
On the job rotation problem

Peter Butkovič and Seth Lewis
School of Mathematics

The University of Birmingham
Edgbaston

Birmingham B15 2TT
United Kingdom

May 3, 2005

Abstract

The job rotation problem (JRP) is the following: Given an n × n
matrix A over R ∪ {−∞} and k ≤ n, find a k × k principal submatrix of
A whose optimal assignment problem value is maximum. No polynomial
algorithm is known for solving this problem if k is an input variable. We
analyse JRP and present polynomial solution methods for a number of
special cases.

Keywords: principal submatrix, assignment problem, job rotation
problem, node disjoint cycles.

AMS-classification: 15A15, 90C27

1 Introduction

One of the classical problems in combinatorial optimization is the (linear) as-
signment problem which can be described as follows: A one-to-one assignment
between two n-element sets of objects, say {A1, ..., An} and {B1, ..., Bn} has to
be found. The cost cij of assigning Ai to Bj is given for every pair (Ai, Bj) and
the task is to find an assignment that minimises the total cost. This problem
has a convenient matrix formulation: If we store the coefficients cij in an n× n

matrix C then the assignment problem means to choose n entries of C so that
no two are from the same row or column, and their sum is minimal.

The assignment problem has, of course, also a maximising form in which
the coefficients represent benefits and the object is to maximise the sum of the

1

benefits. Many solution methods exist for the assignment problem [1], [6], prob-
ably the best known being the Hungarian method of computational complexity
O(n3), whose many variants exist in the literature.

The job rotation problem is motivated by the following task: Suppose that a
company with n employees requires these workers to swap their jobs (possibly
on a regular basis) in order to avoid exposure to monotonous tasks (for instance
manual workers at an assembly line or ride operators in a theme park). It is also
required that to maintain stability of service only a certain number of employees,
say k (k < n), actually swap their jobs. With each transition old job - new job a
coefficient is associated expressing either the cost (for instance for an additional
training) or the preference of the worker to this particular change. So the aim
is to select k employees and to suggest a plan of the job changes between them
so that the sum of the coefficients corresponding to these changes is minimum
or maximum.

For any set X and positive integer n the symbol Xn×n will denote the set
of all n × n matrices over X. In most cases we will deal with matrices over
R := R ∪ {−∞}. By a principal submatrix of a square matrix A we understand
as usual any submatrix of A whose set of row indices is the same as the set of
column indices. A principal submatrix of A = (aij) ∈ Rn×n

is therefore any
matrix of the form


ai1i1 ai1i2 ... ai1ik

ai2i1 ai2i2 ... ai2ik

...
...

...
aiki1 aiki2 ... aikik


where 1 ≤ i1 < ... < ik ≤ n. This matrix will be denoted by A(i1, i2, ..., ik).
Hence the job rotation problem is the problem to find, for a given n×n matrix
A and k < n, a k×k principal submatrix of A for which the optimal assignment
problem value is minimal or maximal (the diagonal entries can be set to +∞
or −∞ to avoid an assignment to the same job). For a particular A and k, we
shall refer to this problem as JRP(A, k). The task of solving the job rotation
problem for all k, we shall refer to as JRP(A) or just JRP. In the rest of the
paper, we will discuss the maximisation version of the problem.

Note that there is also a “non-weighted” version of JRP in which it is only
given which job moves are feasible. The problem is to decide if it is possible to
re-assign / rotate k jobs between the employees, (k ∈ N), where job i can be

2

assigned to job j only if (i, j) is from a given set of feasible transitions. This can
obviously be represented by a {0,−∞} matrix C, where a 0 corresponds to a
feasible move. Alternatively, this version can be represented by a (non-weighted)
digraph D = (V,E), where V = {v1, v2, . . . , vn} and E = {(vi, vj); cij = 0}.

The number of principal submatrices of order k of a matrix of order n is(
n
k

)
. Therefore if k is an input variable, solving the assignment problem for all

principal submatrices and then comparing the resulting values would be non-
polynomial. If k ≤ n is fixed, then the method would be polynomial (though
of a high degree in most cases). However, the total number of submatrices of
all orders is

∑n
k=1

(
n
k

)
= 2n − 1 and therefore checking all of them would not

solve JRP for all k in polynomial time. In fact, no polynomial method seems
to be known for solving this problem, neither is it proved to be NP -complete.
In this paper we present a number of cases when JRP is solvable polynomially.
Note that there is a randomized polynomial algorithm for solving JRP [5]. It
may be interesting to mention that the problem arising by removing the word
“principal” from the formulation of the JRP is easily solvable [10].

In Section 2 we will give an overview of known results. Section 3 deals
with matrices over T = {−∞, 0} and Section 4 contains results for matrices
over R := R ∪ {−∞}. These include the proof that JRP(A) can be solved
in polynomial time if this is true for every irreducible diagonal block of the
Frobenius normal form of A.

2 An overview of known results

One class of solvable cases of the JRP is related to the fact that the optimal
values of JRP(A, k) for k = 1, 2, ..., n are the coefficients of the characteristic
polynomial of A in max-algebra. Max-algebra is an analogue of linear algebra
in which the conventional operations of addition and multiplication are replaced
by ⊕ and ⊗ defined as follows: a⊕b = max(a, b) and a⊗b = a+b for a, b ∈ R :=
R ∪ {−∞}. Terminology and notation in max-algebra are defined similarly to
those in linear algebra: The iterated product a⊗a⊗ ...⊗ a in which the element
a is used k-times will be denoted by a(k). If A = (aij), B = (bij) and C = (cij)
are matrices with elements from R of compatible sizes, we write C = A ⊕ B if
cij = aij ⊕ bij for all i, j and C = A⊗B if cij =

∑⊕
k aik ⊗ bkj = max

k
(aik + bkj)

for all i, j. Similarly as for scalars the iterated product A⊗A⊗ ...⊗A in which
the square matrix A is used k-times will be denoted by A(k). In max-algebra the

3

unit matrix I is a square matrix of an appropriate size whose diagonal elements
are all 0 and whose off-diagonal elements are −∞.

Note that the algebraic system (R,⊕,⊗) offers an appropriate language to
describe various operational research problems. An account on algebraic prop-
erties in max-algebra can be found in Cuninghame-Green [11] and [13]. Further
surveys in this field are the monograph [2], the survey paper of Gondran and
Minoux [15] and the monograph of Zimmermann [19] on optimisation in ordered
algebraic structures.

