim of the theorem follows. �
We now give a graph-theoretic interpretation for the existence conditions in Theorem 3.2.

Definition 3.2. Let D be a weighted digraph with nodes {1, . . . , n}. Let K and L be proper subsets of {1, . . . , n} such 
that (K, L) is a partition of {1, . . . , n}. This partition is called secure, with respect to D, if every walk in D, that starts 
in a node � ∈ L and has all other nodes in K , has a non-positive weight.

We say that the partition ([n], ∅) is secure if D(A(λ)) is λ-secure, and that the partition (∅, [n]) is secure.

For example, consider the Łukasiewicz eigenproblem with

A =

⎛
⎜⎜⎜⎜⎜⎝

0.3 0.1 0.2 0 0.3

0.7 0.3 0.5 0.5 0.3

0.3 0.2 0.3 0.5 0.3

0.1 0.2 0.1 0.3 0.3

⎞
⎟⎟⎟⎟⎟⎠
0.3 0 0.2 0.2 0.3
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Fig. 4. Secure partition L = {1,5}, K = {2,3,4} (λ = 0,4).

and λ = 0.4. This is the associated matrix of the graph on Fig. 1 (right). Consider secure partitions of the graph 
associated with A(λ). One of them has L = {1, 5}, K = {2, 3, 4} and is shown on Fig. 4. In the graph associated with 
A(λ), it is secure to travel from any node that belongs to L to any node belonging to K and to continue a walk in 
K without having any deficit of the budget. On the other hand, the partition L = {5, 4}, K = {1, 2, 3} is not secure, 
because there is a walk from index 4 ∈ L to index 1 ∈ K with positive weight (the walk p = (4, 2, 1) with w(p) = 0.1).

Proposition 3.2. Let λ satisfy 0 < λ < 1, and let (K, L) be a partition of {1, . . . , n} where K and L are proper subsets 
of {1, . . . , n}. Matrix A ∈ [0, 1]n×n has a (K, L) Łukasiewicz eigenvector associated with λ if and only if (K, L) is a 
secure partition.

Proof. We have the following necessary and sufficient conditions for existence of a nontrivial Łukasiewicz eigenvec-
tor with a given λ: 1) ρ(A

(λ)
KK) ≤ 0 and 2) A(λ)

LK(A
(λ)
KK)∗0K ≤ 0L. Using the walk interpretation of (A(λ)

KK)∗ we see that 

1) and 2) imply that (K, L) is secure. Conversely, (K, L) cannot be secure if ρ(A
(λ)
KK) > 0. Indeed, then there exists a 

cycle in K with weight exceeding 0. Any walk connecting to this cycle and following it will have a positive weight, 
starting from some length, thus ρ(A

(λ)
KK) ≤ 0. In this case (A(λ)

KK)∗ exists and we have A(λ)
LK(A

(λ)
KK)∗0K ≤ 0L since 

(K, L) is secure. �
As a corollary of Theorem 3.2, we can describe the set of (K, L)-eigenvectors as a tropical convex hull of no more 

than n + 1 explicitly defined points. Both statement and proof are analogous to those of Corollary 3.2.

Corollary 3.4. The set of (K, L) Łukasiewicz eigenvectors is the tropical convex hull of vectors u, v(�) for � ∈ L, and 
w(k) for k ∈ K such that k ∈ NC(AKK, λ), defined by (41) and the following settings:

1. uL = 0L and zK(u) = −∞,
2. v

(�)
i = 0 for i ∈ L and i �= �, v(�)

� = min(((Schur(1)(K, λ, A))� ⊗′ 0L)�, 1 − λ) and zK(v(�)) = −∞,

3. w
(k)
L = 0L, zK(w(k))k = ((A

(1)
LK(A

(λ)
KK)∗)� ⊗′ 0L)k and zK(w(k))i = −∞ for i �= k,

and the K-subvectors of u, v(l) and w(k) are given by (41).

Proof. By Theorem 3.2, u, v(�), w(k) are Łukasiewicz K, L-eigenvectors associated with λ, and so is any tropically 
convex combination of them. Further, all zK(x) satisfying (42) are tropical convex combinations of zK(u) = −∞ and 
zK(v(�)). Using max-linearity of (41), we express any pure Łukasiewicz eigenvector as a tropical convex combination 
of u, v(�) and w(k). �
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3.4. Finding all secure partitions

The problem of describing all Łukasiewicz eigenvectors associated with λ can be associated with the following 
combinatorial problem: 1) check whether graph D(A(λ)) is λ-secure, 2) describe all (K, L) partitions which are 
secure in D(A(λ)).

