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We prove that the sequence of eigencones (i.e., cones of nonneg-
ative eigenvectors) of positive powers Ak of a nonnegative square
matrix A is periodic both in max algebra and in nonnegative lin-
ear algebra. Using an argument of Pullman, we also show that the
Minkowski sum of the eigencones of powers of A is equal to the
core of A defined as the intersection of nonnegative column spans
of matrix powers, also in max algebra. Based on this, we describe
the set of extremal rays of the core.
The spectral theory of matrix powers and the theory of matrix
core is developed in max algebra and in nonnegative linear algebra
simultaneously wherever possible, in order to unify and compare
both versions of the same theory.
© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

The nonnegative reals R+ under the usual multiplication give rise to two semirings with addition
defined in two ways: first with the usual addition, and second where the role of addition is played
by maximum. Thus we consider the properties of nonnegative matrices with entries in two semirings,
the semiring of nonnegative numbers with usual addition and multiplication called “nonnegative
algebra”, and the semiring called “max(-times) algebra”.
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Our chief object of study is the core of a nonnegative matrix A. This concept was introduced by
Pullman in [33], and is defined as the intersection of the cones generated by the columns of matrix
powers Ak . Pullman provided a geometric approach to the Perron–Frobenius theory of nonnegative
matrices based on the properties of the core. He investigated the action of a matrix on its core
showing that it is bijective and that the extremal rays of the core can be partitioned into periodic
orbits. In other words, extremal rays of the core of A are nonnegative eigenvectors of the powers of A
(associated with positive eigenvalues).

One of the main purposes of the present paper is to extend Pullman’s core to max algebra, thereby
investigating the periodic sequence of eigencones of max-algebraic matrix powers. However, following
the line of [10,11,24], we develop the theory in max algebra and nonnegative algebra simultaneously,
in order to emphasize common features as well as differences, to provide general (simultaneous)
proofs where this is possible. We do not aim to obtain new results, relative to [33,43], on the
usual core of a nonnegative matrix. However, our unifying approach leads in some cases (e.g., The-
orem 6.5(iii)) to new and more elementary proofs than those given previously. Our motivation is
closely related to the Litvinov–Maslov correspondence principle [27], viewing the idempotent math-
ematics (in particular, max algebra) as a “shadow” of the “traditional” mathematics over real and
complex fields.

To the authors’ knowledge, the core of a nonnegative matrix has not received much attention in
linear algebra. However, a more detailed study has been carried out by Tam and Schneider [43], who
extended the concept of the core to linear mappings preserving a proper cone. The case when the
core is a polyhedral (i.e., finitely generated) cone was examined in detail in [43, Section 3], and the
results were applied to study the case of a nonnegative matrix in [43, Section 4]. This work has found
further applications in the theory of dynamic systems acting on the path space of a stationary Bratteli
diagram. In particular, Bezuglyi et al. [4] describe and exploit a natural correspondence between er-
godic measures and extremals of the core of the incidence matrix of such a diagram.

On the other hand, there is much more literature on the related but distinct question of the limit-
ing sets of homogeneous and non-homogeneous Markov chains in nonnegative algebra; see the books
by Hartfiel [22] and Seneta [37] and, e.g., the works of Chi [13] and Sierksma [42]. In max alge-
bra, see the results on the ultimate column span of matrix powers for irreducible matrices (see [7,
Theorem 8.3.11], [38]), and by Merlet [28] on the invariant max cone of non-homogeneous matrix
products.

The theory of the core relies on the behaviour of matrix powers. In the nonnegative algebra,
recall the works of Friedland and Schneider [17] and Rothblum and Whittle [34] (on the role of
distinguished classes which we call “spectral classes”, algebraic and geometric growth rates, and var-
ious applications). The theory of max-algebraic matrix powers is similar. However, the max-algebraic
powers have a well-defined periodic ultimate behaviour starting after sufficiently large time. This
ultimate behaviour has been known since the work of Cuninghame-Green [15, Theorem 27-9], Co-
hen et al. [14] (irreducible case), and is described in greater generality and detail, e.g., by Akian,
Gaubert and Walsh [1], Gavalec [21], De Schutter [36], and the authors [7,39,40] of the present paper.
In particular, the Cyclicity Theorem of Cohen et al. [2,7,14,23]) implies that extremals of the core split
into periodic orbits for any irreducible matrix (see Section 4.2 below).3

Some results on the eigenvectors of max-algebraic matrix powers have been obtained by Butkovič
and Cuninghame-Green [7,8]. The present paper also aims to extend and complete the research initi-
ated in that work.

This paper is organized as follows. In Section 2 we introduce the basics of irreducible and reducible
Perron–Frobenius theory in max algebra and in nonnegative linear algebra. In Section 3 we formulate
the two key results of this paper. The first key result is Main Theorem 1 stating that the matrix
core is equal to the Minkowski sum of the eigencones of matrix powers (that is, for each positive
integer k, we take the sum of the eigencones associated with Ak , and then we sum over all k). The

3 In fact, many of the cited works and monographs like [2,7,21,23] are written in the setting of max-plus algebra. How-
ever, this algebra is isomorphic to the max algebra considered here, so the results can be readily translated to the present
(max-times) setting.
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second key result is Main Theorem 2 stating that the sequence of eigencones of matrix powers is
periodic and defining the period. This section also contains a table of notations used throughout the
paper. Section 4 is devoted to the proof of Main Theorem 1, taking in “credit” the result of Main
Theorem 2 (whose proof is deferred to the end of the paper). In Section 5 we explain the relation
between spectral classes of different matrix powers, and how the eigencones associated with general
eigenvalues can be reduced to the case of the greatest eigenvalue, see in particular Theorems 5.4
and 5.7. In Section 6 we describe extremals of the core in both algebras extending [43, Theorem 4.7],
see Theorem 6.5. Prior to this result we formulate the Frobenius–Victory Theorems 6.1 and 6.2 giving
a parallel description of extremals of eigencones in both algebras. In Section 7, our first goal is to show
that the sequence of eigencones of matrix powers in max algebra is periodic, comparing this result
with the case of nonnegative matrix algebra, see Theorem 7.1. Then we study the inclusion relation
on eigencones and deduce Main Theorem 2. The key results are illustrated by a pair of examples in
Section 8.

2. Preliminaries

2.1. Nonnegative matrices and associated graphs

In this paper we are concerned only with nonnegative eigenvalues and nonnegative eigenvectors
of a nonnegative matrix. In order to bring our terminology into line with the corresponding theory
for max algebra we use the terms eigenvalue and eigenvector in a restrictive fashion appropriate to
our semiring point of view. Thus we shall call ρ an eigenvalue of a nonnegative matrix A (only) if
there is a nonnegative eigenvector x of A for ρ . Further x will be called an eigenvector (only) if it is
nonnegative. (In the literature ρ is called a distinguished eigenvalue and x a distinguished eigenvector
of A.) For x ∈R

n+ , the support of x, denoted by supp(x), is the set of indices where xi > 0.
In this paper we are led to state the familiar Perron–Frobenius theorem in slightly unusual terms:

An irreducible nonnegative matrix A has a unique eigenvalue denoted by ρ+(A), which is positive
(unless A is the 1 × 1 matrix 0). Further, the eigenvector x associated with ρ+(A) is essentially
unique, that is all eigenvectors are multiples of x. The nonnegative multiples of x constitute the cone
of eigenvectors (in the above sense) V+(A,ρ+(A)) associated with ρ+(A).

A general (reducible) matrix A ∈ R
n×n+ may have several nonnegative eigenvalues with associated

cones of nonnegative eigenvectors (eigencones), and ρ+(A) will denote the biggest such eigenvalue,
in general. Eigenvalue ρ+(A) is also called the principal eigenvalue, and V+(A,ρ+(A)) is called the
principal eigencone.

Recall that a subset V ⊆ R
n+ is called a (convex) cone if 1) αv ∈ V for all v ∈ V and α ∈ R+ ,

2) u + v ∈ V for u, v ∈ V . Note that cones in the nonnegative orthant can be considered as “sub-
spaces”, with respect to the semiring of nonnegative numbers (with usual addition and multiplica-
tion). In this vein, a cone V is said to be generated by S ⊆ R

n+ if each v ∈ V can be represented as
a nonnegative combination v = ∑

x∈S αxx where only finitely many αx ∈ R+ are different from zero.
When V is generated (we also say “spanned”) by S , this is denoted V = span+(S). A vector z in a
cone V is called an extremal, if z = u + v and u, v ∈ V imply z = αuu = αv v for some scalars αu

and αv . Any closed cone in R
n+ is generated by its extremals; in particular, this holds for any finitely

generated cone.
Let us recall some basic notions related to (ir)reducibility, which we use also in max algebra.

With a matrix A = (aij) ∈ R
n×n+ we associate a weighted (di)graph G(A) with the set of nodes N =

{1, . . . ,n} and set of edges E ⊆ N × N containing a pair (i, j) if and only if aij �= 0; the weight of an
edge (i, j) ∈ E is defined to be w(i, j) := aij . A graph with just one node and no edges will be called
trivial. A graph with at least one node and at least one edge will be called nontrivial.

A path P in G(A) consisting4 of the edges (i0, i1), (i1, i2), . . . , (it−1, it) has length l(P ) := t and
weight w(P ) := w(i0, i1) · w(i1, i2) · · · w(it−1, it), and is called an i − j path if i0 = i and it = j. P is
called a cycle if i0 = it . P is an elementary cycle, if, further, ik �= il for all k, l ∈ {1, . . . , t − 1}.

4 In our terminology, a path can visit some nodes more than once.
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Recall that A = (aij) ∈ R
n×n+ is irreducible if G(A) is trivial or for any i, j ∈ {1, . . . ,n} there is an

i − j path. Otherwise A is reducible.
Notation A×k will stand for the usual kth power of a nonnegative matrix.

2.2. Max algebra

By max algebra we understand the set of nonnegative numbers R+ where the role of addition is
played by taking maximum of two numbers: a ⊕ b := max(a,b), and the multiplication is as in the
usual arithmetics. This is carried over to matrices and vectors like in the usual linear algebra so that
for two matrices A = (aij) and B = (bij) of appropriate sizes, (A ⊕ B)i j = aij ⊕ bij and (A ⊗ B)i j =⊕

k aikbkj . Notation A⊗k will stand for the kth max-algebraic power.
In max algebra, we have the following analogue of a convex cone. A set V ⊆ R

n+ is called a max
cone if 1) αv ∈ V for all v ∈ V and α ∈ R+ , 2) u ⊕ v ∈ V for u, v ∈ V . Max cones are also known as
idempotent semimodules [26,27]. A max cone V is said to be generated by S ⊆ R

n+ if each v ∈ V can
be represented as a max-combination v = ⊕

x∈S αxx where only finitely many (nonnegative) αx are
different from zero. When V is generated (we also say “spanned”) by S , this is denoted V = span⊕(S).
When V is generated by the columns of a matrix A, this is denoted V = span⊕(A). This cone is closed
with respect to the usual Euclidean topology [10].

A vector z in a max cone V ⊆ R
n+ is called an extremal if z = u ⊕ v and u, v ∈ V imply z = u or

z = v . Any finitely generated max cone is generated by its extremals, see Wagneur [45] and [10,20]
for recent extensions.