Relevant to this paper is the max-algebraic characteristic polynomial or,
briefly, characteristic maxpolynomial [12]. We now introduce this concept. Let
A = (aij) ∈ Rn×n

. The max-algebraic permanent of A is defined as an analogue
of the classical one:

maper(A) =
∑⊕

π∈Pn

∏⊗

i∈N

ai,π(i)

where Pn stands for the set of all permutations of the set N = {1, ..., n}. In the
conventional notation

maper(A) = max
π∈Pn

∑
i∈N

ai,π(i)

which is obviously the optimal value of the assignment problem for the matrix
A. The set of all optimal permutations will be denoted by ap(A), that is,

ap(A) = {π ∈ Pn;maper(A) =
∑
i∈N

ai,π(i)}.

It will be useful to denote
∑

i∈N

ai,π(i) by w(A, π). Hence maper(A) = max
π∈Pn

w(A, π).

The characteristic maxpolynomial of A is defined [12] as

χA(x) = maper(A⊕ x⊗ I) = maper


a11 ⊕ x a12 ... a1n

a21 a22 ⊕ x ... a2n

...
...

...
an1 an2 ... ann ⊕ x

 .

It follows immediately from this definition that χA(x) is of the form

δ0 ⊕ (δ1 ⊗ x)⊕ ...⊕ (δn−1 ⊗ x(n−1))⊕ x(n)

4

or briefly
n∑⊕

i=0

δi ⊗ x(i) where δn = 0 and, by convention, x(0) = 0. It is also

easily seen that for k = 0, 1, ..., n− 1

δn−k =
∑⊕

B∈Ak

maper(B),

where Ak is the set of all principal submatrices of A of order k. Hence we
can readily compute δ0 = maper(A) and δn−1 = max(a11, a22, ..., ann). Note
that δn−k = −∞ if maper(B) = −∞ for all B ∈ Ak in which case the term
δn−k⊗x(n−k) may be omitted. Also, χA(x) may reduce to just x(n), see Theorem
1 below.

Because of the absorbing effect of the operation ⊕, some terms of a charac-
teristic maxpolynomial may be omitted without changing it as a function. More
precisely, the characteristic maxpolynomial of A written using usual algebra is

χA(x) = max(δ0, δ1 + x, δ2 + 2x, ..., δn−1 + (n− 1)x, nx).

Hence, χA(x) is the upper envelope of n + 1 affine-linear functions and thus a
piecewise linear and convex function. If for some k ∈ {0, ..., n} the inequality

δk ⊗ x(k) ≤
∑⊕

i 6=k

δi ⊗ x(i)

holds for every real x then the term δk ⊗ x(k) is called inessential, otherwise it
is called essential. Hence

χA(x) =
∑⊕

i 6=k

δi ⊗ x(i)

holds for all x ∈ R if δk ⊗ x(k) is inessential, and therefore all inessential terms
may be ignored if χA(x) is considered as a function.

An O(n2(m + n log n)) algorithm for finding all essential terms of the char-
acteristic maxpolynomial of an n × n matrix where m is the number of finite
entries of A is known [4]. It then follows that this method solves the JRP(A) in
polynomial time when all terms are essential, as δn−k(A) is the optimal solution
value of JRP(A, k). Note that the complexity bound has recently been improved
to O(n(m + n log n)) steps [14].

5

In the rest of the paper N will stand for the set {1, . . . , n} and if A =
(aij) ∈ Rn×n

we denote by D(A) the digraph with the node set N and arc set
{(i, j); aij > −∞}. For a cycle σ = (i1, i2, . . . , ip, i1), let V (σ) = {i1, i2, . . . , ip}.
For a digraph D, we say cycles σ1, . . . , σt in D are pairwise node disjoint (PND)
if and only if V (σi) ∩ V (σj) = ∅ for i, j = 1, . . . , t, i 6= j.

As another extreme it may happen that χA(x) = x(n). This case can also be
easily characterized. Since every permutation is either a cycle or a product of
cycles, δn−k(A) 6= −∞ if and only if there exist PND cycles in D(A) covering a
total of k nodes. The statement of the theorem below then immediately follows.

Theorem 1. Let A = (aij) ∈ Rn×n
. Then χA(x) = x(n) if and only if D(A) is

acyclic.

Example 2. If

A =

 1 3 2
0 4 1
2 5 0


then

χA(x) = maper

 1⊕ x 3 2
0 4⊕ x 1
2 5 0⊕ x

 =

=
(
(1⊕ x)⊗ (4⊕ x)⊗ (0⊕ x)

)
⊕

(
3⊗ 1⊗ 2

)
⊕

(
2⊗ 0⊗ 5

)
⊕

(
2⊗ (4⊕ x)⊗ 2

)
⊕

⊕
(
(1⊕ x)⊗ 1⊗ 5

)
⊕

(
3⊗ 0⊗ (0⊕ x)

)
=

= x(3) ⊕ 4⊗ x(2) ⊕ 6⊗ x⊕ 8.

In the conventional notation,

χA(x) = max(3x, 4 + 2x, 6 + x, 8).

It is easily seen that this characteristic maxpolynomial has exactly one inessen-
tial term, namely 6⊗ x.

For A ∈ Rn×n
, we define F = {k ∈ N ; δn−k(A) 6= −∞} and kmax as max(F).

The task of finding kmax for a general matrix can be solved in O(n3) time [8],
however we can do better for symmetric matrices:

Theorem 3. [7] The task of finding kmax for a symmetric matrix A ∈ Rn×n
is

equivalent to the maximum cardinality matching problem in a bipartite graph

6

with 2n nodes and can therefore be solved in O(n2.5/
√

log n) time.

Proof. Let B(A) be the bipartite graph with the bipartition (U, V), where U =
{u1, . . . , un}, V = {v1, . . . , vn}, and set of arcs {uivj ; aij > −∞}.