Node i of a weighted digraph is called secure if the weight of every walk starting in i is nonpositive.

Theorem 3.3. Let (K1, L1) and (K2, L2) be two different secure partitions such that L1 ⊆ L2.

1. There is a node k ∈ L2\L1 = K1\K2, secure in D(A
(λ)
K1K1

).

2. Partition (K1 − k, L1 + k) is secure if and only if k is secure in D(A
(λ)
K1K1

).

Proof. 1. Consider the set M := K1\K2 and assume that no node of M is secure in K1. Then for each node i ∈ M

there exists a walk P in D(A
(λ)
K1K1

) starting in i, whose weight is positive, and such that the weights of all its proper 
subwalks starting in i are non-positive. Let � be the end node of the walk, and let k be the last node of M visited by 
the walk. If k �= � then the subwalk of P starting in k and ending in � has a positive weight, which contradicts with 
the security of (K2, L2). We conclude that for all walks in D(A

(λ)
K1K1

) starting in M and having positive weight, the 

end node also belongs to M . However, using such walks and the finiteness of M we obtain that D(A
(λ)
K1K1

) has a cycle 
with positive weight, contradicting the security of (K1, L1). Hence M contains a node that is secure in K1.

2. The “if” part: Observe that all walks starting in L1 and continuing in K1 − k have nonpositive weight since the
partition (K1, L1) is secure. All walks starting in k and continuing in K1 −k have nonpositive weight since k is secure 
in D(A

(λ)
K1K1

).

The “only if” part: If k is not secure, then there is a walk in D(A
(λ)
K1K1

) going out of k and having a positive weight. 
If this walk ends in k then we obtain a cycle with positive weight, in contradiction with the security of (K1, L1). 
Otherwise, take a subwalk which contains k only as the starting node, and then its weight must be also positive. This 
shows that (K1 − k, L1 + k) is not secure. �

Let us emphasize that the above theorem also holds in the case of K1 = [n] when we require that D(A(λ)) is 
λ-secure, since this condition (by Theorem 3.1 and Corollary 3.2) implies that ρ(A(λ)) ≤ 0. The case when L2 = [n], 
in which case (K2, L2) is secure by definition, yields the following corollary.

Corollary 3.5. Let (K, L) be a secure partition, then

1. There is a node k ∈ K , secure in D(A
(λ)
KK).

2. Partition (K − k, L + k) is secure if and only if k is secure in D(A
(λ)
KK).

The equivalence of security of partition (K, L) with existence of (K, L)-Łukasiewicz eigenvector implies that there 
is a unique minimal secure partition.

Proposition 3.3. Digraph D(A(λ)) has the least secure partition, which corresponds to the greatest Łukasiewicz 
eigenvector associated with λ.

Proof. First observe that there is the set of Łukasiewicz eigenvectors contains the greatest element: this is a tropical 
convex hull of a finite number of extremal points, and the greatest element is precisely the “sum” (⊕) of all extremal 
points.

Let z be this greatest element, and let (K, L) be the partition such that zi < 1 −λ for all i ∈ L and zi ≥ 1 −λ for all 
i ∈ K . This partition is secure. For any other secure partition (K ′, L′) there exists a (K ′, L′)-eigenvector y (associated 
with λ), and we have y ≤ z and hence yi < 1 − λ for all i ∈ L implying L ⊆ L′. �

Theorem 3.3, Corollary 3.5 and Proposition 3.3 show that all secure partitions of D(A(λ)) can be described by 
means of the following algorithm:
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Algorithm 3.1 (Describing all secure partitions of D(A(λ))).
Part 1. For each i ∈ {1, . . . , n}, solve

maxxi, 0 ≤ xi ≤ 1 s.t. ∀i,

A(1) ⊗ x ⊕ 0 = (λ − 1) ⊗ x ⊕ 0 (51)

The vector x whose components are solutions of (51) is the greatest Łukasiewicz eigenvector associated with λ. The 
partition (K, L) such that xi < 1 − λ for all i ∈ L and xk ≥ 1 − λ for k ∈ K is secure partition with the least L.

Problem (51) is an instance of the tropical linear programming problems treated by Butkovic and Aminu [5,6] and 
Gaubert et al. [25]. It can be solved in pseudopolynomial time [5,6], by means of a psudopolynomial number of calls 
to a mean-payoff game oracle [25].