The maximum cycle geometric mean of A is defined by

λ(A) = max
{

w(C)1/l(C): C is a cycle in G(A)
}
. (1)

The cycles with the cycle geometric mean equal to λ(A) are called critical, and the nodes and the
edges of G(A) that belong to critical cycles are called critical. The set of critical nodes is denoted by
Nc(A), the set of critical edges by Ec(A), and these nodes and edges give rise to the critical graph
of A, denoted by C(A) = (Nc(A), Ec(A)). A maximal strongly connected subgraph of C(A) is called
a strongly connected component of C(A). Observe that C(A), in A general, consists of several non-
trivial strongly connected components, and that it never has any edges connecting different strongly
connected components.

If for A ∈R
n×n+ we have A ⊗ x = ρx with ρ ∈R+ and a nonzero x ∈R

n+ , then ρ is a max(-algebraic)
eigenvalue and x is a max(-algebraic) eigenvector associated with ρ . The set of max eigenvectors asso-
ciated with ρ , with the zero vector adjoined to it, is a max cone. It is denoted by V⊕(A,ρ).

An irreducible A ∈ R
n×n+ has a unique max-algebraic eigenvalue equal to λ(A) [2,7,15,23]. In gen-

eral A may have several max eigenvalues, and the greatest of them equals λ(A). The greatest max
eigenvalue will also be denoted by ρ⊕(A) (thus ρ⊕(A) = λ(A)), and called the principal max eigen-
value of A. In the irreducible case, the unique max eigenvalue ρ⊕(A) = λ(A) is also called the
max(-algebraic) Perron root. When max algebra and nonnegative algebra are considered simultaneously
(e.g., Section 3), the principal eigenvalue is denoted by ρ(A).

Unlike in nonnegative algebra, there is an explicit description of V⊕(A,ρ⊕(A)), see Theorem 6.2.
This description uses the Kleene star

A∗ = I ⊕ A ⊕ A⊗2 ⊕ A⊗3 ⊕ · · · . (2)

Series (2) converges if and only if ρ⊕(A) � 1, in which case A∗ = I ⊕ A ⊕ · · · ⊕ A⊗(n−1) [2,7,23]. Note
that if ρ⊕(A) �= 0, then ρ⊕(A/ρ⊕(A)) = 1, hence (A/ρ⊕(A))∗ always converges.

The path interpretation of max-algebraic matrix powers A⊗l is that each entry a⊗l
i j is equal to the

greatest weight of an i − j path of length l. Consequently, for i �= j, the entry a∗
i j of A∗ is equal to

the greatest weight of an i − j path (with no length restrictions).

2.3. Cyclicity and periodicity

Consider a nontrivial strongly connected graph G (that is, a strongly connected graph with at least
one node and one edge). Define its cyclicity σ as the gcd of the lengths of all elementary cycles. It
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is known that for any vertices i, j there exists a number l such that l(P ) ≡ l(mod σ) for all i − j
paths P .

When the length of an i − j path is a multiple of σ (and hence we have the same for all j − i
paths), i and j are said to belong to the same cyclic class. When the length of this path is 1 modulo σ
(in other words, if l(P ) − 1 is a multiple of σ ), the cyclic class of i (resp., of j) is previous (resp., next)
with respect to the class of j (resp., of i). See [7, Chapter 8] and [5,38,39] for more information. Cyclic
classes are also known as components of imprimitivity [5].

The cyclicity of a trivial graph is defined to be 1, and the unique node of a trivial graph is defined
to be its only cyclic class.

We define the cyclicity of a (general) graph containing several strongly connected components to
be the lcm of the cyclicities of the components.

For a graph G = (N, E) with N = {1, . . . ,n}, define the associated matrix A = (aij) ∈ {0,1}n×n by
aij = 1 ⇔ (i, j) ∈ E. This is a matrix over the Boolean semiring B := {0,1}, where addition is the
disjunction and multiplication is the conjunction operation. This semiring is a subsemiring of max
algebra, so that it is possible to consider the associated matrix as a matrix in max algebra whose
entries are either 0 or 1.

For a graph G and any k � 1, define Gk as a graph that has the same vertex set as G and (i, j)
is an edge of Gk if and only if there is a path of length k on G connecting i to j. Thus, if a Boolean
matrix A is associated with G , then the Boolean matrix power A⊗k is associated with Gk . Powers
of Boolean matrices (over the Boolean semiring) are a topic of independent interest, see Brualdi and
Ryser [5], Kim [25]. We will need the following observation.

Theorem 2.1. (Cf. [5, Theorem 3.4.5].) Let G be a strongly connected graph with cyclicity σ .

(i) Gk consists of gcd(k, σ ) strongly connected components not accessing each other. If G is nontrivial, then
so are all the components of Gk.

(ii) The node set of each component of Gk consists of σ/(gcd(k, σ )) cyclic classes of G .

Corollary 2.2. Let G be a strongly connected graph with cyclicity σ , and let k, l � 1. Then gcd(k, σ ) divides
gcd(l, σ ) if and only if Gk and Gl are such that the node set of every component of Gl is contained in the node
set of a component of Gk.

Proof. Assume that G is nontrivial.
“If ”. Since the node set of each component of Gk consists of σ/gcd(k, σ ) cyclic classes of G and it

is the disjoint union of the node sets of certain components of Gl , and the node set of each component
of Gl consists of σ/gcd(l, σ ) cyclic classes of G , it follows that the node set of each component of Gk

consists of σ
gcd(k,σ )

/ σ
gcd(l,σ )

= gcd(l,σ )
gcd(k,σ )

components of Gl . In particular, gcd(k, σ ) divides gcd(l, σ ).

“Only if ”. Observe that the node sets of the components Gk and Ggcd(k,σ ) (or Gl and Ggcd(l,σ )) are
the same: since gcd(k, σ ) divides k, each component of Ggcd(k,σ ) splits into several components of Gk ,
but the total number of components is the same (as gcd(gcd(k, σ ),σ ) = gcd(k, σ )), hence their node
sets are the same. The claim follows since the node set of each component of Ggcd(k,σ ) splits into
several components of Ggcd(l,σ ) . �

Let us formally introduce the definitions related to periodicity and ultimate periodicity of se-
quences (whose elements are of arbitrary nature). A sequence {Ωk}k�1 is called periodic if there
exists an integer p such that Ωk+p is identical with Ωk for all k. The least such p is called the period
of {Ωk}k�1. A sequence {Ωk}k�1 is called ultimately periodic if the sequence {Ωk}k�T is periodic for
some T � 1. The least such T is called the periodicity threshold of {Ωk}k�1.

The following observation is crucial in the theory of Boolean matrix powers.
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Theorem 2.3 (Boolean Cyclicity). (See [25].) Let G be a strongly connected graph on n nodes, with cyclicity σ .

(i) The sequence {Gk}k�1 is ultimately periodic with the period σ . The periodicity threshold, denoted by T (G),
does not exceed (n − 1)2 + 1.

(ii) If G is nontrivial, then for k � T (G) and a multiple of σ , Gk consists of σ complete subgraphs not accessing
each other.

For brevity, we will refer to T (G) as the periodicity threshold of G . We have the following two
max-algebraic extensions of Theorem 2.3.

Theorem 2.4 (Cyclicity Theorem). (See Cohen et al. [14].) Let A ∈ R
n×n+ be irreducible, let σ be the cyclicity of

C(A) and ρ := ρ⊕(A). Then the sequence {(A/ρ)⊗k}k�1 is ultimately periodic with period σ .

Theorem 2.5 (Cyclicity of Critical Part). (See Nachtigall [31].) Let A ∈ R
n×n+ , σ be the cyclicity of C(A) and

ρ := ρ⊕(A). Then the sequences {(A/ρ)⊗k
i· }k�1 and {(A/ρ)⊗k

·i }k�1 , for i ∈ Nc(A), are ultimately periodic
with period σ . The greatest of their periodicity thresholds, denoted by Tc(A), does not exceed n2 .

Theorem 2.4 is standard [2,7,23], and Theorem 2.5 can also be found as [7, Theorem 8.3.6]. Here Ai·
(resp. A·i) denote the ith row (resp. the ith column) of A.

When the sequence {(A/ρ)⊗k}k�1 (resp. the sequences {(A/ρ)⊗k
i· }k�1, {(A/ρ)⊗k

·i }k�1) are ulti-

mately periodic, we also say that the sequence {A⊗k}k�1 (resp. {A⊗k
i· }k�1, {A⊗k

·i }k�1) is ultimately
periodic with growth rate ρ .

Let us conclude with a well-known number-theoretic result concerning the coin problem of Frobe-
nius, which we see as basic for both Boolean and max-algebraic cyclicity.

Lemma 2.6. (E.g., [5, Lemma 3.4.2].) Let n1, . . . ,nm be integers such that gcd(n1, . . . ,nm) = k. Then there
exists a number T such that for all integers l with kl � T , we have kl = t1n1 + · · · + tmnm for some t1, . . . ,

tm � 0.

2.4. Diagonal similarity and visualization

For any x ∈ R
n+ , we can define X = diag(x) as the diagonal matrix whose diagonal entries are

equal to the corresponding entries of x, and whose off-diagonal entries are zero. If x does not have
zero components, the diagonal similarity scaling A 
→ X−1 A X does not change the weights of cy-
cles and eigenvalues (both nonnegative and max); if z is an eigenvector of X−1 A X then X z is an
eigenvector of A with the same eigenvalue. This scaling does not change the critical graph C(A) =
(Nc(A), Ec(A)). Observe that (X−1 A X)⊗k = X−1 A⊗k X , also showing that the periodicity thresholds of
max-algebraic matrix powers (Theorems 2.4 and 2.5) do not change after scaling. Of course, we also
have (X−1 A X)×k = X−1 A×k X in nonnegative algebra. The technique of diagonal similarity scaling can
be traced back to the works of Fiedler and Pták [16].

When working with the max-algebraic matrix powers, it is often convenient to “visualize” the
powers of the critical graph. Let A have λ(A) = 1. A diagonal similarity scaling A 
→ X−1 A X is called
a strict visualization scaling [7,41] if the matrix B = X−1 A X has bij � 1, and moreover, bij = 1 if and
only if (i, j) ∈ Ec(A)(= Ec(B)). Any matrix B satisfying these properties is called strictly visualized.

Theorem 2.7 (Strict Visualization). (See [7,41].) For each A ∈R
n×n+ with ρ⊕(A) = 1 (that is, λ(A) = 1), there

exists a strict visualization scaling.

If A = (aij) has all entries aij � 1, then we define the Boolean matrix A[1] with entries

a[1]
i j =

{
1, if aij = 1,

0, if a < 1.
(3)
i j
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If A has all entries aij � 1 then
(

A⊗k)[1] = (
A[1])⊗k

. (4)

Similarly if a vector x ∈ R
n+ has xi � 1, we define x[1] having x[1]

i = 1 if xi = 1 and x[1]
i = 0 otherwise.

Obviously if A and x have all entries not exceeding 1 then (A ⊗ x)[1] = A[1] ⊗ x[1] .
If A is strictly visualized, then a[1]

i j = 1 if and only if (i, j) is a critical edge of G(A). Thus A[1] can
be treated as the associated matrix of C(A) (disregarding the formal difference in dimension). We now
show that C(A⊗k) = C(A)k and that any power of a strictly visualized matrix is strictly visualized.