Let M be a matching of maximum cardinality in B(A), |M | = m. Obviously
kmax ≤ m because if k = kmax then there are k independent finite entries in A,
say airπ(ir), r = 1, . . . , k, and so there is a matching of cardinality k in B(A),
namely, {uir

vπ(ir); r = 1, . . . , k}.
We now prove kmax ≥ m. The set of arcs H = {(i, j);uivj ∈ M} in D(A)

consists of directed PND elementary paths (possibly cycles), since the outdegree
and indegree of each node in (N,H) is at most one.

By symmetry, for each arc (i, j) in D(A), (j, i) is also an arc (“counterarc”).
Construct from H another set H ′ as follows: Choose one of the paths, say
p. First, starting from a penultimate arc on p (or any arc in the case of a
cycle), remove this arc and every other arc. Second, add a counterarc to every
remaining arc from p. Repeat this process with every path in (N,H). At the
end we obtain a subgraph (N,H ′) which consists of PND cycles of length two
only.

Note that each set of cycles in D(A) determines a matching in B(A) whose
cardinality is equal to the total number of arcs of these cycles. Thus none of
the paths in (N,H) could have been of odd length, say s, as otherwise the
total number of arcs on cycles constructed from this path would be s + 1, a
contradiction with the maximality of M . Hence |H ′| = m and kmax ≥ m. The
complexity statement now follows, see [3].

3 JRP for special symmetric matrices over {0,−∞}

In this section we show that JRP(A, k), for a symmetric matrix A over {0,−∞},
and k even, can be solved in O(1) time, after finding kmax. We also describe
some cases when this is true for odd values of k.

Let T = {0,−∞} and A ∈ Tn×n. Then for all k, the unique finite value for
δn−k(A) is 0. Also, δn−k(A) = 0 if and only if there exist PND cycles in D(A)
covering a total of k nodes. Hence, deciding if δn−k(A) = 0 for some matrix
A ∈ Tn×n is equivalent to deciding whether there exist PND cycles σ1, σ2, . . . , σt

in D(A) such that
∣∣∣⋃t

i=1 V (σi)
∣∣∣ = k.

Theorem 4. If A ∈ Tn×n is a symmetric matrix, and δn−k(A) = 0 for some
odd k ∈ N , then δn−k+1(A) = 0.

7

Proof. Let k be odd and δn−k(A) = 0. Then there exist PND cycles σ1, σ2, . . . , σt

in D(A) such that
∣∣∣⋃t

i=1 V (σi)
∣∣∣ = k.

As k is odd, there exists a cycle σr = (i1, i2, . . . , ip, i1) ∈ {σ1, σ2, . . . , σt}
for odd p. By symmetry, (i1, i2, i1), (i3, i4, i3), . . . , (ip−2, ip−1, ip−2), together
with all σ1, . . . , σt except σr, are PND cycles which cover k − 1 nodes. Hence
δn−k+1(A) = 0.

Theorem 5. If A ∈ Tn×n is a symmetric matrix, then δn−k(A) = 0 for all even
k ≤ kmax.

Proof. By induction on k: If kmax is even, then δn−kmax(A) = 0. Else if kmax is
odd, then kmax − 1 is even, and δn−kmax+1(A) = 0 by Theorem 4. We can now
assume that δn−k(A) = 0 for an even k ≤ kmax, and prove that δn−k+2(A) = 0.
Thus there exist PND cycles σ1, σ2, . . . , σt in D(A) such that

∣∣∣⋃t
i=1 V (σi)

∣∣∣ = k.
If there exists a cycle σr = (i1, i2, . . . , ip, i1) ∈ {σ1, σ2, . . . , σt} for even p,

then by symmetry (i1, i2, i1), (i3, i4, i3), . . . , (ip−3, ip−2, ip−3), together with all
σ1, . . . , σt except σr, are PND cycles which cover k − 2 nodes.

Else, there exists a cycle σr = (i1, i2, . . . , ip, i1) ∈ {σ1, σ2, . . . , σt} for odd p.
As k is even, there exists another cycle σs = (j1, j2, . . . , jq, j1) ∈ {σ1, σ2, . . . , σt}−
{σr} for odd q. Then by symmetry, (i1, i2, i1), (i3, i4, i3), . . . , (ip−2, ip−1, ip−2),
(j1, j2, j1), (j3, j4, j3), . . . , (jq−2, jq−1, jq−2), together with all σ1, . . . , σt except
σr and σs, are PND cycles which cover k − 2 nodes.

Therefore by induction δn−k(A) = 0 for all even k ≤ kmax.

Remark. In the above proof, the set of covered nodes for δn−k (for even k <

kmax) is a subset of the set of covered nodes for δn−kmax
.

If A has at least one zero on the main diagonal, (or equivalently, if the
digraph D(A) has at least one loop), then we can derive a number of properties:

Theorem 6. If A ∈ Tn×n is a symmetric matrix, and there exists a B ∈ A(l)
containing l independent zeros, with at least one of these l zeros lying on the
main diagonal, then δn−k(A) = 0 for all k ≤ l.

Proof. There exist PND cycles (one of which is a loop, say (j, j)) in D(A), that
cover l nodes, hence δn−l(A) = 0. These cycles without the loop are PND cycles
covering l − 1 nodes, hence δn−l+1(A) = 0. Also, δn−1(A) = 0 follows directly
from the existence of the loop (j, j).

If l−1 is even, then by Theorem 5, δn−k(A) = 0 for k = 2, 4, 6, . . . , l−3. For
all k ∈ {2, 4, 6, . . . , l−3}, there exist PND cycles σ1, σ2, . . . , σt in D(A) covering

8

k nodes, none of which is node j (because of the remark following Theorem 5).
Therefore, the cycle (j, j) together with σ1, σ2, . . . , σt are PND cycles covering
k + 1 nodes, hence δn−k−1 = 0 for k = 2, 4, 6, . . . , l − 3.

Else if l− 1 is odd, then by Theorem 4, δn−l+2(A) = 0. As l− 2 is even, we
can use Theorem 5 again to give us δn−k(A) = 0 for k = 1, 3, 5, . . . , l − 4. As
before, there exist PND cycles σ′1, σ

′
2, . . . , σ

′
t′ in D(A) covering k nodes (none

being node j). The cycle (j, j) together with σ′1, σ
′
2, . . . , σ

′
t′ are PND cycles

covering k + 1 nodes, hence δn−k−1(A) = 0 for k = 1, 3, 5, . . . , l − 4.