Part 2. For each secure partition (K, L), all secure partitions of the form (K − k, L + k) can be found by means 
of shortest path algorithms with complexity at most O(n3) (for the classical Floyd–Warshall algorithm). All secure 
partitions can be then identified by means of a Depth First Search procedure.

Proof. Part 1. is based on Proposition 3.3.
For part 2., note that by Corollary 3.5, for each secure (K, L) with K nonempty, there exist greater secure partitions. 

By Theorem 3.3 part 2, for each secure partition (K, L) and for each k ∈ K , partition (K − k, L + k) is secure if and 
only if k is secure D(A

(λ)
KK). This holds if and only if the kth row of (A(λ)

KK)∗ has all components nonpositive. Matrix 

(A
(λ)
KK)∗ can be computed in O(n3) operations. �

Example. The example shows the work of the algorithm — describing all secure partitions of D(A(λ)).
Let λ = 0.6 and consider

A =
⎛
⎝0.6 0.7 0.2

0.4 0.5 0.7

0.3 0.2 0.4

⎞
⎠ . (52)

Then we have

A(1) =
⎛
⎝−0.4 −0.3 −0.8

−0.6 −0.5 −0.3

−0.7 −0.8 −0.6

⎞
⎠ , A(0.6) =

⎛
⎝ 0 0.1 −0.4

−0.2 −0.1 0.1

−0.3 −0.4 −0.2

⎞
⎠ . (53)

The Łukasiewicz eigenproblem with λ = 0.6 amounts to solving A(1)x ⊕ 0 = (−0.4 + x) ⊕ 0 subject to 0 ≤ xi ≤ 1
for all i.

According to the algorithm, we first need to find the greatest max-Łukasiewicz eigenvector. It can be verified that 
(1 0.8 0.7) is a pure Łukasiewicz eigenvector (note that all components are greater than 0.4). As there is a pure 
eigenvector, it follows that the greatest max-Łukasiewicz eigenvector is also pure, and the minimal partition is the 
least partition K = {1, 2, 3}, L = {∅}. In fact, (1 0.8 0.7) is the greatest solution of the tropical Z-matrix equation 
x = A(0.6)x ⊕ (0.4 + 0) satisfying xi ≤ 1, hence this is exactly the greatest (pure) max-Łukasiewicz eigenvector. 
Moreover, it can be found that the pure eigenspace is the max-plus segment with extremal points (1 0.8 0.7) and 
(0.6 0.5 0.4).

The second part of the algorithm describes how to find all secure partitions. The algorithm starts with the secure 
partition with minimal L, according to (3.5), and tries to increase L by adding indices from K . In the beginning we 
have A(λ)

KK = A(0.6) written above.

To add an index i ∈ K to L, we have to check, whether i is secure in D(A
(λ)
KK), i.e., whether the weight of every 

walk starting in i is nonpositive in D(A
(λ)
KK). Index 1 is not secure, because the walk p = (1, 2) has positive weight 

w(p) = 0.1, that is, 1 cannot be added to L. Similarly, 2 is not secure and cannot be added to L. Index 3 is secure, 
because any walk starting in 3 has non-positive weight. Hence the next secure partition is K = {1, 2} and L = {3}. We 
find that

A
(0.6)
KK =

(
0 0.1

−0.2 −0.1

)
,

(
A

(0.6)
KK

)∗ =
(

0 0.1
−0.2 0

)
. (54)
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Fig. 5. Secure partition of D(A(λ)) (only sets L are shown).

Using Theorem 3.2 and Corollary 3.4 we find that the (K, L) eigenspace is the tropical convex hull of u = (0.5 0.4 0), 
v(3) = (0.6 0.5 0.4) and w(1) = (0.7 0.5 0). (Note that v(3) is also a pure eigenvector. In general, some vectors can be 
considered as (K, L) eigenvectors for several choices of (K, L).)

Similarly as above, index 1 is not secure in D(A
(0.6)
KK ), because of the walk p = (1, 2) with w(p) = 0.1. On the 

other hand, 2 is secure in D(A
(0.6)
KK ). Thus index 2 can be added and we get further secure partition (K, L) with 

K = {1} and L = {2, 3}. Then A(0.6)
KK = (A

(0.6)
KK )∗ consists just of one entry 0. Using Theorem 3.2 and Corollary 3.4 we 

find that the (K, L) eigenspace is the tropical convex hull of u = (0.4 0 0), v(2) = (0.5 0.4 0), v(3) = (0.4 0 0.3) and 
w(1) = (0.6 0 0).