Lemma 2.8. (Cf. [8], [38, Proposition 3.3].) Let A ∈R
n×n+ and k � 1.

(i) C(A)k = C(A⊗k).
(ii) If A is strictly visualized, then so is A⊗k.

Proof. Using Theorem 2.7, we can assume without loss of generality that A is strictly visualized. Also
note that both in C(A⊗k) and in C(A)k , each node has ingoing and outgoing edges, hence for part (i)
it suffices to prove that the two graphs have the same set of edges.

Applying Theorem 2.1(i) to every component of C(A), we obtain that C(A)k also consists of several
isolated nontrivial strongly connected graphs. In particular, each edge of C(A)k lies on a cycle, so
C(A)k contains cycles. Observe that G(A⊗k) does not have edges with weight greater than 1, while
all edges of C(A)k have weight 1, hence all cycles of C(A)k have weight 1. As C(A)k is a subgraph
of G(A⊗k), this shows that ρ⊕(A⊗k) = λ(A⊗k) = 1 and that all cycles of C(A)k are critical cycles
of G(A⊗k). Since each edge of C(A)k lies on a critical cycle, all edges of C(A)k are critical edges
of G(A⊗k).

G(A⊗k) does not have edges with weight greater than 1, hence every edge of C(A⊗k) has weight 1.
Eq. (4) implies that if a⊗k

i j = 1 then there is a path from i to j composed of the edges with weight 1.

Since A is strictly visualized, such edges are critical. This shows that if a⊗k
i j = 1 and in particular if

(i, j) is an edge of C(A⊗k), then (i, j) is an edge of C(A)k . Hence A⊗k is strictly visualized, and all
edges of C(A⊗k) are edges of C(A)k .

Thus C(A⊗k) and C(A)k have the same set of edges, so C(A⊗k) = C(A)k (and we also showed that
A⊗k is strictly visualized). �

Let T (C(A)) be the greatest periodicity threshold of the strongly connected components of C(A).
The following corollary of Lemma 2.8 will be required in Section 7.

Corollary 2.9. Let A ∈R
n×n+ . Then Tc(A) � T (C(A)).

2.5. Frobenius normal form

Every matrix A = (aij) ∈ R
n×n+ can be transformed by simultaneous permutations of the rows and

columns in almost linear time to a Frobenius normal form [3,5]⎛
⎜⎜⎝

A11 0 · · · 0
A21 A22 · · · 0
· · · · · · Aμμ · · ·
Ar1 Ar2 · · · Arr

⎞
⎟⎟⎠ , (5)

where A11, . . . , Arr are irreducible square submatrices of A. They correspond to the sets of nodes
N1, . . . , Nr of the strongly connected components of G(A). Note that in (5) an edge from a node of
Nμ to a node of Nν in G(A) may exist only if μ � ν .

Generally, AK L denotes the submatrix of A extracted from the rows with indices in K ⊆ {1, . . . ,n}
and columns with indices in L ⊆ {1, . . . ,n}, and Aμν is a shorthand for ANμNν . Accordingly, the sub-
vector xNμ of x with indices in Nμ will be written as xμ .
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If A is in the Frobenius Normal Form (5) then the reduced graph, denoted by R(A), is the (di)graph
whose nodes correspond to Nμ , for μ = 1, . . . , r, and the set of arcs is {(μ,ν); (∃k ∈ Nμ)(∃� ∈
Nν)ak� > 0}. In max algebra and in nonnegative algebra, the nodes of R(A) are marked by the cor-
responding eigenvalues (Perron roots), denoted by ρ⊕

μ := ρ⊕(Aμμ) (max algebra), ρ+
μ := ρ+(Aμμ)

(nonnegative algebra), and by ρμ when both algebras are considered simultaneously.
By a class of A we mean a node μ of the reduced graph R(A). It will be convenient to attribute to

class μ the node set and the edge set of G(Aμμ), as well as the cyclicity and other parameters, that
is, we will say “nodes of μ”, “edges of μ”, “cyclicity of μ”, etc.5

A class μ is trivial if Aμμ is the 1 × 1 zero matrix. Class μ accesses class ν , denoted μ → ν , if
μ = ν or if there exists a μ − ν path in R(A). A class is called initial, resp. final, if it is not accessed
by, resp. if it does not access, any other class. Node i of G(A) accesses class ν , denoted by i → ν , if i
belongs to a class μ such that μ → ν .

Note that simultaneous permutations of the rows and columns of A are equivalent to calculating
P−1 A P , where P is a permutation matrix. Such transformations do not change the eigenvalues, and
the eigenvectors before and after such a transformation may only differ by the order of their compo-
nents. Hence we can assume without loss of generality that A is in Frobenius normal form (5). Note
that a permutation bringing matrix to this form is (relatively) easy to find [5]. We will refer to the
transformation A 
→ P−1 A P as permutational similarity.

2.6. Elements of the Perron–Frobenius theory

In this section we recall the spectral theory of reducible matrices in max algebra and in non-
negative linear algebra. All results are standard: the nonnegative part goes back to Frobenius [18],
Section 11, and the max-algebraic counterpart is due to Gaubert [19], Chapter IV (also see [7] for
other references).

A class ν of A is called a spectral class of A associated with eigenvalue ρ �= 0, or sometimes
(A,ρ)-spectral class for short, if

ρ⊕
ν = ρ, and μ → ν implies ρ⊕

μ � ρ⊕
ν (max algebra),

ρ+
ν = ρ, and μ → ν,μ �= ν implies ρ+

μ < ρ+
ν (nonnegative algebra). (6)

In both algebras, note that there may be several spectral classes associated with the same eigenvalue.
In nonnegative algebra, spectral classes are called distinguished classes [35], and there are also

semi-distinguished classes associated with distinguished generalized eigenvectors of order two or
more [44]. However, these vectors are not contained in the core.6 Also, no suitable max-algebraic
analogue of generalized eigenvectors is known to us.

If all classes of A consist of just one element, then the nonnegative and max-algebraic Perron roots
are the same. In this case, the spectral classes in nonnegative algebra are also spectral in max algebra.
However, in general this is not so. In particular, for a nonnegative matrix A, a cycle of G(A) attaining
the maximum cycle geometric mean ρ⊕(A) = λ(A) need not lie in a strongly connected component
corresponding to a class with spectral radius ρ+(A). This is because, if A1, A2 are irreducible nonneg-
ative matrices such that ρ+(A1) < ρ+(A2), then we need not have ρ⊕(A1) � ρ⊕(A2). For example,
let A be the 3×3 matrix of all 1’s, and let B(ε) = (3/2, ε, ε)T (3/2, ε, ε). Then ρ+(A) = 3, ρ+(B(ε)) =
9/4 + 2ε2, so ρ+(A) > ρ+(B(ε)) for sufficiently small ε > 0, but ρ⊕(B(ε)) = 9/4 > 1 = ρ⊕(A).

Denote by Λ+(A), resp. Λ⊕(A), the set of nonzero eigenvalues of A ∈ R
n×n+ in nonnegative lin-

ear algebra, resp. in max algebra. It will be denoted by Λ(A) when both algebras are considered
simultaneously, as in the following standard description.

Theorem 2.10. (See [7, Theorem 4.5.4], [35, Theorem 3.7].) Let A ∈R
n×n+ . Then Λ(A) = {ρν �= 0: ν is spectral}.

5 The sets Nμ are also called classes, in the literature. To avoid the confusion, we do not follow this in the present paper.
6 For a polyhedral cone, the core of the cone-preserving map does not contain generalized eigenvectors of order two or

more [43, Corollary 4.3].
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Theorem 2.10 encodes the following two statements:

Λ⊕(A) = {
ρ⊕

ν �= 0: ν is spectral
}
, Λ+(A) = {

ρ+
ν �= 0: ν is spectral

}
, (7)

where the notion of spectral class is defined in two different ways by (6), in two algebras.
In both algebras, for each ρ ∈ Λ(A) define

Aρ := ρ−1
(

0 0
0 AMρ Mρ

)
, where

Mρ := {
i: i → ν, ν is (A,ρ)-spectral

}
. (8)

The next proposition, holding both in max algebra and in nonnegative algebra, allows us to reduce
the case of arbitrary eigencone to the case of principal eigencone. Here we assume that A is in
Frobenius normal form.

Proposition 2.11. (See [7,19,35].) For A ∈ R
n×n+ and each ρ ∈ Λ(A), we have V (A,ρ) = V (Aρ,1), where 1

is the principal eigenvalue of Aρ .

For a parallel description of extremals of eigencones7 in both algebras see Section 6.1.
In max algebra, using Proposition 2.11, we define the critical graph associated with ρ ∈ Λ⊕(A) as

the critical graph of Aρ . By a critical component of A we mean a strongly connected component of
the critical graph associated with some ρ ∈ Λ⊕(A). In max algebra, the role of spectral classes of
A is rather played by these critical components, which will be (in analogy with classes of Frobenius
normal form) denoted by μ̃, with the node set Nμ̃ . See Section 5.2.

3. Notation table and key results

The following notation table shows how various objects are denoted in nonnegative algebra, max
algebra and when both algebras are considered simultaneously.

Nonnegative Max Both

Sum
∑ ⊕ ∑

Matrix power A×t A⊗t At

Column span span+(A) span⊕(A) span(A)

Perron root ρ+
μ ρ⊕

ν ρμ

Spectrum (excl. 0) Λ+(A) Λ⊕(A) Λ(A)

Eigencone V+(A,ρ+) V⊕(A,ρ⊕) V (A,ρ)

Sum of eigencones V Σ+ (A) V Σ⊕ (A) V Σ(A)

Core core+(A) core⊕(A) core(A)

In the case of max algebra, we also have the critical graph C(A) (with related concepts and nota-
tion), not used in nonnegative algebra.

The core and the sum of eigencones appearing in the table have not been formally introduced.
These are the two central notions of this paper, and we now introduce them for both algebras simul-
taneously.

The core of a nonnegative matrix A is defined as the intersection of the column spans (in other
words, images) of its powers:

7 In nonnegative algebra, [35, Theorem 3.7] immediately describes both spectral classes and eigencones associated with any
eigenvalue. However, we prefer to split the formulation, following the exposition of [7]. An alternative simultaneous exposition
of spectral theory in both algebras can be found in [24].
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core(A) :=
∞⋂

i=1

span
(

Ai). (9)

The (Minkowski) sum of eigencones of a nonnegative matrix A is the cone consisting of all sums of
vectors in all V (A,ρ):

V Σ(A) :=
∑

ρ∈Λ(A)

V (A,ρ). (10)

If Λ(A) = ∅, which happens when ρ(A) = 0, then we assume that the sum on the right-hand side
is {0}.

The following notations can be seen as the “global” definition of cyclicity in nonnegative algebra
and in max algebra.

1. Let σρ be the lcm of all cyclicities of spectral classes associated with ρ ∈ Λ+(A) (nonnegative
algebra), or the cyclicity of critical graph associated with ρ ∈ Λ⊕(A) (max algebra).