If l ∈ {kmax, kmax − 1} in Theorem 6, then we can completely solve the
(non-weighted) JRP for this type of matrix:

Theorem 7. If A ∈ Tn×n is a symmetric matrix, l ∈ {kmax, kmax − 1} and
there exists a B ∈ A(l) containing l independent zeros, with at least one of these
l zeros lying on the main diagonal, then δn−k(A) = 0 for all k ≤ kmax.

Proof. The statement immediately follows from Theorem 6 and the fact that
δn−kmax(A) = 0.

Theorem 8. If A = (aij) ∈ Tn×n is a symmetric matrix and (∃j) ajj = 0,
then for l ∈ {kmax, kmax − 1}, there exists a B ∈ A(l) containing l independent
zeros, with at least one of these l zeros lying on the main diagonal.

Proof. We assume that (j, j) is a loop in D(A). As δn−kmax(A) = 0, there exist
PND cycles σ1, σ2, . . . , σt in D(A) such that

∣∣∣⋃t
i=1 V (σi)

∣∣∣ = kmax. We need to
show there exist PND cycles σ′1, σ

′
2, . . . , σ

′
t′ in D(A), at least one being a loop,

such that
∣∣∣⋃t′

i=1 V (σ′i)
∣∣∣ ∈ {kmax, kmax − 1}.

Clearly, if (j, j) ∈ {σ1, σ2, . . . , σt}, then we are done. So assume not. Then
j ∈

⋃t
i=1 V (σi), as otherwise, (j, j) together with σ1, σ2, . . . , σt would form PND

cycles in D(A) covering kmax+1 nodes, which contradicts the definition of kmax.
Hence there exists one cycle σr = (j, i2, i3, . . . , ip, j) ∈ {σ1, σ2, . . . , σt}.

If p is odd, then by symmetry, (j, j), (i2, i3, i2), (i4, i5, i4), . . . , (ip−1, ip, ip−1)
together with all σ1, σ2, . . . , σt except σr form PND cycles covering kmax nodes.
If instead p is even, then again by symmetry, (j, j), (i2, i3, i2), (i4, i5, i4), . . . ,
(ip−2, ip−1, ip−2) together with all σ1, σ2, . . . , σt except σr form PND cycles cov-
ering kmax − 1 nodes.

Theorem 9. If A = (aij) ∈ Tn×n is a symmetric matrix and (∃j) ajj = 0, then
δn−k(A) = 0 for all k ≤ kmax.

9

Proof. The statement immediately follows from Theorem 7 and Theorem 8.

By Theorem 5, for symmetric matrices, unless kmax = 1, the smallest even
k ∈ F is 2. However, the smallest odd value in F is more tricky. We denote this
value by koddmin.

Remark. If there exist PND cycles σ1, σ2, . . . , σt such that
∣∣∣⋃t

i=1 V (σi)
∣∣∣ is odd,

then at least one of the cycles is odd. Hence koddmin is the length of a shortest
odd cycle. This cycle can be found polynomially [18]. Note that koddmin does
not exist if there is no odd cycle in D(A), and if this is the case, then δn−k = −∞
for all odd k. For the remainder of this section, we shall assume that koddmin

exists.

Theorem 10. Let

1. A ∈ Tn×n be a symmetric matrix,

2. σ1, σ2, . . . , σt be PND cycles in D(A) covering k′ nodes,

3. ∃σ′ ∈ {σ1, σ2, . . . , σt} with |V (σ′)| odd.

Then δn−k(A) = 0 for all odd k ∈ {l′, . . . , k′}, where l′ = min
i=1,...,t

|V (σi)| odd

|V (σi)|.

Proof. Without loss of generality, assume |V (σt)| = l′. Then σ1, σ2, . . . , σt−1 are
PND cycles covering k′− l′ nodes, hence δn−k′+l′ = 0. By Theorem 5, δn−k = 0
for all even k ∈ {0, . . . , k′ − l′}. Take an arbitrary even k ∈ {0, . . . , k′ − l′}. So
k + l′ ∈ {l′, . . . , k′}. There exist PND cycles σ′1, σ

′
2, . . . , σ

′
t′ in D(A) covering k

nodes other than those from V (σt). Therefore, σ′1, σ
′
2, . . . , σ

′
t′ and σt are PND

cycles covering k + l′ nodes. Hence result.

Corollary 11. Let

1. A ∈ Tn×n be a symmetric matrix,

2. k′ ∈ {kmax, kmax − 1},

3. σ1, σ2, . . . , σt be PND cycles in D(A) covering k′ nodes,

4. ∃σ′ ∈ {σ1, σ2, . . . , σt} with |V (σ′)| odd, and

5. min
i=1,...,t

|V (σi)| odd

|V (σi)| = koddmin.

10

Then we can decide whether δn−k(A) is 0 or −∞ for all k in linear time, after
finding kmax and koddmin.

Proof. By Theorem 5, δn−k = 0 for all even k ≤ kmax. By definition, δn−k =
−∞ for all odd k < koddmin. By Theorem 10, δn−k = 0 for all odd k ∈
{koddmin, . . . , kmax − 1}. By definition, δn−kmax

= 0. Hence result.

Theorem 12. If A ∈ Tn×n is a symmetric matrix, then δn−k(A) = 0 for all
odd k ∈ {koddmin, . . . , kmax − koddmin}.

Proof. As δn−kmax
= 0, there exist PND cycles σ1, σ2, . . . , σt in D(A) such

that
∣∣∣⋃t

i=1 V (σi)
∣∣∣ = kmax. There exists another cycle σ in D(A) such that

|V (σ)| = koddmin.
Delete all nodes in V (σ) from σ1, σ2, . . . , σt, as well as incident arcs. As

the cycles were PND and each node was incident to precisely two arcs, up
to 2koddmin arcs have been deleted. Therefore this leaves a total of at least
kmax−2koddmin arcs within the remaining cycles and paths that have arisen from
deleting the arcs from the cycles. Paths have the form (i1, i2, . . . , is). Replace all
paths of this form by cycles (i1, i2, i1), (i3, i4, i3), . . . , (is−2, is−1, is−2) if s is even,
and (i1, i2, i1), (i3, i4, i3), . . . , (is−1, is, is−1) if s is odd. This gives PND cycles
covering at least kmax − 2koddmin arcs, and therefore at least kmax − 2koddmin

nodes, none of which are nodes from V (σ).
Therefore, by Theorem 5, for all even k ≤ kmax−2koddmin, there exist PND

cycles σ′1, σ
′
2, . . . , σ

′
t′ covering k nodes, but none from V (σ). So for all even

k ≤ kmax − 2koddmin, we have PND cycles σ′1, σ
′
2, . . . , σ

′
t′ and σ which cover

k + koddmin nodes. Hence result.