Index 1 ∈ K is secure in D(A
(0.6)
KK ) and we get the last secure partition (K, L) with L = {1, 2, 3}, giving the 

background eigenvectors (see Fig. 5). The greatest background eigenvector is (0.4 0.3 0.3).

4. Powers and orbits

As we are going to show, any vector orbit in max-Łukasiewicz algebra is ultimately periodic. This ultimate period-
icity can be described in terms of CSR representation of periodic powers (A(1))t . We assume the critical graph of A
occupies the first c nodes. Note that the CSR terms computed for At and (A(1))t are the same.

Observe that if ρ(A) = 1 then the critical graph C(A(1)) consists of all cycles, such that all entries of these cycles 
have zero weight. Using Theorem 2.5 we obtain the following.

Theorem 4.1. For any A ∈ [0, 1]n×n and x ∈ [0, 1]n there exists a number T (A) such that for all t ≥ T (A),

1. A⊗Lt ⊗L x = 0 if ρ(A) < 1,
2. A⊗Lt ⊗L x = CStRx ⊕ 0 if ρ(A) = 1. In this case (A⊗Lt ⊗L x)i = StR(x ⊕ 0)i for all i = 1, . . . , c.

Proof. We start by showing the following identity:

A⊗Lt ⊗L x = (
A(1)

)t
x ⊕ 0. (55)

Indeed, iterating (1) we obtain

A⊗Lt ⊗L x = (
A(1)

)(
A⊗Lt−1 ⊗L x

) ⊕ 0

= . . .

= (
A(1)

)t
x ⊕ ((

A(1)
)(t−1)0 ⊕ . . . ⊕ (

A(1)
)
0 ⊕ 0

)
= (

A(1)
)t

x ⊕ 0.

For the final reduction we used that all entries of A(1) are nonpositive, hence (A(1))l ⊗ 0 ≤ 0 for all l ≥ 0. Now we 
substitute the result of Theorem 2.2 observing that ρt (A)CStRx ≤ 0 for all large enough t if ρ(A) < 1.
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If ρ(A) = 1 then for each t and i = 1, . . . , c, the ith row of (A(1))t has a zero entry, from which it follows that 
((A(1))t ⊗ 0)i = 0 for all large enough t and i = 1, . . . , c implying that ((A(1))t ⊗ x ⊕ 0)i equals (A(1))t (x ⊕ 0)i and 
hence StR(x ⊕ 0)i for all big enough t . �

It also follows that

A⊗Lt = (
A(1)

)t−1
A ⊕ 0, (56)

where 0 is the n × n matrix consisting of all zeros. Consequently, we obtain that if ρ(A) < 1 then A⊗Lt = 0 for 
sufficiently large t , and if not then

A⊗Lt = CSt−1RA ⊕ 0 (57)

For any n × n matrix A in max-Łukasiewicz algebra, we can define the “matrix of ones” A[1] by

a
[1]
ij =

{
1, if aij = 1,

0, otherwise.
(58)

Theorem 4.2. Orbits of vectors and matrix powers of a matrix A in max-Łukasiewicz algebra are ultimately periodic. 
They are ultimately zero if ρ(A) < 1. Otherwise if ρ(A) = 1,

1. The ultimate period of {A⊗Lt ⊗L x} divides the cyclicity γ of the critical graph C(A).
2. The ultimate period of {A⊗Lt } is equal to γ .

Proof. 1.: Follows from Theorem 4.1. 2.: Observe that A ≥ A[1], and that (A⊗Lt )[1] = (A[1])⊗Lt . Also, the 
Łukasiewicz product of two {0, 1} matrices coincides with their product in the Boolean algebra. This implies that 
if ρ(A) = 1 (i.e., the “graph of ones” has nontrivial strongly connected components), then (A⊗Lt )[1] is nonzero for 
any t , and so is A⊗Lt . As the period of (A⊗Lt )[1] = (A[1])⊗Lt is γ , the period of A⊗Lt cannot be less. Eq. (57), 
expressing the ultimate powers of A in the CSR form, assures that it cannot be more than γ . �
Proposition 4.1. The exact ultimate period of {A⊗Lt ⊗L x} can be computed in O(n3 logn) time.