2. Let σΛ be the lcm of all σρ where ρ ∈ Λ(A).

The difference between the definitions of σρ in max algebra and in nonnegative algebra comes from
the corresponding versions of the Perron–Frobenius theory. In particular, let A ∈ R

n×n+ be an irre-
ducible matrix. While in nonnegative algebra the eigencone associated with the Perron root of A is
always reduced to a single ray, the number of (appropriately normalized) extremals of the eigencone
of A in max algebra is equal to the number of critical components, so that there may be up to n such
extremals.

One of the key results of the present paper relates the core with the sum of eigencones. The
nonnegative part of this result can be found in Tam and Schneider [43, Theorem 4.2, part (iii)].

Main Theorem 1. Let A ∈R
n×n+ . Then

core(A) =
∑

k�1,ρ∈Λ(A)

V
(

Ak,ρk) = V Σ
(

AσΛ
)
.

The main part of the proof is given in Section 4, for both algebras simultaneously. However, this
proof takes in “credit” some facts, which we will have to show. First of all, we need the equality

Λ
(

Ak) = {
ρk: ρ ∈ Λ(A)

}
. (11)

This simple relation between Λ(Ak) and Λ(A), which can be seen as a special case of [24, Theo-
rem 3.6(ii)], will be also proved below as Corollary 5.5.

To complete the proof of Main Theorem 1 we also have to study the periodic sequence of eigen-
cones of matrix powers and their sums. On this way we obtain the following key result, both in max
and nonnegative algebra.

Main Theorem 2. Let A ∈ R
n×n+ . Then

(i) σρ , for ρ ∈ Λ(A), is the period of the sequence {V (Ak,ρk)}k�1 , and V (Ak,ρk) ⊆ V (Aσρ ,ρσρ ) for all
k � 1;

(ii) σΛ is the period of the sequence {V Σ(Ak)}k�1 , and V Σ(Ak) ⊆ V Σ(AσΛ) for all k � 1.

Main Theorem 2 is proved in Section 7 as a corollary of Theorems 7.3 and 7.4, where the inclusion
relations between eigencones of matrix powers are studied in detail.

Theorem 6.5, which gives a detailed description of extremals of both cores, can be also seen as a
key result of this paper. However, it is too long to be formulated in advance.
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4. Two cores

4.1. Basics

In this section we investigate the core of a nonnegative matrix defined by (9). In the main argu-
ment, we consider the cases of max algebra and nonnegative algebra simultaneously.

One of the most elementary and useful properties of the intersection in (9) is that, actually,

span(A) ⊇ span
(

A2) ⊇ span
(

A3) ⊇ · · · . (12)

Generalizing an argument of Pullman [33] we will prove that

core(A) =
∑
k�1

V Σ
(

Ak) =
∑

k�1,ρ∈Λ(A)

V
(

Ak,ρk) (13)

also in max algebra.
Note that the following inclusion is almost immediate.

Lemma 4.1.
∑

k�1 V Σ(Ak) ⊆ core(A).

Proof. x ∈ V (Ak,ρ) implies that Akx = ρx and hence x = ρ−t Akt x for all t � 1 (using the invertibility
of multiplication). Hence x ∈ ⋂

t�1 span Akt = ⋂
t�1 span(At). �

So it remains to show the opposite inclusion

core(A) ⊆
∑
k�1

V Σ
(

Ak). (14)

Let us first treat the trivial case ρ(A) = 0, i.e., Λ(A) = ∅. There are only trivial classes in the Frobe-
nius normal form, and G(A) is acyclic. This implies Ak = 0 for some k � 1. In this case core(A) = {0},
the sum on the right-hand side is {0} by convention, so (13) is the trivial “draw” {0} = {0}.

4.2. Max algebra: cases of ultimate periodicity

In max algebra, unlike the nonnegative algebra, there are wide classes of matrices for which (14)
and (13) follow almost immediately. We list some of them below.

S1: Irreducible matrices.
S2: Ultimately periodic matrices. This is when the sequence {A⊗k}k�1 is ultimately periodic with a

growth rate ρ (in other words, when the sequence {(A/ρ)⊗k}k�1 is ultimately periodic). As shown by
Molnárová and Pribiš [30], this happens if and only if the Perron roots of all nontrivial classes of A
equal ρ⊕(A) = ρ .

S3: Robust matrices. For any vector x ∈ R
n+ the orbit {A⊗k ⊗ x}k�1 hits an eigenvector of A, mean-

ing that A⊗T ⊗ x is an eigenvector of A for some T . This implies that the whole remaining part
{A⊗k ⊗ x}k�T of the orbit (the “tail” of the orbit) consists of multiples of that eigenvector A⊗T ⊗ x.
The notion of robustness was introduced and studied in [9].

S4: Orbit periodic matrices: For any vector x ∈ R
n+ the orbit {A⊗k ⊗ x}k�1 hits an eigenvector of

A⊗σx for some σx , implying that the remaining “tail” of the orbit {A⊗k ⊗ x}k�1 is periodic with some
growth rate. See [40, Section 7] for a characterization.

S5: Column periodic matrices. This is when for all i we have (A⊗(t+σi ))·i = ρ
σi
i A⊗t

·i for all large
enough t and some ρi and σi .

Observe that S1 ⊆ S2 ⊆ S4 ⊆ S5 and S3 ⊆ S4. Indeed, S1 ⊆ S2 is the Cyclicity Theorem 2.4. For
the inclusion S2 ⊆ S4 observe that, if A is ultimately periodic then A⊗(t+σ) = ρσ A⊗t and hence
A⊗(t+σ) ⊗ x = ρσ A⊗t ⊗ x holds for all x ∈ R

n+ and all big enough t . Observe that S3 is a special case
of S4, which is a special case of S5 since the columns of matrix powers can be considered as orbits
of the unit vectors.
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To see that (14) holds in all these cases, note that in the column periodic case all column se-
quences {At

·i}t�1 end up with periodically repeating eigenvectors of A⊗σi or the zero vector, which
implies that span⊕(A⊗t) ⊆ ⊕

k�1 V Σ⊕ (A⊗k) ⊆ core⊕(A) and hence span⊕(A⊗t) = core⊕(A) for all
large enough t . Thus, finite stabilization of the core occurs in all these classes. A necessary and suf-
ficient condition for this finite stabilization is described in [12].

4.3. Core: a general argument

The original argument of Pullman [33, Section 2] used the separation of a point from a closed
convex cone by an open homogeneous halfspace (that contains the cone and does not contain the
point).

In the case of max algebra, Nitica and Singer [32] showed that at each point x ∈ R
n+ there are

at most n maximal max cones not containing this point. These conical semispaces, used to separate x
from any max cone not containing x, turn out to be open. Hence they can be used in the max version
of Pullman’s argument.

However, for the sake of a simultaneous proof we will exploit the following analytic argument
instead of separation. By B(x, ε) we denote the intersection of the open ball centred at x ∈ R

n+ of
radius ε with R

n+ . In the remaining part of Section 4 we consider both algebras simultaneously.

Lemma 4.2. Let x1, . . . , xm ∈ R
n+ be nonzero and let z /∈ span(x1, . . . , xm). Then there exists ε > 0 such that

z /∈ span(B(x1, ε), . . . , B(xm, ε)).

Proof. By contradiction assume that for each ε there exist points yi(ε) ∈ B(xi, ε) and nonnegative
scalars μi(ε) such that

z =
m∑

i=1

μi(ε)yi(ε). (15)

Since yi(ε) → xi as ε → 0 and xi are nonzero, we can assume that yi(ε) are bounded from below by
nonzero vectors vi , and then z �

∑m
i=1 μi(ε)vi for all ε , implying that μi(ε) are uniformly bounded

from above. By compactness we can assume that μi(ε) converge to some μi ∈ R+ , and then (15)
implies by continuity that z = ∑m

i=1 μi xi , a contradiction. �
Theorem 4.3. (See [33, Theorem 2.1].) Assume that {Kl} for l � 1, is a sequence of cones in R

n+ such that
Kl+1 ⊆ Kl for all l, and each of them is generated by no more than k nonzero vectors. Then the intersection
K = ⋂∞

l=1 Kl is also generated by no more than k vectors.

Proof. Let Kl = span(yl1, . . . , ylk) (where some of the vectors yl1, . . . , ylk may be repeated when
Kl is generated by less than k nonzero vectors), and consider the sequences of normalized vectors
{yli/‖yli‖}l�1 for i = 1, . . . ,k, where ‖u‖ := max ui (or any other norm). As the set {u: ‖u‖ = 1} is
compact, we can find a subsequence {lt}t�1 such that for i = 1, . . . ,k, the sequence {ylt i/‖ylt i‖}t�1

converges to a finite vector ui , which is nonzero since ‖ui‖ = 1. We will assume that ‖ylt i‖ = 1 for
all i and t .

We now show that u1, . . . , uk ∈ K . Consider any i = 1, . . . ,k. For each s, ylt i ∈ Ks for all sufficiently
large t . As {ylt i}t�1 converges to ui and Ks is closed, we have ui ∈ Ks . Since this is true for each s,
we have ui ∈ ⋂∞

s=1 Ks = K .
Thus u1, . . . , uk ∈ K , and span(u1, . . . , uk) ⊆ K . We claim that also K ⊆ span(u1, . . . , uk). Assume

to the contrary that there is z ∈ K that is not in span(u1, . . . , uk). Then by Lemma 4.2 there exists
ε > 0 such that z /∈ span(B(u1, ε), . . . , B(uk, ε)). Since the sequence {ylt i}t�1 converges to ui , we have
ylt i ∈ B(ui, ε) for t large enough, and

span
(

ylt 1, . . . , yltk) ⊆ span
(

B
(
u1, ε

)
, . . . , B

(
uk, ε

))
.
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But z belongs to Klt = span(ylt 1, . . . , yltk) since it belongs to the intersection of all these cones, a
contradiction. �

Theorem 4.3 applies to the sequence {span(At)}t�1, so core(A) is generated by no more than n
vectors.

Proposition 4.4. (See [33, Lemma 2.3].) The mapping induced by A on its core is a surjection.

Proof. First note that A does induce a mapping on its core. If z ∈ core(A) then for each t there exists
a vector xt such that z = At xt . Hence Az = At+1xt , so Az ∈ ⋂

t�2 span At = core(A).
Next, let m be such that Am has the greatest number of zero columns (we assume that A is

not nilpotent; recall that a zero column in Ak remains zero in all subsequent powers). If z = At xt

for t � m + 1, we also can represent it as Am+1ut , where ut := At−m−1xt . The components of ut

corresponding to the nonzero columns of Am+1 are bounded since Am+1ut = z. So we can assume that
the sequence of subvectors of ut with these components converges. Then the sequence yt := Amut

also converges, since the indices of nonzero columns of Am coincide with those of Am+1, which are
the indices of the converging subvectors of ut . Let y be the limit of yt . Since ys = As−1xs are in
span(At) for all s > t , and since span(At) are closed, we obtain y ∈ span(At) for all t . Thus we found
y ∈ core(A) satisfying Ay = z. �

Theorem 4.3 and Proposition 4.4 show that the core is generated by finitely many vectors in R
n+

and that the mapping induced by A on its core is “onto”.
Now we use the fact that a finitely generated cone in the nonnegative orthant (and more generally,

closed cone) is generated by its extremals both in nonnegative algebra and in max algebra, see [10,
45].

Proposition 4.5. (See [33, Theorem 2.2].) The mapping induced by A on the extremal generators of its core is
a permutation (i.e., a bijection).