Remark. Note that {koddmin, . . . , kmax − koddmin} 6= ∅ ⇐⇒ koddmin ≤
kmax

2
.

Corollary 13. Let

1. A ∈ Tn×n be a symmetric matrix,

2. k′ ∈ {kmax, kmax − 1},

3. σ1, σ2, . . . , σt be PND cycles in D(A) covering k′ nodes,

4. ∃σ′ ∈ {σ1, σ2, . . . , σt} with |V (σ′)| odd, and

5. min
i=1,...,t

|V (σi)| odd

|V (σi)| ≤ kmax − koddmin.

11

Then we can decide whether δn−k(A) is 0 or −∞ for all k in linear time, after
finding kmax and koddmin.

Proof. By Theorem 5, δn−k = 0 for all even k ≤ kmax. By definition, δn−k =
−∞ for all odd k < koddmin. By Theorem 12, δn−k = 0 for all odd k ∈
{koddmin, . . . , kmax − koddmin}. By Theorem 10, δn−k = 0 for all odd k ∈
{ min

i=1,...,t
|V (σi)| odd

|V (σi)| , . . . , kmax−1}. By definition, δn−kmax
= 0. Because we have

min
i=1,...,t

|V (σi)| odd

|V (σi)| ≤ kmax − koddmin, we know δn−k for all k.

Corollary 14. Let

1. A ∈ Tn×n be a symmetric matrix,

2. k′ ∈ {kmax, kmax − 1},

3. σ1, σ2, . . . , σt be PND cycles in D(A) covering k′ nodes,

4. ∃σ′ ∈ {σ1, σ2, . . . , σt} with odd |V (σ′)| ≤ kmax

2
.

Then we can decide whether δn−k(A) is 0 or −∞ for all k in linear time, after
finding kmax and koddmin.

Proof. We have

min
i=1,...,t

|V (σi)| odd

|V (σi)| ≤ |V (σ′)|

≤ kmax − |V (σ′)|

≤ kmax − koddmin.

The statement now follows from Corollary 13.

Corollary 15. Let

1. A ∈ Tn×n be a symmetric matrix,

2. k′ ∈ {kmax, kmax − 1},

3. σ1, σ2, . . . , σt be PND cycles in D(A) covering k′ nodes,

4. ∃σ′, σ′′ ∈ {σ1, σ2, . . . , σt}, σ′ 6= σ′′, with |V (σ′)| and |V (σ′′)| odd.

Then we can decide whether δn−k(A) is 0 or −∞ for all k in linear time, after
finding kmax and koddmin.

12

Proof. Without loss of generality, assume that |V (σ′)| ≤ |V (σ′′)|. Then we have

2|V (σ′)| ≤ |V (σ′)|+ |V (σ′′)|

≤ k′

≤ kmax.

Therefore |V (σ′)| ≤ kmax

2
, and the statement now follows from Corollary 14.

Remark. Note that solving an assignment problem for A = (aij) ∈ Tn×n is
equivalent to deciding whether the classical permanent of the matrix B = (bij)
is positive where B is defined by bij = 1 if aij = 0 and bij = 0 otherwise.
Therefore the statements in Section 3 solve in special cases the question: Given
A ∈ {0, 1}n×n, and k ≤ n, is there a k × k principal submatrix of A whose
classical permanent is positive?

4 JRP for special matrices over R

Recall that a matrix A ∈ Rn×n
is called irreducible if D(A) is strongly connected

or n = 1. If A,B are square matrices and A can be obtained from B by
simultaneous permutations of the rows and columns then we say that A and B

are equivalent, notation A ∼ B. Clearly, ∼ is an equivalence relation. If A ∼ B

then χA(x) = χB(x). It is known [17] that every matrix A can be transformed
in linear time to an equivalent matrix B in the Frobenius normal form, that is

B =


B11 B12 . . . B1p

B22 . . . B2p

. . .
...

−∞ Bpp

 ,

in which all diagonal blocks are irreducible.
In this section we study JRP for matrices over R. First we present some

solvable special cases and then we show that JRP(A) for A ∈ Rn×n
can be

solved in polynomial time if this is true for every diagonal block of the Frobenius
normal form of A.

13

4.1 Pyramidal matrices

If A = (aij) ∈ Rn×n
and k ∈ N then the principal submatrix A(1, ..., k) is called

a main principal submatrix of A, notation A[k]. If for all i, j, r, s ∈ N

max(i, j) < max(r, s) =⇒ aij ≥ ars, (1)

then A is called pyramidal.

Theorem 16. If A = (aij) ∈ Rn×n
is pyramidal then δn−k(A) = maper(A[k]).

Proof. Let A(l1, . . . lk) be an arbitrary principal submatrix, where 1 ≤ l1 <

· · · < lk ≤ n. Note that
i ≤ li, for all i ≤ k.

Therefore
max(i, j) ≤ max(li, lj), for i, j ≤ k.

If equality does not hold for some i and j, then by (1) we have,

aij ≥ ali,lj .

If equality does hold for some i and j, then let lt = max(li, lj). Note that
i < j ⇔ li < lj . So we have t = max(i, j) and therefore lt = t. Hence
lt−1 = t− 1, . . . , l1 = 1. In this case

aij = ali,lj .

Either way, aij ≥ ali,lj holds. Therefore

maper(A(l1, . . . lk)) ≤ maper(A(1, . . . k))

= maper(A[k])

= δn−k(A),

as A(l1, . . . lk) was arbitrary. Hence result.

14

Example 17. Consider the matrix

A =


9 8 4 3
8 6 5 4
5 4 4 3
3 2 3 1

 .

The indicated lines help to check that A is pyramidal. Hence by Theorem 16
we find:

δ3(A) = maper(A[1]) = 9

δ2(A) = maper(A[2]) = 16

δ1(A) = maper(A[3]) = 20

δ0(A) = maper(A[4]) = maper(A) = 22.