Proof. First we find ρ(A), in no more than O(n3) time. If ρ(A) < 1 then all orbits converge to 0. Otherwise, by 
Theorem 4.1, the subvector of A⊗Lt ⊗L x extracted from the first c indices equals StR(x ⊕ 0). More generally,

A⊗Lt ⊗L x = CStRx ⊕ 0

= C
(
StR(x ⊕ 0)

) ⊕ 0, (59)

since CStR0 ≤ 0 (observe that none of the entries of A(1) and hence any of its powers exceed zero). This shows 
that the last (n − c) components of A⊗Lt ⊗L x are tropical affine combinations of the first (critical) coordinates, and 
hence we only need to determine the period of StR(x ⊕ 0), which is the ultimate period of the first c coordinates of 
(A(1))t (x ⊕ 0). The latter period can be computed in O(n3 logn) time by means of an algorithm described in [37], see 
also [5,29]. �

Butkovič [5] and Sergeev [38] studied the so-called attraction cones in tropical algebra, that is, sets of vectors x
such that the orbit Atx hits an eigenvector of A at some t .

In the case of max-Łukasiewicz algebra, attraction sets can be defined similarly. Then either ρ(A) < 1 and then 
all orbits converge to 0, or ρ(A) = 1 and then there may be a non-trivial periodic regime, in which the non-critical 
components of A⊗Lt ⊗L x are tropical affine combinations of the critical ones. It follows that (like in max algebra) 
the convergence of A⊗Lt ⊗L x to an eigenvector with eigenvalue 1 is determined by critical components only. Since 
these are given by StR(x ⊕ 0), the attraction sets in max-Łukasiewicz algebra are solution sets to

Rx ⊕ 0 = SRx ⊕ 0, 0 ≤ xi ≤ 1∀i. (60)

This system of equations can be analysed as in [38], a task that we postpone to a future work.
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Example. Let us consider the following matrix

A =

⎛
⎜⎜⎜⎝

0.62 1.00 0.57 0.14

1.00 0.18 0.17 0.18

0.38 0.59 0.65 0.43

0.10 0.18 0.25 0.33

⎞
⎟⎟⎟⎠ (61)

Its max-Łukasiewicz powers proceed as follows:

A⊗L2 =

⎛
⎜⎜⎜⎝

1 0.62 0.22 0.18

0.62 1 0.57 0.14

0.59 0.38 0.30 0.08

0.18 0.10 0 0

⎞
⎟⎟⎟⎠ , A⊗L3 =

⎛
⎜⎜⎜⎝

0.62 1 0.57 0.14

1 0.62 0.22 0.18

0.38 0.59 0.16 0

0.10 0.18 0 0

⎞
⎟⎟⎟⎠ ,

A⊗L4 =

⎛
⎜⎜⎜⎝

1 0.62 0.22 0.18

0.62 1 0.57 0.14

0.59 0.38 0 0

0.18 0.10 0 0

⎞
⎟⎟⎟⎠ , A⊗L5 =

⎛
⎜⎜⎜⎝

0.62 1 0.57 0.14

1 0.62 0.22 0.18

0.38 0.59 0.16 0

0.10 0.18 0 0

⎞
⎟⎟⎟⎠

We see that the sequence {A⊗Lt }t≥1 is ultimately periodic with period 2, and the periodicity starts at t = 3. The 
term (A(1))t−1A = CSt−1RA of (56) dominates in all the columns and rows of A⊗Lt with critical indices (1, 2). In 
the periodic regime (t ≥ 3), the zero term dominates in almost all entries of the non-critical A⊗Lt

MM where M = {3, 4}.

Acknowledgements

We would like to thank Dr. Imran Rashid for useful discussions that have led to the idea of using the max-plus 
linear algebra and tropical convexity in this context. We also thank the anonymous referee for a number of useful 
comments.

References

[1] M. Akian, R. Bapat, S. Gaubert, Min-plus methods in eigenvalue perturbation theory and generalized Lidskiı̆–Višik–Ljusternik theorem, 
2004–2006, E-print: arXiv:math/0402090v3.

[2] M. Akian, R. Bapat, S. Gaubert, Max-plus algebras, in: L. Hogben (Ed.), Handbook of Linear Algebra, in: Discrete Mathematics and Its 
Applications, vol. 39, Chapman and Hall/CRC, 2006, chapter 25.

[3] X. Allamigeon, Static analysis of memory manipulations by abstract interpretation — algorithmics of tropical polyhedra, and application 
to abstract interpretation, PhD thesis École Polytechnique, Palaiseau, France, November 2009, http://www.lix.polytechnique.fr/Labo/Xavier.
Allamigeon/papers/thesis.pdf.

[4] F.L. Baccelli, G. Cohen, G.J. Olsder, J.P. Quadrat, Synchronization and Linearity: An Algebra for Discrete Event Systems, Wiley, 1992.
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