Proof. Let core(A) = span(u1, . . . , uk) where u1, . . . , uk are extremals of the core. Suppose that x j is a
preimage of u j in the core, that is, Ax j = u j for some x j ∈ core(A), j = 1, . . . ,k. Then x j = ∑k

i=1 αiui

for some nonnegative coefficients α1, . . . ,αk , and u j = ∑k
i=1 αi Aui . Since u j is extremal, it follows

that u j is proportional to Aui for some i. Thus for each j ∈ {1, . . . ,k} there exists an i ∈ {1, . . . ,k}
such that Aui is a positive multiple of u j . But since for each i ∈ {1, . . . ,k} there is at most one j
such that Aui is a positive multiple of u j , it follows that A induces a bijection on the set of extremal
generators of its core. �

We are now ready to prove (13) and Main Theorem 1 taking the periodicity of the eigencone
sequence (Main Theorem 2) in “credit”.

Proof of Main Theorem 1. Proposition 4.5 implies that all extremals of core(A) are eigenvectors of Aq ,
where q denotes the order of the permutation induced by A on the extremals of core(A). Hence
core(A) is a subcone of the sum of all eigencones of all powers of A, which is the inclusion rela-
tion (14). Combining this with the reverse inclusion of Lemma 4.1 we obtain that core(A) is precisely
the sum of all eigencones of all powers of A, and using (11) (proved in Section 5 below), we obtain
the first part of the equality of Main Theorem 1. The last part of the equality of Main Theorem 1 now
follows from the periodicity of eigencones formulated in Main Theorem 2, or more precisely, from the
weaker result of Theorem 7.1 proved in Section 7. �
5. Spectral classes and critical components of matrix powers

This section is rather of technical importance. It shows that the union of node sets of all spectral
classes is invariant under matrix powering, and that access relations between spectral classes in all
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matrix powers are essentially the same. Further, the case of an arbitrary eigenvalue can be reduced
to the case of the principal eigenvalue for all powers simultaneously (in both algebras). At the end of
the section we consider the critical components of max-algebraic powers.

5.1. Classes and access relations

As in Section 4, the arguments are presented in both algebras simultaneously. This is due to the
fact that the edge sets of G(A⊗k) and G(A×k) are the same for any k and that the definitions of
spectral classes in both algebras are alike. Results of this section can be traced back, for the case of
nonnegative algebra, to the classical work of Frobenius [18], see remarks on the very first page of [18]
concerning the powers of an irreducible nonnegative matrix.8

The reader is also referred to the monographs of Minc [29], Berman and Plemmons [3], Brualdi
and Ryser [5], and we will often cite the work of Tam and Schneider [43, Section 4] containing all of
our results in this section, in nonnegative algebra.

Lemma 5.1. (Cf. [3, Chapter 5, Ex. 6.9], [43, Lemma 4.5].) Let A be irreducible with the unique eigenvalue ρ ,
let G(A) have cyclicity σ and k be a positive integer.

(i) Ak is permutationally similar to a direct sum of gcd(k, σ ) irreducible blocks with eigenvalues ρk, and Ak

does not have eigenvalues other than ρk.
(ii) If k is a multiple of σ , then the sets of indices in these blocks coincide with the cyclic classes of G(A).

(iii) If supp(x) is a cyclic class of G(A), then supp(Ax) is the previous cyclic class.

Proof. (i) Assuming without loss of generality ρ = 1, let X = diag(x) for a positive eigenvector x ∈
V (A,ρ) and consider B := X−1 A X which is stochastic (nonnegative algebra), or max-stochastic, i.e.,
such that

⊕n
j=1 bij = 1 holds for all i (max algebra). By Theorem 2.1, Bk is permutationally similar to

a direct sum of gcd(k, σ ) irreducible isolated blocks. These blocks are stochastic (or max-stochastic),
hence they all have an eigenvector (1, . . . ,1) associated with the unique eigenvalue 1. If x ∈ V (Ak, ρ̃)

for some ρ̃ , then its subvectors corresponding to the irreducible blocks of Ak are also eigenvectors of
those blocks, or zero vectors. Hence ρ̃ = 1, which is the only eigenvalue of Ak .

(ii) By Theorem 2.1, G(A) splits into gcd(k, σ ) = σ components, and each of them contains exactly
one cyclic class of G(A).

(iii) Use the definition of cyclic classes and that each node has an ingoing edge. �
Lemma 5.2. Both in max algebra and in nonnegative linear algebra, the trivial classes of Ak are the same for
all k.

Proof. In both algebras, an index belongs to a class with nonzero Perron root if and only if the
associated graph contains a cycle with a nonzero weight traversing the node with that index. This
property is invariant under taking matrix powers, hence the claim. �

In both algebras, each class μ of A with cyclicity σ corresponds to an irreducible submatrix Aμμ .
It is easy to see that (Ak)μμ = (Aμμ)k . Applying Lemma 5.1 to Aμμ we see that μ gives rise to
gcd(k, σ ) classes in Ak , which are said to be derived from their common ancestor μ. If μ is trivial, then
it gives rise to a unique trivial derived class of Ak , and if μ is nontrivial then all the derived classes

8 Frobenius defines (what we could call) the cyclicity or index of imprimitivity k of an irreducible S as the number of
eigenvalues that lie on the spectral circle. He then remarks “If A is primitive, then every power of A is again primitive and a
certain power and all subsequent powers are positive”. This is followed by “If A is imprimitive, then Am consists of d irreducible
parts where d is the greatest common divisor of m and k. Further, Am is completely reducible. The characteristic functions of
the components differ only in the powers of the variable” (which provides a converse to the preceding assertion). And then
“The matrix Ak is the lowest power of A whose components are all primitive”. The three quotations cover Lemma 5.1 in the
case of nonnegative algebra.
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are nontrivial as well. The classes of Ak and Al derived from the common ancestor will be called
related. Note that this is an equivalence relation on the set of classes of all powers of A. Evidently,
a class of Ak is derived from a class of A if and only if its index set is contained in the index set of
the latter class. It is also clear that each class of Ak has an ancestor in A.

We now observe that access relations in matrix powers are “essentially the same”. This has iden-
tical proof in max algebra and nonnegative algebra.

Lemma 5.3. Let A ∈ R
n×n+ . For all k, l � 1 and ρ > 0, if an index i ∈ {1, . . . ,n} accesses (resp. is accessed by)

a class with Perron root ρk in Ak then i accesses (resp. is accessed by) a related class with Perron root ρl in Al .

Proof. We deduce from Lemma 5.1 and Lemma 5.2 that the index set of each class of Ak with Perron
root ρk is contained in the ancestor class of A with Perron root ρ . Then, i accessing (resp. being
accessed by) a class in Ak implies i accessing (resp. being accessed by) its ancestor in A. Since ρ > 0,
this ancestor class is nontrivial, so the access path can be extended to have a length divisible by l, by
means of a path contained in the ancestor class. By Lemma 5.1, the ancestor decomposes in Al into
several classes with the common Perron root ρl , and i accesses (resp. is accessed by) one of them. �
Theorem 5.4. (See [43, Corollary 4.6].) Let A ∈R

n×n+ .

(i) If a class μ is spectral in A, then so are the classes derived from it in Ak. Conversely, each spectral class of
Ak is derived from a spectral class of A.

(ii) For each class μ of A with cyclicity σ , there are gcd(k, σ ) classes of Ak derived from it. If k is a multiple
of σ then the index sets of derived classes are the cyclic classes of μ.

Proof. (i) We will prove the following equivalent statement: For each pair μ,ν where μ is a class
in A and ν is a class derived from μ in Ak , we have that μ is non-spectral if and only if ν is
non-spectral.

Observe that by Lemma 5.2, the Perron root of μ is 0 if and only if the Perron root of ν is 0. In
this case, both μ and ν are non-spectral (by definition). Further, let ρ > 0 be the Perron root of μ.
Then, by Lemma 5.1, the Perron root of ν is ρk . Let i be an index in ν . It also belongs to μ.

If μ is non-spectral, then i is accessed in A by a class with Perron root ρ ′ such that ρ ′ > ρ in max
algebra, resp. ρ ′ � ρ in nonnegative algebra. By Lemma 5.3, there is a class of Ak , which accesses
i in Ak and has Perron root (ρ ′)k . Since we have (ρ ′)k > ρk in max algebra or resp. (ρ ′)k � ρk in
nonnegative algebra, we obtain that ν , being the class to which i belongs in Ak , is also non-spectral.

Conversely, if ν is non-spectral, then i is accessed in Ak by a class θ with Perron root equal to ρ̃k

for some ρ̃ , and such that ρ̃k > ρk in max algebra, resp. ρ̃k � ρk in nonnegative algebra. The ancestor
of θ in A accesses9 i in A and has Perron root ρ̃ . Since we have ρ̃ > ρ in max algebra or resp. ρ̃ � ρ
in nonnegative algebra, we obtain that μ, being the class to which i belongs in A, is also non-spectral.
Part (i) is proved.

(ii) This part follows directly from Lemma 5.1 parts (i) and (ii). �
Corollary 5.5. Let A ∈R

n×n+ and k � 1. Then Λ(Ak) = {ρk: ρ ∈ Λ(A)}.

Proof. By Theorem 2.10, the nonzero eigenvalues of A (resp. Ak) are precisely the Perron roots of
the spectral classes of A (resp. Ak). By Theorem 5.4(i), if a class of A is spectral, then so is any class
derived from it in Ak . This implies that Λ(Ak) ⊇ {ρk: ρ ∈ Λ(A)}. The converse inclusion follows from
the converse part of Theorem 5.4(i). �

Let us note yet another corollary of Theorem 5.4. For A ∈R
n×n+ and ρ � 0, let N(A,ρ) be the union

of index sets of all classes of A with Perron root ρ , and Ns(A,ρ) be the union of index sets of all

9 This can be observed immediately, or obtained by applying Lemma 5.3.
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spectral classes of A with Perron root ρ . Obviously, Ns(A,ρ) ⊆ N(A,ρ), and both sets (as defined for
arbitrary ρ � 0) are possibly empty.

Corollary 5.6. Let A ∈ R
n×n+ , ρ ∈R+ and k � 1. Then

(i) N(Ak,ρk) = N(A,ρ),
(ii) Ns(Ak,ρk) = Ns(A,ρ).

Proof. (i) This part follows from Lemmas 5.1 and 5.2. (ii) Inclusion Ns(A,ρ) ⊆ Ns(Ak,ρk) follows
from the direct part of Theorem 5.4(i), and inclusion Ns(Ak,ρk) ⊆ Ns(A,ρ) follows from the converse
part of Theorem 5.4(i). �

For the eigencones of A ∈ R
n×n+ , the case of an arbitrary ρ ∈ Λ(A) can be reduced to the case of

the principal eigenvalue: V (A,ρ) = V (Aρ,1) (Proposition 2.11). Now we extend this reduction to the
case of V (Ak,ρk), for any k � 1. As in the case of Proposition 2.11, we assume that A is in Frobenius
normal form.

Theorem 5.7. Let k � 1 and ρ ∈ Λ(A).

(i) The set of all indices having access to the spectral classes of Ak with the eigenvalue ρk equals Mρ , for
each k.

(ii) (Ak)Mρ Mρ = ρk(Aρ)k
Mρ Mρ

.