Remark. Matrices that are not pyramidal, may become such after simultane-
ously permuting rows and columns. It follows from (1) that the diagonal entries
of the matrix must be in descending order for (1) to be satisfied. Once rows and
columns have been simultaneously permuted in this way, additional simultane-
ous row and column permutations may be needed between rows and columns
which have a diagonal entry equal to another diagonal entry.

4.2 Monge and Hankel matrices

A matrix A will be called diagonally dominant if id ∈ ap(A). (Note that through-
out the paper id stands for the identity permutation.) A matrix A = (aij) ∈
Rn×n

is called Monge if aij +ars ≥ ais +arj for all i, j, r, s ∈ N , i ≤ r, j ≤ s. It
is well known [6] that every Monge matrix A is diagonally dominant. It is also
easily seen that a principal submatrix of a Monge matrix is also Monge. Hence
JRP(A, k) for Monge matrices is readily solved by finding the k biggest entries
of A.

For a given sequence {gr ∈ R; r = 1, . . . , 2n − 1}, the Hankel matrix is the
matrix H = (hij) ∈ Rn×n

where hij = gi+j−1. Hankel matrices generated by
convex sequences are Monge [9]. Therefore, for these matrices, JRP is readily
solved. However, no efficient method seems to exist for Hankel matrices in
general.

In this subsection we show that finiteness of δn−k(H) can be easily decided

15

for any Hankel matrix H. Since Hankel matrices are symmetric, we can use
some of the results of Section 3.

Theorem 18. If {gr ∈ R; r = 1, . . . , 2n− 1} is the sequence generating Hankel
matrix H = (hij) ∈ Rn×n

and gr 6= −∞ for some odd r, then δn−k(H) 6= −∞
for all k ≤ kmax.

Proof. Let C = (cij) be defined by cij = 0 if hij 6= −∞ and cij = −∞ otherwise.
Assume gr 6= −∞ for some odd r. So (∃i) cii 6= −∞, i.e. (∃i) cii = 0. We now
use Theorem 9 to give us δn−k(C) = 0 for all k ≤ kmax. Then as δn−k(C) = 0
if and only if δn−k(H) 6= −∞, the theorem follows.

Theorem 19. If a matrix A = (aij) ∈ Rn×n
is any matrix such that aij = −∞

if i + j is even, then δn−k(A) = −∞ for all odd k.

Proof. Assume A = (aij) is a matrix such that aij = −∞ if i + j is even. If ai,j

is finite then i + j is odd. So i and j must be of different parities.
Let σ = (i1, i2, . . . , ip) ∈ Cn be any cyclic permutation of arbitrary length p

such that w(A, σ) 6= −∞.
As w(A, σ) 6= −∞, then aij ,ij+1 6= −∞. So ij and ij+1 must be of different

parities. This means elements in the sequence i1, i2, . . . , ip, i1 alternate between
even and odd. This means p must be an even number, i.e. there are no cyclic
permutations σ of odd length of finite weight. Hence result.

If A is symmetric, then together with Theorem 5, this gives us:

Theorem 20. If A = (aij) ∈ Rn×n
is a symmetric matrix such that aij = −∞

if i + j is even, then δn−k(A) 6= −∞ for all even k ≤ kmax, and δn−k(A) = −∞
for all odd k.

A certain type of Hankel matrix satisfies Theorem 20. Rewriting it for this
type of matrix gives:

Theorem 21. If {gr ∈ R; r = 1, . . . , 2n− 1} is the sequence generating Hankel
matrix H and gr = −∞ for all odd r, then δn−k(H) 6= −∞ for all even k ≤ kmax

and δn−k(H) = −∞ for all odd k.

Combining Theorem 18 and Theorem 21 enables us to decide whether δn−k(H)
is finite or not for any Hankel matrix H.

Theorem 22. If {gr ∈ R; r = 1, . . . , 2n− 1} is the sequence generating Hankel
matrix H then

16

1. δn−k(H) 6= −∞ for all even k ≤ kmax,

2. δn−k(H) = −∞ for all odd k if gr = −∞ for all odd r, and

3. δn−k(H) 6= −∞ for all odd k ≤ kmax if gr 6= −∞ for some odd r.

4.3 Block diagonal matrices

Let

A = blockdiag(A1, A2, . . . , Ap) =


A1 −∞

A2

. . .

−∞ Ap

 .

D(Ai) is a subgraph of D(A) for every i = 1, . . . , p. Every D(Ai) is disjoint
from any D(Aj), j 6= i. So any cycle in D(A) has nodes entirely within one
of these disjoint subgraphs, and it is not possible to have a cycle in D(A) with
arcs corresponding to elements from more than one of the matrices A1, . . . , Ap.

We now show how to solve JRP(A) for A in polynomial time, as long as we
can solve JRP(Aj) in polynomial time, for j = 1, . . . , p. This is shown in an
algorithm called JRPBLOCKDIAG (see Figure 1).

Let n(j) be the order of Aj , j = 1, . . . , p. Assume that we have solved
JRP(Aj). This may have been done in polynomial time if Aj is one of the
special types of matrix previously mentioned in this paper.

So for j = 1, . . . p and r = 1, . . . , k we are able to find δn(j)−r(Aj) and also
a principal submatrix Bjr ∈ (Aj)r (where (Aj)r is the set of all r × r principal
submatrices of Aj) and permutation πjr ∈ ap(Bjr) such that w(Bjr, πjr) =
δn(j)−r(Aj).

Let Dj = D(Aj). For each block Aj , we have the following information: For
r = 1, . . . , k, the permutation πjr in Dj gives cycles of total length r and total
weight δn(j)−r(Aj).

We will use S, a set of pairs to tell us which submatrix to select and which
elements from within it to select. We do this by assigning pairs (j, r) to S. A
pair (j, r) tells us that by choosing Bjr and πjr we select a total of r elements
from Bjr and give a total sum of δn(j)−r(Aj).

There are p stages to the algorithm. At each stage information is collected
and then stored within a set of triples called Mj . Each triple has the form
(S, w, k), where S is as described above, w is the total weight of elements selected

17

by using the information in S, and k is the total number of elements selected
by using the information in S.