(iii) V (Ak,ρk) = V ((Aρ)k,1).

Proof. (i) Apply Corollary 5.6 part (ii) and Lemma 5.3. (ii) Use that Mρ is initial in G(A). (iii) By
Proposition 2.11 we have (assuming that Ak is in Frobenius normal form) that V (Ak,ρk) = V (Ak

ρk ,1)

where, instead of (8),

Ak
ρk := ρ−k

(
0 0
0 Ak

Mk
ρ Mk

ρ

)
, and

Mk
ρ := {

i: i → ν, ν is
(

Ak,ρk
)
-spectral

}
. (16)

By part (i) Mk
ρ = Mρ , hence Ak

ρk = (Aρ)k and the claim follows. �
5.2. Critical components

In max algebra, when A is assumed to be strictly visualized, each component μ̃ of C(A) with
cyclicity σ corresponds to an irreducible submatrix A[1]

μ̃μ̃
(as in the case of classes, Aμ̃μ̃ is a shorthand

for ANμ̃Nμ̃
). Using the strict visualization and Lemma 2.8 we see that (A⊗k)

[1]
μ̃μ̃

= (A[1]
μ̃μ̃

)⊗k . Applying

Lemma 5.1(i) to A[1]
μ̃μ̃

we see that μ̃ gives rise to gcd(k, σ ) critical components in A⊗k . As in the case

of classes, these components are said to be derived from their common ancestor μ̃.
Evidently a component of C(A⊗k) is derived from a component of C(A) if and only if its index

set is contained in the index set of the latter component. Following this line we now formulate an
analogue of Theorem 5.4 (and some other results).

Theorem 5.8. (Cf. [7, Theorem 8.2.6], [8, Theorem 2.3].) Let A ∈R
n×n+ .

(i) For each component μ̃ of C(A) with cyclicity σ , there are gcd(k, σ ) components of C(A⊗k) derived from
it. Conversely, each component of C(A⊗k) is derived from a component of C(A). If k is a multiple of σ ,
then index sets in the derived components are the cyclic classes of μ̃.
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(ii) The sets of critical indices of A⊗k for k = 1,2, . . . are identical.
(iii) If A is strictly visualized, xi � 1 for all i and supp(x[1]) is a cyclic class of μ̃, then supp((A ⊗ x)[1]) is the

previous cyclic class of μ̃.

Proof. (i), (ii) Both statements are based on the fact that C(A⊗k) = (C(A))k , shown in Lemma 2.8. To
obtain (i), also apply Theorem 2.1 to a component μ̃ of C(A). (iii) Use (A ⊗ x)[1] = A[1] ⊗ x[1] , the
definition of cyclic classes and the fact that each node in μ̃ has an ingoing edge. �
6. Describing extremals

The aim of this section is to describe the extremals of the core, in both algebras. To this end, we
first give a parallel description of extremals of eigencones (the Frobenius–Victory theorems).

6.1. Extremals of the eigencones

We now describe the principal eigencones in nonnegative linear algebra and then in max algebra.
By means of Proposition 2.11, this description can be obviously extended to the general case. As in
Section 2.6, both descriptions are essentially known: see [7,18,19,35].

We emphasize that the vectors x(μ) and x(μ̃) appearing below are full-size.

Theorem 6.1 (Frobenius–Victory). (See [35, Theorem 3.7].) Let A ∈ R
n×n+ have ρ+(A) = 1.

(i) Each spectral class μ with ρ+
μ = 1 corresponds to an eigenvector x(μ) , whose support consists of all indices

in the classes that have access to μ, and all vectors x of V+(A,1) with supp x = supp x(μ) are multiples
of x(μ) .

(ii) V+(A,1) is generated by x(μ) of (i), for μ ranging over all spectral classes with ρ+
μ = 1.

(iii) x(μ) of (i) are extremals of V+(A,1). (Moreover, x(μ) are linearly independent.)

Note that the extremality and the usual linear independence of x(μ) (involving linear combinations
with possibly negative coefficients) can be deduced from the description of supports in part (i), and
from the fact that in nonnegative algebra, spectral classes associated with the same ρ do not access
each other. This linear independence also means that V+(A,1) is a simplicial cone. See also [35,
Theorem 4.1].

Theorem 6.2. (See [7, Theorem 4.3.5], [41, Theorem 2.8].) Let A ∈R
n×n+ have ρ⊕(A) = 1.

(i) Each component μ̃ of C(A) corresponds to an eigenvector x(μ̃) defined as one of the columns A∗
·i with

i ∈ Nμ̃ , all such columns with i ∈ Nμ̃ being multiples of each other.

(i′) Each component μ̃ of C(A) is contained in a (spectral) class μ with ρ⊕
μ = 1, and the support of each x(μ̃)

of (i) consists of all indices in the classes that have access to μ.
(ii) V⊕(A,1) is generated by x(μ̃) of (i), for μ̃ ranging over all components of C(A).

(iii) x(μ̃) of (i) are extremals in V⊕(A,1). (Moreover, x(μ̃) are strongly linearly independent in the sense of [6].)

To verify (i′), not explicitly stated in the references, use (i) and the path interpretation of A∗ .
Vectors x(μ̃) of Theorem 6.2 are also called the fundamental eigenvectors of A, in max algebra. Ap-

plying a strict visualization scaling (Theorem 2.7) allows us to get further details on these fundamental
eigenvectors.

Proposition 6.3. (See [41, Proposition 4.1].) Let A ∈ R
n×n+ be strictly visualized (in particular, ρ⊕(A) = 1).

Then

(i) For each component μ̃ of C(A), x(μ̃) of Theorem 6.2 can be canonically chosen as A∗
·i for any i ∈ Nμ̃ , all

columns with i ∈ Nμ̃ being equal to each other.

(ii) x(μ̃)

i � 1 for all i. Moreover, supp(x(μ̃)[1]) = Nμ̃ .
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6.2. Extremals of the core

Let us start with the following observation in both algebras.

Proposition 6.4. For each k � 1, the set of extremals of V Σ(Ak) is the union of the sets of extremals of
V (Ak,ρk) for ρ ∈ Λ(A).

Proof. Due to the fact that Λ(Ak) = {ρk: ρ ∈ Λ(A)}, we can assume without loss of generality that
k = 1.

1. As V Σ(A) is the sum of V (A,ρ) for ρ ∈ Λ(A), it is generated by the extremals of V (A,ρ) for
ρ ∈ Λ(A). Hence each extremal of V Σ(A) is an extremal of V (A,ρ) for some ρ ∈ Λ(A).

2. Let x ∈ V (A,ρμ), for some spectral class μ, be extremal. Assume without loss of generality that
ρμ = 1, and by contradiction that there exist vectors yκ , all of them extremals of V Σ(A), such that
x = ∑

κ yκ . By above, all vectors yκ are eigenvectors of A. If there is yκ associated with an eigen-
value ρν > 1, then applying At we obtain x = (ρν)t yκ + · · · , which is impossible at large enough t .
So ρν � 1. With this in mind, if there is yκ associated with ρν < 1, then: 1) in nonnegative algebra
we obtain Ax > A

∑
κ yκ , a contradiction; 2) in max algebra, all nonzero entries of A ⊗ yκ go below

the corresponding entries of x meaning that yκ is redundant. Thus we are left only with yκ asso-
ciated with ρ⊕

ν = 1, which is a contradiction: an extremal x ∈ V⊕(A,1) appears as a “sum” of other
extremals of V⊕(A,1) not proportional to x. �

A vector x ∈ R
n+ is called normalized if max xi = 1. Recall the notation σΛ introduced in Section 3.

Theorem 6.5. (Cf. [43, Theorem 4.7].) Let A ∈R
n×n+ and σ := σΛ .

(i) The set of extremals of core(A) is the union of the sets of extremals of V (Aσ ,ρσ ) for all ρ ∈ Λ(A).
(ii) In nonnegative algebra, each spectral class μ with cyclicity σμ corresponds to a set of distinct σμ

normalized extremals of core+(A), such that there exists an index in their support that belongs to μ, and
each index in their support has access to μ.
In max algebra, each critical component μ̃ with cyclicity σμ̃ associated with some ρ ∈ Λ⊕(A) corre-
sponds to a set of distinct σμ̃ normalized extremals x of core⊕(A), which are (normalized) columns of
(Aσ

ρ )∗ with indices in Nμ̃ .
(iii) Each set of extremals described in (ii) forms a simple cycle under the action of A.
(iv) There are no normalized extremals other than those described in (ii). In nonnegative algebra, the total

number of normalized extremals equals the sum of cyclicities of all spectral classes of A. In max algebra,
the total number of normalized extremals equals the sum of cyclicities of all critical components of A.

Proof. (i) follows from Main Theorem 1 and Proposition 6.4.
For the proof of (ii) and (iii) we can fix ρ = ρμ ∈ Λ(A) and assume A = Aρ (using Theorem 5.7).

In max algebra, we also assume that A is strictly visualized.
(ii) In nonnegative algebra, observe that by Theorem 5.4, each spectral class μ of A gives rise to

σμ spectral classes in A×σ , whose node sets are cyclic classes of μ (note that σμ divides σ ). Accord-
ing to Frobenius–Victory Theorem 6.1, these classes give rise to normalized extremals of V+(A×σ ,1),
and the conditions on support follow from Theorem 6.1 and Lemma 5.3.

(iii) Let x be an extremal described above. Then supp(x) ∩ Nμ is a cyclic class of μ and
supp(Ax) ∩ Nμ is the previous cyclic class of μ, by Lemma 5.1 part (iii). It can be checked that
all indices in supp(Ax) also have access to μ. By Proposition 4.5, Ax is an extremal of core+(A), and
hence an extremal of V+(A×σ ,1). Theorem 6.1 identifies Ax with the extremal associated with the
previous cyclic class of μ.

Vectors x, Ax, . . . , A×σμ−1x are distinct since the intersections of their supports with Nμ are
disjoint, so they are exactly the set of extremals associated with μ. Note that A×σμ x = x, as
supp(A×σμ x) ∩ Nμ = supp(x) ∩ Nμ , and both vectors are extremals of V+(A×σ ,1).
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(ii) In max algebra, observe that by Theorem 5.8(i) each component μ̃ of C(A) gives rise to σμ̃

components of C(A⊗σ ), whose node sets are the cyclic classes of μ̃ (note that σμ̃ divides σ ). These
components correspond to σμ̃ columns of (A⊗σ )∗ with indices in different cyclic classes of μ̃, which
are by Theorem 5.8(i) the node sets of components of C(A⊗σ ). By Theorem 6.2 these columns of
(A⊗σ )∗ are extremals of V⊕(A⊗σ ,1), and Proposition 6.3(ii) implies that they are normalized.

(iii) Let x be an extremal described above. By Proposition 6.3 and Theorem 5.8(i) supp(x[1]) is a
cyclic class of μ̃, and by Theorem 5.8(iii) supp((A ⊗ x)[1]) is the previous cyclic class of μ̃. By Propo-
sition 4.5, A ⊗ x is an extremal of core⊕(A), and hence an extremal of V⊕(A⊗σ ,1). Proposition 6.3
identifies A ⊗ x with the extremal associated with the previous cyclic class of μ̃.

Vectors x, A ⊗ x, . . . , A⊗σμ̃−1x are distinct since their booleanizations x[1] , (A ⊗ x)[1], . . . ,
(A⊗σμ̃−1 ⊗ x)[1] are distinct, so they are exactly the set of extremals associated with μ̃. Note that
A⊗σμ̃ ⊗ x = x, as (A⊗σμ̃ ⊗ x)[1] = x[1] and both vectors are extremals of V⊕(A⊗σ ,1).

(iv) In both algebras, the converse part of Theorem 5.4(i) shows that there are no spectral classes
of Aσ other than the ones derived from the spectral classes of A. In nonnegative algebra, this shows
that there are no extremals other than described in (ii). In max algebra, on top of that, the converse
part of Theorem 5.8(i) shows that there are no components of C(A⊗σ

ρ ) other than the ones derived
from the components C(Aρ), for ρ ∈ Λ⊕(A), hence there are no extremals other than those described
in (ii). In both algebras, it remains to count the extremals described in (ii). �
7. Sequence of eigencones

The main aim of this section is to investigate the periodicity of eigencones and to prove Main
Theorem 2. Unlike in Section 4, the proof of periodicity will be different for the cases of max algebra
and nonnegative algebra. The periods of eigencone sequences in max algebra and in nonnegative
linear algebra are also in general different, for the same nonnegative matrix (see Section 8 for an
example). To this end, recall the definitions of σρ and σΛ given in Section 3, which will be used
below.

7.1. Periodicity of the sequence

We first observe that in both algebras

k divides l ⇒ V
(

Ak,ρk) ⊆ V
(

Al,ρl) ∀ρ ∈ Λ(A),

k divides l ⇒ V Σ
(

Ak) ⊆ V Σ
(

Al). (17)

We now prove that the sequence of eigencones is periodic.

Theorem 7.1. Let A ∈ R
n×n+ and ρ ∈ Λ(A).

(i) V (Ak,ρk) = V (Ak+σρ ,ρk+σρ ), and V (Ak,ρk) ⊆ V (Aσρ ,ρσρ ) for all k � 1.
(ii) V Σ(Ak) = V Σ(Ak+σΛ) and V Σ(Ak) ⊆ V Σ(AσΛ) for all k � 1.

Proof. We will give two separate proofs of part (i), for the case of max algebra and the case of
nonnegative algebra. Part (ii) follows from part (i).

In both algebras, we can assume without loss of generality that ρ = 1, and using Theorem 5.7, that
this is the greatest eigenvalue of A.

In max algebra, by Theorem 2.5, columns of A⊗r with indices in Nc(A) are periodic for r � Tc(A).
Recall that by Corollary 2.9, Tc(A) is not less than T (C(A)), which is the greatest periodicity threshold
of the strongly connected components of C(A). By Theorem 2.3 part (ii), (C(A))tσ consists of complete
graphs for tσ � T (C(A)), in particular, it contains loops (i, i) for all i ∈ Nc(A). Hence

a⊗(tσ )
ii = 1 ∀i ∈ Nc(A), t �

⌈
Tc(A)

σ

⌉
,



1948 P. Butkovič et al. / Linear Algebra and its Applications 439 (2013) 1929–1954
and

a⊗(l+tσ )

ki � a⊗l
ki a⊗(tσ )

ii = a⊗l
ki ∀i ∈ Nc(A), ∀k, l, ∀t �

⌈
Tc(A)

σ

⌉
,

or, in terms of columns of matrix powers,

A⊗(l+tσ )
·i � A⊗l

·i ∀i ∈ Nc(A), ∀l, ∀t �
⌈

Tc(A)

σ

⌉
.

Multiplying this inequality repeatedly by A⊗l we obtain A⊗(kl+tσ)
·i � A⊗(kl)

·i for all k � 1, and

A⊗(k(l+tσ))
·i � A⊗(kl)

·i for all k � 1. Hence we obtain

(
A⊗(l+tσ )

)∗
·i �

(
A⊗l)∗

·i ∀i ∈ Nc(A), ∀l, ∀t �
⌈

Tc(A)

σ

⌉
. (18)

On the other hand, using the ultimate periodicity of critical columns we have

(
A⊗(l+tσ )

)∗
·i =

⊕{
A⊗s

·i : s ≡ kl(mod σ), k � 1, s � Tc(A)
}

for all l and all tσ � Tc(A), while generally

(
A⊗l)∗

·i �
⊕{

A⊗s
·i : s ≡ kl(mod σ), k � 1, s � Tc(A)

} ∀l,

implying the reverse inequality with respect to (18). It follows that

(
A⊗(l+tσ )

)∗
·i = (

A⊗l)∗
·i ∀i ∈ Nc(A), ∀l, ∀t �

⌈
Tc(A)

σ

⌉
, (19)

therefore (A⊗(l+σ))∗·i = (A⊗(l+tσ+σ))∗·i = (A⊗(l+tσ))∗·i = (A⊗l)∗·i for all critical indices i and all l. Since
V (A⊗l,1) is generated by the critical columns of (A⊗l)∗ , and the critical indices of A⊗l are Nc(A)

by Theorem 5.8(ii), the periodicity V⊕(A⊗l,ρl) = V⊕(A⊗(l+σ),ρl+σ ) follows. Using this and (17) we
obtain V⊕(A⊗l,ρl) ⊆ V⊕(A⊗(lσ),ρlσ ) = V⊕(A⊗σ ,ρσ ) for each l and ρ ∈ Λ⊕(A).

In nonnegative algebra, also assume that all final classes (and hence only them) have Perron root
ρ = 1. Final classes of A×l are derived from the final classes of A; they (and no other classes) have
Perron root 1. By Theorem 5.4(i) and Corollary 2.2, for any t � 0, the spectral classes of A×l and
A×(l+tσ) with Perron root 1 have the same sets of nodes, which we denote by N1, . . . , Nm (assuming
that their number is m � 1).

By the Frobenius–Victory Theorem 6.1, the cone V+(A×l,1) is generated by m extremals
x(1), . . . , x(m) with the support condition of Theorem 6.1(i) from which we infer that the subvec-
tors x(μ)

μ (i.e., x(μ)

Nμ
) are positive, while x(μ)

ν (i.e., x(μ)

Nν
) are zero for all μ �= ν from 1 to m, since the

different spectral classes by (6) do not access each other, in the nonnegative linear algebra. Analo-
gously the cone V+(A×(l+tσ),1) is generated by m eigenvectors y(1), . . . , y(m) such that the subvectors
y(μ)
μ are positive, while y(μ)

ν = 0 for all μ �= ν from 1 to m.
Assume first that l = σ . As V+(A×σ ,1) ⊆ V+(A×(tσ),1), each x(μ) is a nonnegative linear com-

bination of y(1), . . . , y(m) , and this implies x(μ) = y(μ) for all μ = 1, . . . ,m. Hence V+(A×(tσ),1) =
V+(A×σ ,1) for all t � 0.

We also obtain V+(A×l,1)⊆ V+(A×(σ l),1) = V+(A×σ ,1) for all l. Thus V+(A×l,1) ⊆ V+(A×(tσ),1),
and therefore V+(A×l,1) ⊆ V+(A×(l+tσ),1). Now if V+(A×l,1), resp. V+(A×(l+tσ),1) are generated
by x(1), . . . , x(m) , resp. y(1), . . . , y(m) described above, then each x(μ) is a nonnegative linear combina-
tion of y(1), . . . , y(m) , and this again implies x(μ) = y(μ) for all μ = 1, . . . ,m, and V+(A×(l+tσ),1) =
V+(A×l,1) for all t � 0 and all l.
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We have already shown that V+(A×l,ρl) ⊆ V+(A×(lσ),ρlσ ) = V+(A×σ ,ρσ ) for each l and ρ ∈
Λ+(A). �
7.2. Inclusion and divisibility

We now show that the inclusion relations between the eigencones of different powers of a matrix,
in both algebras, strictly follow divisibility of exponents of matrix powers with respect to σρ and σΛ .
We start with a corollary of Theorem 7.1.

Lemma 7.2. Let k, l � 1 and ρ ∈ Λ(A).

(i) V (Ak,ρk) = V (Agcd(σρ ,k), ρgcd(σρ ,k)) and V Σ(Ak) = V Σ(Agcd(σΛ,k)).
(ii) gcd(k, σρ) = gcd(l, σρ) implies V (Ak,ρk) = V (Al,ρl), and gcd(k, σΛ) = gcd(l, σΛ) implies V Σ(Ak) =

V Σ(Al).

Proof. (i) Let σ := σρ , and s := gcd(k, σ ). If s = σ then k is a multiple of σ and V (Ak,ρk) = V (As,ρs)

by Theorem 7.1(i). Otherwise, since s divides k, we have V (As,ρs) ⊆ V (Ak,ρk). In view of the peri-
odicity (Theorem 7.1(i)), it suffices to find t such that V (Ak,ρk) ⊆ V (As+tσ ,ρs+tσ ). For this, observe
that s + tσ is a multiple of s = gcd(k, σ ). By Lemma 2.6 (the Frobenius coin problem), for big enough
t it can be expressed as t1k + t2σ where t1, t2 � 0. Moreover t1 �= 0, for otherwise we have s = σ .
Then we obtain

V
(

Ak,ρk) ⊆ V
(

At1k,ρt1k) = V
(

At1k+t2σ ,ρt1k+t2σ
)

= V
(

As+tσ ,ρs+tσ ) = V
(

As,ρs),
and the first part of the claim follows. The second part is obtained similarly, using Theorem 7.1(ii)
instead of Theorems 7.1(i).

(ii) follows from (i). �
Theorem 7.3. Let A ∈R

n×n+ and σ be either the cyclicity of a spectral class of A (nonnegative algebra) or the
cyclicity of a critical component of A (max algebra). The following are equivalent for all positive k, l:

(i) gcd(k, σ ) divides gcd(l, σ ) for all cyclicities σ ;
(ii) gcd(k, σρ) divides gcd(l, σρ) for all ρ ∈ Λ(A);

(iii) gcd(k, σΛ) divides gcd(l, σΛ);
(iv) V (Ak,ρk) ⊆ V (Al,ρl) for all ρ ∈ Λ(A) and
(v) V Σ(Ak) ⊆ V Σ(Al).

Proof. (i) ⇒ (ii) ⇒ (iii) follow from elementary number theory. (ii) ⇒ (iv) and (iii) ⇒ (v) follow
from (17) and Lemma 7.2 part (i) (which is essentially based on Theorem 7.1). (iv) ⇒ (v) is trivial.
It only remains to show that (v) ⇒ (i).

(v) ⇒ (i) In both algebras, take an extremal x ∈ V (Ak,ρk). As V Σ(Ak) ⊆ V Σ(Al), this vector can be
represented as x = ∑

i yi , where yi are extremals of V Σ(Al). Each yi is an extremal of V (Al, ρ̃l) for
some ρ̃ ∈ Λ(A) (as we will see, only the extremals with ρ̃ = ρ are important). By Frobenius–Victory
Theorems 6.1 and 6.2 and Theorem 5.4(i), there is a unique spectral class μ of A to which all indices
in supp(x) have access. Since supp(yi) ⊆ supp(x), we are restricted to the submatrix A J J where J
is the set of all indices accessing μ in A. In other words, we can assume without loss of generality
that μ is the only final class in A, hence ρ is the greatest eigenvalue, and ρ = 1. Note that supp(x) ∩
Nμ �= ∅.