M0 is set to {(∅, 0, 0)} at Stage 0. For j = 1, . . . , p, at Stage j, the infor-
mation found from Aj (i.e. δn(j)−1(Aj), δn(j)−2(Aj), . . . , δ0(Aj)) and the infor-
mation from Stage j − 1 (i.e. Mj−1) is combined to produce Mj . We start by
copying all triples from Mj−1 to Mj . Next, if we can find a triple (S, w, k)
(of the form described above) by combining the information found from Aj and
Mj−1 that is not in Mj−1, then we add (S, w, k) to Mj . Otherwise, if w is larger
than the second coordinate of any triple in Mj−1 having third component equal
to k, then we replace that triple with (S, w, k) in Mj .

We now give the algorithm, called JRPBLOCKDIAG, and then discuss the
correctness and complexity of this algorithm.

Algorithm JRPBLOCKDIAG
Input: A = blockdiag(A1, A2, . . . , Ap) ∈ Rn×n

.
Output: For k = 1, . . . , n, δn−k(A), and if δn−k(A) is finite, then also k inde-
pendent entries of a k × k principal submatrix of A whose total is δn−k(A).

1. Set M0 = {(∅, 0, 0)}

2. For j = 1 to p :

(a) For r = 1 to n(j) :

i. Find δn(j)−r(Aj).
ii. Find Bjr ∈ (Aj)r and πjr ∈ ap(Bjr) such that w(Bjr, πjr) =

δn(j)−r(Aj).

(b) Set Mj = Mj−1

(c) For each element (S, w, l) ∈ Mj−1 :
For each r = 1 to n(j)− l with δn(j)−r(Aj) finite :

i. If @(S′, w′, l+r) ∈ Mj , then add (S∪{(j, r)}, w+δn(j)−r(Aj), l+
r) to Mj .

ii. If ∃(S′, w′, l + r) ∈ Mj and w′ < w + δn(j)−r(Aj), then remove
(S′, w′, l+r) from Mj and add (S∪{(j, r)}, w+δn(j)−r(Aj), l+r)
to Mj .

3. For k = 1 to n :

If ∃(S, w, k) ∈ Mp, then return δn−k(A) = w, and for i = 1, . . . , r and all
(j, r) ∈ S, return the element of A that corresponds to the (i, πjr(i)) entry
of Bjr. Else return δn−k(A) = −∞.

Figure 1: An algorithm for solving JRP for block diagonal matrices.

18

Lemma 23.

1. If (S, w, k) ∈ Mj in Step 3 of the algorithm, then

(a) S ⊆ ({1, . . . , p} × {1, . . . , n}){1,...,p},

(b)
∑

(i,s)∈S

δn(i)−s(Ai) = w,

(c)
∑

(i,s)∈S

s = k,

(d) If (S′, w′, k) ∈ Mj , then S′ = S and w′ = w,

(e) If S′ ⊆ ({1, . . . , p} × {1, . . . , n}){1,...,p}, w′ =
∑

(i,s)∈S′
δn(i)−s(Ai) and∑

(i,s)∈S′
s = k then w′ ≤ w.

2. If S ⊆ ({1, . . . , p} × {1, . . . , n}){1,...,p}, and
∑

(i,s)∈S

s = k ≤ n, then in Step

3 of the algorithm, ∃(S′, w′, k) ∈ Mj where w ≤ w′.

Proof. Statements 1(a)-1(c) are proved by induction on j, and hold automat-
ically for j = 0. For j > 0, assume (S, w, k) ∈ Mj . We have two cases to
consider:

Case 1: If @(j, r) ∈ S, then (S, w, k) ∈ Mj−1, so 1(a)-1(c) follow by induction.

Case 2: If ∃(j, r) ∈ S, then (S−{(j, r)}, w− δn(j)−r(Aj), k− r) ∈ Mj−1. Note
that r ≤ n, as the third coordinate of this lies between 0 and n − r. So
again 1(a)-1(c) follow by induction.

To prove 1(d), we use the fact that each element of Mj has a unique third
component due to the way Step 2(c) of the algorithm was constructed.

To prove 2, we use induction on max
(h,s)∈S

h. It holds for S = ∅, and for the

inductive step, assume i = max
(h,s)∈S

h, and let (i, r) ∈ S. Note that i ≤ j, so

i − 1 ≤ j − 1. Therefore ∃(S′, w − δn(j)−r(Aj), k − r) ∈ Mi−1 by induction.
Thus in Step 2(c) of the construction of Mi, (S′ ∪ {(i, r)}, w, k) was added to
Mi. Then either (S′ ∪ {(i, r)}, w, k) ∈ Mj or ∃(S′′, w′′, k) ∈ Mj with w < w′′.
Either way, 2 holds.

To prove 1(e), note that by 2, ∃(S′′, w′′, k) ∈ Mj , with w′ ≤ w′′. By 1(d),
we see that S′′ = S and w′′ = w, therefore w′ ≤ w, and 1(e) follows.

From part 2 of Lemma 23, we see that if we have an S ⊆ ({1, . . . , p} ×
{1, . . . , k}){1,...,p} with

∑
(i,s)∈S

s = k and
∑

(i,s)∈S

δn(i)−s(Ai) = w, then ∃(S∗, w∗, k) ∈

19

Mp (which gives at least as much total weight w∗ as w does). Then from part
1(e) of Lemma 23, we see that if (S∗, w∗, k) ∈ Mp, then no other first coordi-
nate satisfying

∑
(i,s)∈S

s = k will provide a bigger total weight than w∗. Selecting

elements of A that correspond to the (i, πjr(i)) entry of Bjr for all i = 1, . . . , r

and all (j, r) ∈ S and adding them up will give w∗, which is the highest possible
value, so w = δn−k(A).

Theorem 24. If A = blockdiag(A1, A2, . . . , Ap) ∈ Rn×n
and we can solve

JRP(Ai, k) in O(t) time, for all i = 1, . . . , p and k = 1, . . . , n, then we can solve
JRP(A) in O(n2(n + t)) time.