In nonnegative algebra, restricting the equality x = ∑
i yi to Nμ we obtain

supp(xμ) =
⋃

supp
(

yi
μ

)
. (20)
i
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If supp(yi
μ) is non-empty, then yi is associated with a spectral class of A×l whose nodes are in Nμ .

Theorem 6.1(i) implies that supp(yi
μ) consists of all indices in a class of A×l

μμ . As x can be any ex-

tremal eigenvector of A×k with supp x ∩ Nμ �= ∅, (20) shows that each class of A×k
μμ (corresponding

to x) splits into several classes of A×l
μμ (corresponding to yi ). By Corollary 2.2 this is only possible

when gcd(k, σ ) divides gcd(l, σ ), where σ is the cyclicity of the spectral class μ.
In max algebra, since ρ = 1, assume without loss of generality that A is strictly visualized. In this

case A and x have all coordinates not exceeding 1. Recall that x[1] is the Boolean vector defined by
x[1]

i = 1 ⇔ xi = 1. Vector x corresponds to a unique critical component μ̃ of C(A) with the node
set Nμ̃ . Then instead of (20) we obtain

x[1] =
⊕

i

yi[1] ⇒ supp
(
x[1]
μ̃

) =
⋃

i

supp
(

yi[1]
μ̃

)
, (21)

where supp(x[1]) = supp(x[1]
μ̃

) by Proposition 6.3(ii) and Theorem 5.8(i), and hence also supp(yi[1]) =
supp(yi[1]

μ̃
). If supp(yi[1]

μ̃
) is non-empty then also supp(yi

Nμ
) is non-empty so that yi is associated

with the eigenvalue 1. As yi is extremal, Proposition 6.3(ii) implies that supp(yi[1]
μ̃

) consists of all

indices in a class of (A[1]
μ̃μ̃

)⊗l . As x can be any extremal eigenvector of A⊗k with supp(x[1]) ∩ Nμ̃ �= ∅,

(21) shows that each class of (A[1]
μ̃μ̃

)⊗k splits into several classes of (A[1]
μ̃μ̃

)⊗l . By Corollary 2.2 this
is only possible when gcd(k, σ ) divides gcd(l, σ ), where σ is the cyclicity of the critical compo-
nent μ̃. �

Let us also formulate the following version restricted to some ρ ∈ Λ(A).

Theorem 7.4. Let A ∈ R
n×n+ , and let σ be either the cyclicity of a spectral class (nonnegative algebra) or the

cyclicity of a critical component (max algebra) associated with some ρ ∈ Λ(A). The following are equivalent
for all positive k, l:

(i) gcd(k, σ ) divides gcd(l, σ ) for all cyclicities σ ;
(ii) gcd(k, σρ) divides gcd(l, σρ);

(iii) V (Ak,ρk) ⊆ V (Al,ρl).

Proof. (i) ⇒ (ii) follows from the elementary number theory, and (ii) ⇒ (iii) follows from (17) and
Lemma 7.2(i). The proof of (iii) ⇒ (i) follows the lines of the proof of Theorem 7.3 (v) ⇒ (i), with a
slight simplification that ρ̃ = ρ and further, x and all yi in x = ∑

i yi are associated with the same
eigenvalue. �

We are now ready to deduce Main Theorem 2.

Proof of Main Theorem 2. We prove the first part. The inclusion V (Ak,ρk) ⊆ V (Aσρ ,ρσρ ) was proved
in Theorem 7.1(i), and we are left to show that σρ is the least such p that V (Ak+p,ρk+p) = V (Ak,ρk)

for all k � 1. But taking k = σρ and using Theorem 7.4 (ii) ⇔ (iii), we obtain
gcd(σρ + p, σρ) = σρ , implying that σρ divides σρ + p, so σρ divides p. Since Theorem 7.1(i) also
shows that V (Ak+σρ ,ρk+σρ ) = V (Ak,ρk) for all k � 1, the result follows.

The second part can be proved similarly, using Theorem 7.1(ii) and Theorem 7.3 (iii) ⇔ (v). �
8. Examples

We consider two examples of reducible nonnegative matrices, examining their core in max algebra
and in nonnegative linear algebra.
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Example 1. Take

A =

⎛
⎜⎜⎜⎜⎜⎝

0.1206 0 0 0 0

0.5895 0.2904 1 0.8797 0.4253

0.2262 0.6171 0.3439 1 0.3127

0.3846 0.2653 0.5841 0.2607 1

0.5830 1 0.1078 0.5944 0.1788

⎞
⎟⎟⎟⎟⎟⎠

. (22)

A has two classes with node sets {1} and {2,3,4,5}. Both in max algebra and in nonnegative linear
algebra, the only spectral class arises from M := {2,3,4,5}. The max-algebraic Perron root of this
class is ρ⊕(A) = 1, and the critical graph consists of just one cycle 2 → 3 → 4 → 5 → 2.

The eigencones V⊕(A,1), V⊕(A⊗2,1), V⊕(A⊗3,1) and V⊕(A⊗4,1) are generated by the last four
columns of the Kleene stars A∗ , (A⊗2)∗ , (A⊗3)∗ , (A⊗4)∗ . Namely,

V⊕(A,1) = V⊕
(

A⊗3,1
) = span⊕

{
(0 1 1 1 1)

}
,

V⊕
(

A⊗2,1
) = span⊕

{
(0,1,0.8797,1,0.8797), (0,0.8797,1,0.8797,1)

}
,

V⊕
(

A⊗4,1
) = span⊕

{
(0,1,0.6807,0.7738,0.8797), (0,0.8797,1,0.6807,0.7738),

(0,0.7738,0.8797,1,0.6807), (0,0.6807,0.7738,0.8797,1)
}
.

By Main Theorem 1, core⊕(A) is equal to V⊕(A⊗4,1). Computing the max-algebraic powers of A
we see that the sequence of submatrices A⊗t

MM becomes periodic after t = 10, with period 4. In par-
ticular,

A⊗10 =

⎛
⎜⎜⎜⎜⎜⎝

α 0 0 0 0

0.4511 0.7738 0.6807 1 0.8797

0.5128 0.8797 0.7738 0.6807 1

0.5830 1 0.8797 0.7738 0.6807

0.5895 0.6807 1 0.8797 0.7738

⎞
⎟⎟⎟⎟⎟⎠

, (23)

where 0 < α < 0.0001. Observe that the last four columns are precisely the ones that generate
V⊕(A⊗4,1). Moreover, if α was 0 then the first column would be the following max-combination
of the last four columns:

a⊗10
41 A⊗10

·2 ⊕ a⊗10
51 A⊗10

·3 ⊕ a⊗10
21 A⊗10

·4 ⊕ a⊗10
31 A⊗10

·5 .

On the one hand, the first column of A⊗t cannot be a max-combination of the last four columns for
any t > 0 since a⊗t

11 > 0. On the other hand, a⊗t
11 → 0 as t → ∞ ensuring that the first column belongs

to the core “in the limit”.
Fig. 1 gives a symbolic illustration of what is going on in this example.
In nonnegative algebra, the block AMM with M = {2,3,4,5} is also the only spectral block. Its

Perron root is approximately ρ+(A) = 2.2101, and the corresponding eigencone is

V+
(

A,ρ+(A)
) = span+

{
(0, 0.5750, 0.5107, 0.4593, 0.4445)

}
.

Taking the usual powers of (A/ρ+(A)) we see that

(
A/ρ+(A)

)×12 =

⎛
⎜⎜⎜⎜⎜⎝

α 0 0 0 0

0.2457 0.2752 0.2711 0.3453 0.2693

0.2182 0.2444 0.2408 0.3067 0.2392

0.1963 0.2198 0.2165 0.2759 0.2151

⎞
⎟⎟⎟⎟⎟⎠

,

0.1899 0.2127 0.2096 0.2670 0.2082
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Fig. 1. The spans of matrix powers (upper curve) and the periodic sequence of their eigencones (lower graph) in Example 1
(max algebra).

where 0 < α < 0.0001, and that the first four digits of all entries in all higher powers are the same.
It can be verified that the submatrix (A/ρ+(A))×12

MM is, approximately, the outer product of the Perron
eigenvector with itself, while the first column is also almost proportional to it.

Example 2. Take

A =

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0.6718 0.2240 0.5805 0.1868

0.6951 0.6678 0.4753 0.3735

⎞
⎟⎟⎟⎠ . (24)

This matrix has two classes μ and ν with index sets {1,2} and {3,4}, and both classes are spec-
tral, in both algebras. In max algebra ρ⊕

μ = 1 and ρ⊕
ν = a33 < 1. The eigencones of matrix powers

associated with ρ⊕
μ = 1 are

V⊕(A,1) = span⊕
{
(1,1,0.6718,0.6951)

}
,

V⊕
(

A⊗2,1
) = span⊕

{
(1,0,0.3900,0.6678), (0,1,0.6718,0.6951)

}
,

and the eigencone associated with ρ⊕
ν is generated by the third column of the matrix:

V⊕
(

A,ρ⊕
ν

) = span⊕
{
(0, 0, 0.5805, 0.4753)

}
.

By Main Theorem 1, core⊕(A) is equal to the (max-algebraic) sum of V⊕(A⊗2,1) and V⊕(A,ρ⊕
ν ).

To this end, observe that already in the second max-algebraic power

A⊗2 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0.3900 0.6718 0.3370 0.1084

0.6678 0.6951 0.2759 0.1395

⎞
⎟⎟⎟⎠ (25)

the first two columns are the generators of V⊕(A⊗2,1). However, the last column is still not pro-
portional to the third one which shows that span⊕(A⊗2) �= core⊕(A). However, it can be checked
that this happens in span⊕(A⊗4), with the first two columns still equal to the generators of
V⊕(A⊗2,1), which shows that span⊕(A⊗4) is the sum of the above mentioned max cones, and hence
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Fig. 2. The spans of matrix powers (upper graph) and the periodic sequence of their eigencones (lower graph) in Example 2
(max algebra).

span⊕(A⊗4) = span⊕(A⊗5) = · · · = core⊕(A). Hence we see that A is column periodic (S5) and the
core finitely stabilizes. See Fig. 2 for a symbolic illustration.

In nonnegative algebra, ρ+
μ = 1 and ρ+

ν = 0.7924. Computing the eigenvectors of A and A×2

yields

V+(A,1) = span+
{
(0.1326,0.1326,0.6218,0.7604)

}
,

V+
(

A×2,1
) = span+

{
(0.2646,0,0.5815,0.7693), (0,0.2566,0.6391,0.7251)

}
,

and

V+
(

A,ρ+
ν

) = span+
{
(0, 0, 0.6612, 0.7502)

}
.

Here core+(A) is equal to the ordinary (Minkowski) sum of V+(A×2,1) and V+(A,ρ+
ν ). To this

end, it can be observed that, within the first 4 digits, the first two columns of A×t become ap-
proximately periodic after t = 50, and the columns of powers of the normalized submatrix Aνν/ρ+

ν
approximately stabilize after t = 7. Of course, there is no finite stabilization of the core in this case.
However, the structure of the nonnegative core is similar to the max-algebraic counterpart described
above.
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