Proof. Correctness follows from Lemma 23: For k = 1, . . . , n, Step 3 of the
algorithm chooses an element (S, w, k) from Mp (assuming Mp 6= ∅) with third
component k. Thus for each k it follows (by 1(a) and 1(c) of Lemma 23) that
the solution generated from S is feasible (i.e. if we select the elements of A that
correspond to the (i, πjr(i)) entries of Bjr for all i = 1, . . . , r and all (j, r) ∈ S,
then k finite elements of A will be selected, resulting in a finite total weight).
It also follows that its total weight is w (by 1(b) of Lemma 23), and there is no
better solution (by 1(e) of Lemma 23). By part 2 of Lemma 23, it follows that
if Mp = ∅ at Step 4 of the algorithm, then δn−k(A) = −∞.

For the time bound, notice that the size of each set Mj−1 is no greater
than n, because there is at most one element in Mj−1 with the same third
component (by 1(d) of Lemma 23). Each update operation of Step 2(c) can
be done in constant time for each r and each Mj−1, and must be repeated for
all O(n) elements of Mj−1 and O(n) times for the r loop. Steps 1, and 2b
require one operation each so can be performed in constant time. Assume that
for each r, Step 2(a) can be performed in O(t) time. The whole of Step 2 is
repeated p times. It is easily seen that Step 3 can be done in O(n2) time. So
algorithm JRPBLOCKDIAG runs in O(pn(n+t)) time. As p ≤ n, this becomes
O(n2(n + t)) time.

Corollary 25. If in Theorem 24, t is polynomial in n, that is, if JRP(Ai, k
′)

can be solved in polynomial time, for all i = 1, . . . , p and k′ = 1, . . . , k, then for
a block diagonal matrix A, JRP(A) can be solved in polynomial time.

Any matrix that can be obtained by permuting the rows and/or columns of
the matrix containing zeros on the main diagonal and −∞ elsewhere, will be
called a permutation matrix. Any matrix that can be obtained by permuting the

20

rows and/or columns of a matrix containing finite entries on the main diagonal
and −∞ elsewhere, will be called a generalized permutation matrix. It is known
[8] that JRP(A) can be solved in O(n2) time, for a permutation matrix A.

Corollary 26. For any generalized permutation matrix A ∈ Rn×n
, JRP(A)

can be solved in O(n3) time.

Proof. Generalized permutation matrices are a special type of block diagonal
matrix. Each block contains only one cycle, therefore we can solve JRP for each
block in linear time, and hence use Theorem 24 to give the result.

Remark. Note that this complexity can be improved to O(n2) time for gener-
alized permutation matrices, by a slight alteration to this algorithm [16].

Any element of a matrix that does not lie on a finite cycle may be set to −∞
without affecting δn−k for any k ∈ N . Hence if B is in Frobenius normal form,
then we may set all elements of off-diagonal blocks in B to −∞. Therefore if
we define Ci = Bii, for i = 1, . . . , p, i.e.

C = blockdiag(C1, C2, . . . , Cp),

then we have δn−k(C) = δn−k(A) for all k ∈ N . We have derived the following:

Theorem 27. For any A ∈ Rn×n
, if we can solve JRP for all diagonal blocks of

the Frobenius normal form of A in polynomial time, then we can solve JRP(A)
in polynomial time (by converting it to a block diagonal matrix and using the
JRPBLOCKDIAG algorithm of Figure 1).

References

[1] Ahuja, R.K., Magnanti, T., and Orlin J.B., Network Flows: Theory, Algo-
rithms and Applications, Prentice Hall, New Jersey, 1993

[2] Baccelli, F.L., G. Cohen, G.-J. Olsder, and J.-P. Quadrat, Synchronization
and Linearity. (J.Wiley and Sons, New York, 1992).

[3] Burkard, R.E., Selected topics in assignment problems., Discrete Applied
Mathematics 123 (2002), 257-302.

[4] Burkard, R.E. and P. Butkovič, Finding all essential terms of a character-
istic maxpolynomial, Discrete Applied Mathematics 130 (2003), 367-380.

21

[5] Burkard, R.E. and P. Butkovič, Max algebra and the linear assignment
problem, Math. Program., Ser.B 98 (2003), 415-429.

[6] Burkard, R.E. and E. Çela, Linear Assignment Problems and Extensions,
in Handbook of Combinatorial Optimization (P.M.Pardalos and D.-Z.Du,
Eds.), Supplement Volume A, Kluwer Academic Publishers, 75-149, 1999.

[7] Burkard, R.E. and R.A. Cuninghame-Green, private communication.

[8] Butkovič, P., On the complexity of computing the coeffiecients of max-
algebraic characteristic polynomial and characteristic equation. Kyber-
netika 39 (2003), No. 2, 129–136.

[9] Butkovič, P. and R.A. Cuninghame-Green, The linear assignment problem
for special matrices. IMA journal of Management Mathematics 15 (2004),
1–12.

[10] Butkovič, P. and L. Murfitt, Calculating essential terms of a characteristic
maxpolynomial. CEJOR 8 (2000), 237–246.

[11] Cuninghame-Green, R.A., Minimax Algebra. Lecture Notes in Economics
and Math. Systems 166, (Springer, Berlin, 1979).

[12] Cuninghame-Green, R.A., The characteristic maxpolynomial of a matrix.
J. Math. Analysis and Applications 95 (1983), 110–116.

[13] Cuninghame-Green, R.A., Minimax Algebra and Applications in: Advances
in Imaging and Electron Physics. Vol. 90, pp. 1–121 (Academic Press, New
York, 1995).

[14] Gassner, E., Variants of the Assignment and of the Transportation Prob-
lem, PhD thesis, Graz, 2004.

[15] Gondran M., and M. Minoux, Linear Algebra of Diöıds: a survey of recent
results. Annals of Discrete Mathematics 19 (1984), 147-164.

[16] Lewis, S. C., On the Job Rotation Problem, PhD thesis, University of
Birmingham, in preparation.

[17] Rosen, K. H. (ed), Handbook of discrete and combinatorial mathematics,
Boca Raton; London : CRC Press, 2000.

22

[18] van Leeuwen, J. (ed), Graph Algorithms, in Handbook of theoretical com-
puter science - Vol.A : Algorithms and complexity, 525-631, Amsterdam;
Oxford : Elsevier; Cambridge, MA : MIT Press, 1990.

[19] Zimmermann, U., Linear and Combinatorial Optimization in Ordered Al-
gebraic Structures. Annals of Discrete Mathematics 10 (North Holland,
Amsterdam, 1981).

23

